| /* |
| * Arm "Angel" semihosting syscalls |
| * |
| * Copyright (c) 2005, 2007 CodeSourcery. |
| * Copyright (c) 2019 Linaro |
| * Written by Paul Brook. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * ARM Semihosting is documented in: |
| * Semihosting for AArch32 and AArch64 Release 2.0 |
| * https://static.docs.arm.com/100863/0200/semihosting.pdf |
| */ |
| |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "hw/semihosting/semihost.h" |
| #include "hw/semihosting/console.h" |
| #include "qemu/log.h" |
| #ifdef CONFIG_USER_ONLY |
| #include "qemu.h" |
| |
| #define ARM_ANGEL_HEAP_SIZE (128 * 1024 * 1024) |
| #else |
| #include "exec/gdbstub.h" |
| #include "qemu/cutils.h" |
| #endif |
| |
| #define TARGET_SYS_OPEN 0x01 |
| #define TARGET_SYS_CLOSE 0x02 |
| #define TARGET_SYS_WRITEC 0x03 |
| #define TARGET_SYS_WRITE0 0x04 |
| #define TARGET_SYS_WRITE 0x05 |
| #define TARGET_SYS_READ 0x06 |
| #define TARGET_SYS_READC 0x07 |
| #define TARGET_SYS_ISTTY 0x09 |
| #define TARGET_SYS_SEEK 0x0a |
| #define TARGET_SYS_FLEN 0x0c |
| #define TARGET_SYS_TMPNAM 0x0d |
| #define TARGET_SYS_REMOVE 0x0e |
| #define TARGET_SYS_RENAME 0x0f |
| #define TARGET_SYS_CLOCK 0x10 |
| #define TARGET_SYS_TIME 0x11 |
| #define TARGET_SYS_SYSTEM 0x12 |
| #define TARGET_SYS_ERRNO 0x13 |
| #define TARGET_SYS_GET_CMDLINE 0x15 |
| #define TARGET_SYS_HEAPINFO 0x16 |
| #define TARGET_SYS_EXIT 0x18 |
| #define TARGET_SYS_SYNCCACHE 0x19 |
| |
| /* ADP_Stopped_ApplicationExit is used for exit(0), |
| * anything else is implemented as exit(1) */ |
| #define ADP_Stopped_ApplicationExit (0x20026) |
| |
| #ifndef O_BINARY |
| #define O_BINARY 0 |
| #endif |
| |
| #define GDB_O_RDONLY 0x000 |
| #define GDB_O_WRONLY 0x001 |
| #define GDB_O_RDWR 0x002 |
| #define GDB_O_APPEND 0x008 |
| #define GDB_O_CREAT 0x200 |
| #define GDB_O_TRUNC 0x400 |
| #define GDB_O_BINARY 0 |
| |
| static int gdb_open_modeflags[12] = { |
| GDB_O_RDONLY, |
| GDB_O_RDONLY | GDB_O_BINARY, |
| GDB_O_RDWR, |
| GDB_O_RDWR | GDB_O_BINARY, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC | GDB_O_BINARY, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND, |
| GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND, |
| GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND | GDB_O_BINARY |
| }; |
| |
| static int open_modeflags[12] = { |
| O_RDONLY, |
| O_RDONLY | O_BINARY, |
| O_RDWR, |
| O_RDWR | O_BINARY, |
| O_WRONLY | O_CREAT | O_TRUNC, |
| O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, |
| O_RDWR | O_CREAT | O_TRUNC, |
| O_RDWR | O_CREAT | O_TRUNC | O_BINARY, |
| O_WRONLY | O_CREAT | O_APPEND, |
| O_WRONLY | O_CREAT | O_APPEND | O_BINARY, |
| O_RDWR | O_CREAT | O_APPEND, |
| O_RDWR | O_CREAT | O_APPEND | O_BINARY |
| }; |
| |
| typedef enum GuestFDType { |
| GuestFDUnused = 0, |
| GuestFDHost = 1, |
| } GuestFDType; |
| |
| /* |
| * Guest file descriptors are integer indexes into an array of |
| * these structures (we will dynamically resize as necessary). |
| */ |
| typedef struct GuestFD { |
| GuestFDType type; |
| int hostfd; |
| } GuestFD; |
| |
| static GArray *guestfd_array; |
| |
| /* |
| * Allocate a new guest file descriptor and return it; if we |
| * couldn't allocate a new fd then return -1. |
