| /* | 
 |  * QTest testcase for the SSE timer device | 
 |  * | 
 |  * Copyright (c) 2021 Linaro Limited | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License as published by the | 
 |  * Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | 
 |  * for more details. | 
 |  */ | 
 |  | 
 | #include "qemu/osdep.h" | 
 | #include "libqtest-single.h" | 
 |  | 
 | /* | 
 |  * SSE-123/SSE-300 timer in the mps3-an547 board, where it is driven | 
 |  * at 32MHz, so 31.25ns per tick. | 
 |  */ | 
 | #define TIMER_BASE 0x48000000 | 
 |  | 
 | /* PERIPHNSPPC0 register in the SSE-300 Secure Access Configuration block */ | 
 | #define PERIPHNSPPC0 (0x50080000 + 0x70) | 
 |  | 
 | /* Base of the System Counter control frame */ | 
 | #define COUNTER_BASE 0x58100000 | 
 |  | 
 | /* SSE counter register offsets in the control frame */ | 
 | #define CNTCR 0 | 
 | #define CNTSR 0x4 | 
 | #define CNTCV_LO 0x8 | 
 | #define CNTCV_HI 0xc | 
 | #define CNTSCR 0x10 | 
 |  | 
 | /* SSE timer register offsets */ | 
 | #define CNTPCT_LO 0 | 
 | #define CNTPCT_HI 4 | 
 | #define CNTFRQ 0x10 | 
 | #define CNTP_CVAL_LO 0x20 | 
 | #define CNTP_CVAL_HI 0x24 | 
 | #define CNTP_TVAL 0x28 | 
 | #define CNTP_CTL 0x2c | 
 | #define CNTP_AIVAL_LO 0x40 | 
 | #define CNTP_AIVAL_HI 0x44 | 
 | #define CNTP_AIVAL_RELOAD 0x48 | 
 | #define CNTP_AIVAL_CTL 0x4c | 
 |  | 
 | /* 4 ticks in nanoseconds (so we can work in integers) */ | 
 | #define FOUR_TICKS 125 | 
 |  | 
 | static void clock_step_ticks(uint64_t ticks) | 
 | { | 
 |     /* | 
 |      * Advance the qtest clock by however many nanoseconds we | 
 |      * need to move the timer forward the specified number of ticks. | 
 |      * ticks must be a multiple of 4, so we get a whole number of ns. | 
 |      */ | 
 |     assert(!(ticks & 3)); | 
 |     clock_step(FOUR_TICKS * (ticks >> 2)); | 
 | } | 
 |  | 
 | static void reset_counter_and_timer(void) | 
 | { | 
 |     /* | 
 |      * Reset the system counter and the timer between tests. This | 
 |      * isn't a full reset, but it's sufficient for what the tests check. | 
 |      */ | 
 |     writel(COUNTER_BASE + CNTCR, 0); | 
 |     writel(TIMER_BASE + CNTP_CTL, 0); | 
 |     writel(TIMER_BASE + CNTP_AIVAL_CTL, 0); | 
 |     writel(COUNTER_BASE + CNTCV_LO, 0); | 
 |     writel(COUNTER_BASE + CNTCV_HI, 0); | 
 | } | 
 |  | 
 | static void test_counter(void) | 
 | { | 
 |     /* Basic counter functionality test */ | 
 |  | 
 |     reset_counter_and_timer(); | 
 |     /* The counter should start disabled: check that it doesn't move */ | 
 |     clock_step_ticks(100); | 
 |     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 0); | 
 |     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0); | 
 |     /* Now enable it and check that it does count */ | 
 |     writel(COUNTER_BASE + CNTCR, 1); | 
 |     clock_step_ticks(100); | 
 |     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 100); | 
 |     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0); | 
 |     /* Check the counter scaling functionality */ | 
 |     writel(COUNTER_BASE + CNTCR, 0); | 
 |     writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */ | 
 |     writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */ | 
 |     clock_step_ticks(160); | 
 |     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 110); | 
 |     g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0); | 
 | } | 
 |  | 
 | static void test_timer(void) | 
 | { | 
 |     /* Basic timer functionality test */ | 
 |  | 
 |     reset_counter_and_timer(); | 
 |     /* | 
 |      * The timer is behind a Peripheral Protection Controller, and | 
 |      * qtest accesses are always non-secure (no memory attributes), | 
 |      * so we must program the PPC to accept NS transactions.  TIMER0 | 
 |      * is on port 0 of PPC0, controlled by bit 0 of this register. | 
 |      */ | 
 |     writel(PERIPHNSPPC0, 1); | 
 |     /* We must enable the System Counter or the timer won't run. */ | 
 |     writel(COUNTER_BASE + CNTCR, 1); | 
 |  | 
 |     /* Timer starts disabled and with a counter of 0 */ | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 0); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 0); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0); | 
 |  | 
 |     /* Turn it on */ | 
 |     writel(TIMER_BASE + CNTP_CTL, 1); | 
 |  | 
 |     /* Is the timer ticking? */ | 
 |     clock_step_ticks(100); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 100); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0); | 