| * This is a fairly simplistic implementation because we don't |
| * expect that most semihosting guest programs will make very |
| * heavy use of opening and closing fds. |
| */ |
| static int alloc_guestfd(void) |
| { |
| guint i; |
| |
| if (!guestfd_array) { |
| /* New entries zero-initialized, i.e. type GuestFDUnused */ |
| guestfd_array = g_array_new(FALSE, TRUE, sizeof(GuestFD)); |
| } |
| |
| for (i = 0; i < guestfd_array->len; i++) { |
| GuestFD *gf = &g_array_index(guestfd_array, GuestFD, i); |
| |
| if (gf->type == GuestFDUnused) { |
| return i; |
| } |
| } |
| |
| /* All elements already in use: expand the array */ |
| g_array_set_size(guestfd_array, i + 1); |
| return i; |
| } |
| |
| /* |
| * Look up the guestfd in the data structure; return NULL |
| * for out of bounds, but don't check whether the slot is unused. |
| * This is used internally by the other guestfd functions. |
| */ |
| static GuestFD *do_get_guestfd(int guestfd) |
| { |
| if (!guestfd_array) { |
| return NULL; |
| } |
| |
| if (guestfd < 0 || guestfd >= guestfd_array->len) { |
| return NULL; |
| } |
| |
| return &g_array_index(guestfd_array, GuestFD, guestfd); |
| } |
| |
| /* |
| * Associate the specified guest fd (which must have been |
| * allocated via alloc_fd() and not previously used) with |
| * the specified host fd. |
| */ |
| static void associate_guestfd(int guestfd, int hostfd) |
| { |
| GuestFD *gf = do_get_guestfd(guestfd); |
| |
| assert(gf); |
| gf->type = GuestFDHost; |
| gf->hostfd = hostfd; |
| } |
| |
| /* |
| * Deallocate the specified guest file descriptor. This doesn't |
| * close the host fd, it merely undoes the work of alloc_fd(). |
| */ |
| static void dealloc_guestfd(int guestfd) |
| { |
| GuestFD *gf = do_get_guestfd(guestfd); |
| |
| assert(gf); |
| gf->type = GuestFDUnused; |
| } |
| |
| /* |
| * Given a guest file descriptor, get the associated struct. |
| * If the fd is not valid, return NULL. This is the function |
| * used by the various semihosting calls to validate a handle |
| * from the guest. |
| * Note: calling alloc_guestfd() or dealloc_guestfd() will |
| * invalidate any GuestFD* obtained by calling this function. |
| */ |
| static GuestFD *get_guestfd(int guestfd) |
| { |
| GuestFD *gf = do_get_guestfd(guestfd); |
| |
| if (!gf || gf->type == GuestFDUnused) { |
| return NULL; |
| } |
| return gf; |
| } |
| |
| /* |
| * The semihosting API has no concept of its errno being thread-safe, |
| * as the API design predates SMP CPUs and was intended as a simple |
| * real-hardware set of debug functionality. For QEMU, we make the |
| * errno be per-thread in linux-user mode; in softmmu it is a simple |
| * global, and we assume that the guest takes care of avoiding any races. |
| */ |
| #ifndef CONFIG_USER_ONLY |
| static target_ulong syscall_err; |
| |
| #include "exec/softmmu-semi.h" |
| #endif |
| |
| static inline uint32_t set_swi_errno(CPUARMState *env, uint32_t code) |
| { |
| if (code == (uint32_t)-1) { |
| #ifdef CONFIG_USER_ONLY |
| CPUState *cs = env_cpu(env); |
| TaskState *ts = cs->opaque; |
| |
| ts->swi_errno = errno; |
| #else |
| syscall_err = errno; |
| #endif |
| } |
| return code; |
| } |
| |
| static inline uint32_t get_swi_errno(CPUARMState *env) |
| { |
| #ifdef CONFIG_USER_ONLY |
| CPUState *cs = env_cpu(env); |
| TaskState *ts = cs->opaque; |
| |
| return ts->swi_errno; |
| #else |
| return syscall_err; |
| #endif |
| } |
| |
| static target_ulong arm_semi_syscall_len; |
| |
| static void arm_semi_cb(CPUState *cs, target_ulong ret, target_ulong err) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| target_ulong reg0 = is_a64(env) ? env->xregs[0] : env->regs[0]; |
| |
| if (ret == (target_ulong)-1) { |
| errno = err; |
| set_swi_errno(env, -1); |
| reg0 = ret; |
| } else { |
| /* Fixup syscalls that use nonstardard return conventions. */ |
| switch (reg0) { |
| case TARGET_SYS_WRITE: |
| case TARGET_SYS_READ: |
| reg0 = arm_semi_syscall_len - ret; |
| break; |
| case TARGET_SYS_SEEK: |
| reg0 = 0; |
| break; |
| default: |
| reg0 = ret; |
| break; |
| } |
| } |
| if (is_a64(env)) { |
| env->xregs[0] = reg0; |
| } else { |
| env->regs[0] = reg0; |
| } |
| } |
| |
| static target_ulong arm_flen_buf(ARMCPU *cpu) |
| { |
| /* Return an address in target memory of 64 bytes where the remote |
| * gdb should write its stat struct. (The format of this structure |
| * is defined by GDB's remote protocol and is not target-specific.) |
| * We put this on the guest's stack just below SP. |
| */ |
| CPUARMState *env = &cpu->env; |
| target_ulong sp; |
| |
| if (is_a64(env)) { |
| sp = env->xregs[31]; |
| } else { |
| sp = env->regs[13]; |
| } |
| |
| return sp - 64; |
| } |
| |
| static void arm_semi_flen_cb(CPUState *cs, target_ulong ret, target_ulong err) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| /* The size is always stored in big-endian order, extract |
| the value. We assume the size always fit in 32 bits. */ |
| uint32_t size; |
| cpu_memory_rw_debug(cs, arm_flen_buf(cpu) + 32, (uint8_t *)&size, 4, 0); |
| size = be32_to_cpu(size); |
| if (is_a64(env)) { |
| env->xregs[0] = size; |
| } else { |
| env->regs[0] = size; |
| } |
| errno = err; |
| set_swi_errno(env, -1); |
| } |
| |
| static int arm_semi_open_guestfd; |
| |
| static void arm_semi_open_cb(CPUState *cs, target_ulong ret, target_ulong err) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| if (ret == (target_ulong)-1) { |
| errno = err; |
| set_swi_errno(env, -1); |
| dealloc_guestfd(arm_semi_open_guestfd); |
| } else { |
| associate_guestfd(arm_semi_open_guestfd, ret); |
| ret = arm_semi_open_guestfd; |
| } |
| |
| if (is_a64(env)) { |
| env->xregs[0] = ret; |
| } else { |
| env->regs[0] = ret; |
| } |
| } |
| |
| static target_ulong arm_gdb_syscall(ARMCPU *cpu, gdb_syscall_complete_cb cb, |
| const char *fmt, ...) |
| { |
| va_list va; |
| CPUARMState *env = &cpu->env; |
| |
| va_start(va, fmt); |
| gdb_do_syscallv(cb, fmt, va); |
| va_end(va); |
| |
| /* |
| * FIXME: in softmmu mode, the gdbstub will schedule our callback |
| * to occur, but will not actually call it to complete the syscall |
| * until after this function has returned and we are back in the |
| * CPU main loop. Therefore callers to this function must not |
| * do anything with its return value, because it is not necessarily |
| * the result of the syscall, but could just be the old value of X0. |
| * The only thing safe to do with this is that the callers of |
| * do_arm_semihosting() will write it straight back into X0. |