 |  | 
 |     /* Set the CompareValue to 4000 ticks */ | 
 |     writel(TIMER_BASE + CNTP_CVAL_LO, 4000); | 
 |     writel(TIMER_BASE + CNTP_CVAL_HI, 0); | 
 |  | 
 |     /* Check TVAL view of the counter */ | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 3900); | 
 |  | 
 |     /* Advance to the CompareValue mark and check ISTATUS is set */ | 
 |     clock_step_ticks(3900); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 0); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); | 
 |  | 
 |     /* Now exercise the auto-reload part of the timer */ | 
 |     writel(TIMER_BASE + CNTP_AIVAL_RELOAD, 200); | 
 |     writel(TIMER_BASE + CNTP_AIVAL_CTL, 1); | 
 |  | 
 |     /* Check AIVAL was reloaded and that ISTATUS is now clear */ | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4200); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); | 
 |  | 
 |     /* | 
 |      * Check that when we advance forward to the reload time the interrupt | 
 |      * fires and the value reloads | 
 |      */ | 
 |     clock_step_ticks(100); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); | 
 |     clock_step_ticks(100); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4400); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0); | 
 |  | 
 |     clock_step_ticks(100); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); | 
 |     /* Check that writing 0 to CLR clears the interrupt */ | 
 |     writel(TIMER_BASE + CNTP_AIVAL_CTL, 1); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); | 
 |     /* Check that when we move forward to the reload time it fires again */ | 
 |     clock_step_ticks(100); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0); | 
 |  | 
 |     /* | 
 |      * Step the clock far enough that we overflow the low half of the | 
 |      * CNTPCT and AIVAL registers, and check that their high halves | 
 |      * give the right values. We do the forward movement in | 
 |      * non-autoinc mode because otherwise it takes forever as the | 
 |      * timer has to emulate all the 'reload at t + N, t + 2N, etc' | 
 |      * steps. | 
 |      */ | 
 |     writel(TIMER_BASE + CNTP_AIVAL_CTL, 0); | 
 |     clock_step_ticks(0x42ULL << 32); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 4400); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0x42); | 
 |  | 
 |     /* Turn on the autoinc again to check AIVAL_HI */ | 
 |     writel(TIMER_BASE + CNTP_AIVAL_CTL, 1); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0x42); | 
 | } | 
 |  | 
 | static void test_timer_scale_change(void) | 
 | { | 
 |     /* | 
 |      * Test that the timer responds correctly to counter | 
 |      * scaling changes while it has an active timer. | 
 |      */ | 
 |     reset_counter_and_timer(); | 
 |     /* Give ourselves access to the timer, and enable the counter and timer */ | 
 |     writel(PERIPHNSPPC0, 1); | 
 |     writel(COUNTER_BASE + CNTCR, 1); | 
 |     writel(TIMER_BASE + CNTP_CTL, 1); | 
 |     /* Set the CompareValue to 4000 ticks */ | 
 |     writel(TIMER_BASE + CNTP_CVAL_LO, 4000); | 
 |     writel(TIMER_BASE + CNTP_CVAL_HI, 0); | 
 |     /* Advance halfway and check ISTATUS is not set */ | 
 |     clock_step_ticks(2000); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); | 
 |     /* Reprogram the counter to run at 1/16th speed */ | 
 |     writel(COUNTER_BASE + CNTCR, 0); | 
 |     writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */ | 
 |     writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */ | 
 |     /* Advance to where the timer would have fired and check it has not */ | 
 |     clock_step_ticks(2000); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); | 
 |     /* Advance to where the timer must fire at the new clock rate */ | 
 |     clock_step_ticks(29996); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); | 
 |     clock_step_ticks(4); | 
 |     g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); | 
 | } | 
 |  | 
 | int main(int argc, char **argv) | 
 | { | 
 |     int r; | 
 |  | 
 |     g_test_init(&argc, &argv, NULL); | 
 |  | 
 |     qtest_start("-machine mps3-an547"); | 
 |  | 
 |     qtest_add_func("/sse-timer/counter", test_counter); | 
 |     qtest_add_func("/sse-timer/timer", test_timer); | 
 |     qtest_add_func("/sse-timer/timer-scale-change", test_timer_scale_change); | 
 |  | 
 |     r = g_test_run(); | 
 |  | 
 |     qtest_end(); | 
 |  | 
 |     return r; | 
 | } |