| * (In linux-user mode, the callback will have happened before |
| * gdb_do_syscallv() returns.) |
| * |
| * We should tidy this up so neither this function nor |
| * do_arm_semihosting() return a value, so the mistake of |
| * doing something with the return value is not possible to make. |
| */ |
| |
| return is_a64(env) ? env->xregs[0] : env->regs[0]; |
| } |
| |
| /* Read the input value from the argument block; fail the semihosting |
| * call if the memory read fails. |
| */ |
| #define GET_ARG(n) do { \ |
| if (is_a64(env)) { \ |
| if (get_user_u64(arg ## n, args + (n) * 8)) { \ |
| errno = EFAULT; \ |
| return set_swi_errno(env, -1); \ |
| } \ |
| } else { \ |
| if (get_user_u32(arg ## n, args + (n) * 4)) { \ |
| errno = EFAULT; \ |
| return set_swi_errno(env, -1); \ |
| } \ |
| } \ |
| } while (0) |
| |
| #define SET_ARG(n, val) \ |
| (is_a64(env) ? \ |
| put_user_u64(val, args + (n) * 8) : \ |
| put_user_u32(val, args + (n) * 4)) |
| |
| /* |
| * Do a semihosting call. |
| * |
| * The specification always says that the "return register" either |
| * returns a specific value or is corrupted, so we don't need to |
| * report to our caller whether we are returning a value or trying to |
| * leave the register unchanged. We use 0xdeadbeef as the return value |
| * when there isn't a defined return value for the call. |
| */ |
| target_ulong do_arm_semihosting(CPUARMState *env) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| CPUState *cs = env_cpu(env); |
| target_ulong args; |
| target_ulong arg0, arg1, arg2, arg3; |
| char * s; |
| int nr; |
| uint32_t ret; |
| uint32_t len; |
| GuestFD *gf; |
| |
| if (is_a64(env)) { |
| /* Note that the syscall number is in W0, not X0 */ |
| nr = env->xregs[0] & 0xffffffffU; |
| args = env->xregs[1]; |
| } else { |
| nr = env->regs[0]; |
| args = env->regs[1]; |
| } |
| |
| switch (nr) { |
| case TARGET_SYS_OPEN: |
| { |
| int guestfd; |
| |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| s = lock_user_string(arg0); |
| if (!s) { |
| errno = EFAULT; |
| return set_swi_errno(env, -1); |
| } |
| if (arg1 >= 12) { |
| unlock_user(s, arg0, 0); |
| errno = EINVAL; |
| return set_swi_errno(env, -1); |
| } |
| |
| guestfd = alloc_guestfd(); |
| if (guestfd < 0) { |
| unlock_user(s, arg0, 0); |
| errno = EMFILE; |
| return set_swi_errno(env, -1); |
| } |
| |
| if (strcmp(s, ":tt") == 0) { |
| int result_fileno = arg1 < 4 ? STDIN_FILENO : STDOUT_FILENO; |
| associate_guestfd(guestfd, result_fileno); |
| unlock_user(s, arg0, 0); |
| return guestfd; |
| } |
| if (use_gdb_syscalls()) { |
| arm_semi_open_guestfd = guestfd; |
| ret = arm_gdb_syscall(cpu, arm_semi_open_cb, "open,%s,%x,1a4", arg0, |
| (int)arg2+1, gdb_open_modeflags[arg1]); |
| } else { |
| ret = set_swi_errno(env, open(s, open_modeflags[arg1], 0644)); |
| if (ret == (uint32_t)-1) { |
| dealloc_guestfd(guestfd); |
| } else { |
| associate_guestfd(guestfd, ret); |
| ret = guestfd; |
| } |
| } |
| unlock_user(s, arg0, 0); |
| return ret; |
| } |
| case TARGET_SYS_CLOSE: |
| GET_ARG(0); |
| |
| gf = get_guestfd(arg0); |
| if (!gf) { |
| errno = EBADF; |
| return set_swi_errno(env, -1); |
| } |
| |
| if (use_gdb_syscalls()) { |
| ret = arm_gdb_syscall(cpu, arm_semi_cb, "close,%x", gf->hostfd); |
| } else { |
| ret = set_swi_errno(env, close(gf->hostfd)); |
| } |
| dealloc_guestfd(arg0); |
| return ret; |
| case TARGET_SYS_WRITEC: |
| qemu_semihosting_console_outc(env, args); |
| return 0xdeadbeef; |
| case TARGET_SYS_WRITE0: |
| return qemu_semihosting_console_outs(env, args); |
| case TARGET_SYS_WRITE: |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| len = arg2; |
| |
| gf = get_guestfd(arg0); |
| if (!gf) { |
| errno = EBADF; |
| return set_swi_errno(env, -1); |
| } |
| |
| if (use_gdb_syscalls()) { |
| arm_semi_syscall_len = len; |
| return arm_gdb_syscall(cpu, arm_semi_cb, "write,%x,%x,%x", |
| gf->hostfd, arg1, len); |
| } else { |
| s = lock_user(VERIFY_READ, arg1, len, 1); |
| if (!s) { |
| /* Return bytes not written on error */ |
| return len; |
| } |
| ret = set_swi_errno(env, write(gf->hostfd, s, len)); |
| unlock_user(s, arg1, 0); |
| if (ret == (uint32_t)-1) { |
| ret = 0; |
| } |
| /* Return bytes not written */ |
| return len - ret; |
| } |
| case TARGET_SYS_READ: |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| len = arg2; |
| |
| gf = get_guestfd(arg0); |
| if (!gf) { |
| errno = EBADF; |
| return set_swi_errno(env, -1); |
| } |
| |
| if (use_gdb_syscalls()) { |
| arm_semi_syscall_len = len; |
| return arm_gdb_syscall(cpu, arm_semi_cb, "read,%x,%x,%x", |
| gf->hostfd, arg1, len); |
| } else { |
| s = lock_user(VERIFY_WRITE, arg1, len, 0); |
| if (!s) { |
| /* return bytes not read */ |
| return len; |
| } |
| do { |
| ret = set_swi_errno(env, read(gf->hostfd, s, len)); |
| } while (ret == -1 && errno == EINTR); |
| unlock_user(s, arg1, len); |
| if (ret == (uint32_t)-1) { |
| ret = 0; |
| } |
| /* Return bytes not read */ |
| return len - ret; |
| } |
| case TARGET_SYS_READC: |
| qemu_log_mask(LOG_UNIMP, "%s: SYS_READC not implemented", __func__); |
| return 0; |
| case TARGET_SYS_ISTTY: |
| GET_ARG(0); |
| |
| gf = get_guestfd(arg0); |
| if (!gf) { |
| errno = EBADF; |
| return set_swi_errno(env, -1); |
| } |
| |
| if (use_gdb_syscalls()) { |
| return arm_gdb_syscall(cpu, arm_semi_cb, "isatty,%x", gf->hostfd); |
| } else { |
| return isatty(gf->hostfd); |
| } |
| case TARGET_SYS_SEEK: |
| GET_ARG(0); |
| GET_ARG(1); |
| |
| gf = get_guestfd(arg0); |
| if (!gf) { |
| errno = EBADF; |
| return set_swi_errno(env, -1); |
| } |
| |
| if (use_gdb_syscalls()) { |
| return arm_gdb_syscall(cpu, arm_semi_cb, "lseek,%x,%x,0", |
| gf->hostfd, arg1); |
| } else { |
| ret = set_swi_errno(env, lseek(gf->hostfd, arg1, SEEK_SET)); |
| if (ret == (uint32_t)-1) |
| return -1; |
| return 0; |
| } |
| case TARGET_SYS_FLEN: |
| GET_ARG(0); |
| |
| gf = get_guestfd(arg0); |
| if (!gf) { |
| errno = EBADF; |
| return set_swi_errno(env, -1); |
| } |
| |
| if (use_gdb_syscalls()) { |
| return arm_gdb_syscall(cpu, arm_semi_flen_cb, "fstat,%x,%x", |
| gf->hostfd, arm_flen_buf(cpu)); |
| } else { |
| struct stat buf; |
| ret = set_swi_errno(env, fstat(gf->hostfd, &buf)); |
| if (ret == (uint32_t)-1) |
| return -1; |
| return buf.st_size; |
| } |
| case TARGET_SYS_TMPNAM: |
| qemu_log_mask(LOG_UNIMP, "%s: SYS_TMPNAM not implemented", __func__); |
| return -1; |
| case TARGET_SYS_REMOVE: |
| GET_ARG(0); |
| GET_ARG(1); |
| if (use_gdb_syscalls()) { |
| ret = arm_gdb_syscall(cpu, arm_semi_cb, "unlink,%s", |
| arg0, (int)arg1+1); |
| } else { |
| s = lock_user_string(arg0); |
| if (!s) { |
| errno = EFAULT; |
| return set_swi_errno(env, -1); |
| } |
| ret = set_swi_errno(env, remove(s)); |
| unlock_user(s, arg0, 0); |
| } |
| return ret; |
| case TARGET_SYS_RENAME: |
| GET_ARG(0); |
| GET_ARG(1); |
| GET_ARG(2); |
| GET_ARG(3); |
| if (use_gdb_syscalls()) { |
| return arm_gdb_syscall(cpu, arm_semi_cb, "rename,%s,%s", |
| arg0, (int)arg1+1, arg2, (int)arg3+1); |
| } else { |
| char *s2; |
| s = lock_user_string(arg0); |
| s2 = lock_user_string(arg2); |
| if (!s || !s2) { |
| errno = EFAULT; |
| ret = set_swi_errno(env, -1); |
| } else { |
| ret = set_swi_errno(env, rename(s, s2)); |
| } |
| if (s2) |
| unlock_user(s2, arg2, 0); |
| if (s) |
| unlock_user(s, arg0, 0); |
| return ret; |
| } |
| case TARGET_SYS_CLOCK: |
| return clock() / (CLOCKS_PER_SEC / 100); |
| case TARGET_SYS_TIME: |
| return set_swi_errno(env, time(NULL)); |
| case TARGET_SYS_SYSTEM: |
| GET_ARG(0); |
| GET_ARG(1); |
| if (use_gdb_syscalls()) { |
| return arm_gdb_syscall(cpu, arm_semi_cb, "system,%s", |
| arg0, (int)arg1+1); |
| } else { |
| s = lock_user_string(arg0); |
| if (!s) { |
| errno = EFAULT; |
| return set_swi_errno(env, -1); |
| } |
| ret = set_swi_errno(env, system(s)); |
| unlock_user(s, arg0, 0); |
| return ret; |
| } |
| case TARGET_SYS_ERRNO: |
| return get_swi_errno(env); |
| case TARGET_SYS_GET_CMDLINE: |
| { |
| /* Build a command-line from the original argv. |
| * |
| * The inputs are: |
| * * arg0, pointer to a buffer of at least the size |
| * specified in arg1. |
| * * arg1, size of the buffer pointed to by arg0 in |
| * bytes. |
| * |
| * The outputs are: |
| * * arg0, pointer to null-terminated string of the |
| * command line. |
| * * arg1, length of the string pointed to by arg0. |
| */ |
| |
| char *output_buffer; |
| size_t input_size; |
| size_t output_size; |
| int status = 0; |
| #if !defined(CONFIG_USER_ONLY) |
| const char *cmdline; |
| #else |
| TaskState *ts = cs->opaque; |
| #endif |
| GET_ARG(0); |
| GET_ARG(1); |
| input_size = arg1; |
| /* Compute the size of the output string. */ |
| #if !defined(CONFIG_USER_ONLY) |
| cmdline = semihosting_get_cmdline(); |
| if (cmdline == NULL) { |
| cmdline = ""; /* Default to an empty line. */ |
| } |
| output_size = strlen(cmdline) + 1; /* Count terminating 0. */ |
| #else |
| unsigned int i; |
| |
| output_size = ts->info->arg_end - ts->info->arg_start; |
| if (!output_size) { |
| /* |
| * We special-case the "empty command line" case (argc==0). |
| * Just provide the terminating 0. |
| */ |
| output_size = 1; |
| } |
| #endif |
| |
| if (output_size > input_size) { |
| /* Not enough space to store command-line arguments. */ |
| errno = E2BIG; |
| return set_swi_errno(env, -1); |
| } |
| |
| /* Adjust the command-line length. */ |
| if (SET_ARG(1, output_size - 1)) { |
| /* Couldn't write back to argument block */ |
| errno = EFAULT; |
| return set_swi_errno(env, -1); |
| } |
| |
| /* Lock the buffer on the ARM side. */ |
| output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0); |
| if (!output_buffer) { |
| errno = EFAULT; |
| return set_swi_errno(env, -1); |
| } |
| |
| /* Copy the command-line arguments. */ |
| #if !defined(CONFIG_USER_ONLY) |
| pstrcpy(output_buffer, output_size, cmdline); |
| #else |
| if (output_size == 1) { |
| /* Empty command-line. */ |
| output_buffer[0] = '\0'; |
| goto out; |
| } |
| |
| if (copy_from_user(output_buffer, ts->info->arg_start, |
| output_size)) { |
| errno = EFAULT; |
| status = set_swi_errno(env, -1); |
| goto out; |
| } |
| |
| /* Separate arguments by white spaces. */ |
| for (i = 0; i < output_size - 1; i++) { |
| if (output_buffer[i] == 0) { |
| output_buffer[i] = ' '; |
| } |
| } |
| out: |
| #endif |
| /* Unlock the buffer on the ARM side. */ |
| unlock_user(output_buffer, arg0, output_size); |
| |
| return status; |
| } |
| case TARGET_SYS_HEAPINFO: |
| { |
| target_ulong retvals[4]; |
| target_ulong limit; |
| int i; |
| #ifdef CONFIG_USER_ONLY |
| TaskState *ts = cs->opaque; |
| #endif |
| |
| GET_ARG(0); |
| |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * Some C libraries assume the heap immediately follows .bss, so |
| * allocate it using sbrk. |
| */ |
| if (!ts->heap_limit) { |
| abi_ulong ret; |
| |
| ts->heap_base = do_brk(0); |
| limit = ts->heap_base + ARM_ANGEL_HEAP_SIZE; |
| /* Try a big heap, and reduce the size if that fails. */ |
| for (;;) { |
| ret = do_brk(limit); |
| if (ret >= limit) { |
| break; |
| } |
| limit = (ts->heap_base >> 1) + (limit >> 1); |
| } |
| ts->heap_limit = limit; |
| } |
| |
| retvals[0] = ts->heap_base; |
| retvals[1] = ts->heap_limit; |
| retvals[2] = ts->stack_base; |
| retvals[3] = 0; /* Stack limit. */ |
| #else |
| limit = ram_size; |
| /* TODO: Make this use the limit of the loaded application. */ |
| retvals[0] = limit / 2; |
| retvals[1] = limit; |
| retvals[2] = limit; /* Stack base */ |
| retvals[3] = 0; /* Stack limit. */ |
| #endif |
| |
| for (i = 0; i < ARRAY_SIZE(retvals); i++) { |
| bool fail; |
| |
| if (is_a64(env)) { |
| fail = put_user_u64(retvals[i], arg0 + i * 8); |
| } else { |
| fail = put_user_u32(retvals[i], arg0 + i * 4); |
| } |
| |
| if (fail) { |
| /* Couldn't write back to argument block */ |
| errno = EFAULT; |
| return set_swi_errno(env, -1); |
| } |
| } |
| return 0; |
| } |
| case TARGET_SYS_EXIT: |
| if (is_a64(env)) { |
| /* |
| * The A64 version of this call takes a parameter block, |
| * so the application-exit type can return a subcode which |
| * is the exit status code from the application. |
| */ |
| GET_ARG(0); |
| GET_ARG(1); |
| |
| if (arg0 == ADP_Stopped_ApplicationExit) { |
| ret = arg1; |
| } else { |
| ret = 1; |
| } |
| } else { |
| /* |
| * ARM specifies only Stopped_ApplicationExit as normal |
| * exit, everything else is considered an error |
| */ |
| ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1; |
| } |
| gdb_exit(env, ret); |
| exit(ret); |
| case TARGET_SYS_SYNCCACHE: |
| /* |
| * Clean the D-cache and invalidate the I-cache for the specified |
| * virtual address range. This is a nop for us since we don't |
| * implement caches. This is only present on A64. |
| */ |
| if (is_a64(env)) { |
| return 0; |
| } |
| /* fall through -- invalid for A32/T32 */ |
| default: |
| fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr); |
| cpu_dump_state(cs, stderr, 0); |
| abort(); |
| } |
| } |