blob: 99c6f3cc72382751f95b0c83b12d6b7730b4fa01 [file] [log] [blame]
/*
SPARC translation
Copyright (C) 2003 Thomas M. Ogrisegg <tom@fnord.at>
Copyright (C) 2003-2005 Fabrice Bellard
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "disas/disas.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "tcg/tcg-op.h"
#include "tcg/tcg-op-gvec.h"
#include "exec/helper-gen.h"
#include "exec/translator.h"
#include "exec/log.h"
#include "asi.h"
#define HELPER_H "helper.h"
#include "exec/helper-info.c.inc"
#undef HELPER_H
#ifdef TARGET_SPARC64
# define gen_helper_rdpsr(D, E) qemu_build_not_reached()
# define gen_helper_rdasr17(D, E) qemu_build_not_reached()
# define gen_helper_rett(E) qemu_build_not_reached()
# define gen_helper_power_down(E) qemu_build_not_reached()
# define gen_helper_wrpsr(E, S) qemu_build_not_reached()
#else
# define gen_helper_clear_softint(E, S) qemu_build_not_reached()
# define gen_helper_done(E) qemu_build_not_reached()
# define gen_helper_flushw(E) qemu_build_not_reached()
# define gen_helper_fmul8x16a(D, S1, S2) qemu_build_not_reached()
# define gen_helper_rdccr(D, E) qemu_build_not_reached()
# define gen_helper_rdcwp(D, E) qemu_build_not_reached()
# define gen_helper_restored(E) qemu_build_not_reached()
# define gen_helper_retry(E) qemu_build_not_reached()
# define gen_helper_saved(E) qemu_build_not_reached()
# define gen_helper_set_softint(E, S) qemu_build_not_reached()
# define gen_helper_tick_get_count(D, E, T, C) qemu_build_not_reached()
# define gen_helper_tick_set_count(P, S) qemu_build_not_reached()
# define gen_helper_tick_set_limit(P, S) qemu_build_not_reached()
# define gen_helper_wrccr(E, S) qemu_build_not_reached()
# define gen_helper_wrcwp(E, S) qemu_build_not_reached()
# define gen_helper_wrgl(E, S) qemu_build_not_reached()
# define gen_helper_write_softint(E, S) qemu_build_not_reached()
# define gen_helper_wrpil(E, S) qemu_build_not_reached()
# define gen_helper_wrpstate(E, S) qemu_build_not_reached()
# define gen_helper_fcmpeq16 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fcmpeq32 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fcmpgt16 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fcmpgt32 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fcmple16 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fcmple32 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fcmpne16 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fcmpne32 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fdtox ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fexpand ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fmul8sux16 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fmul8ulx16 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fmul8x16 ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fpmerge ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fqtox ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fstox ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fxtod ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fxtoq ({ qemu_build_not_reached(); NULL; })
# define gen_helper_fxtos ({ qemu_build_not_reached(); NULL; })
# define gen_helper_pdist ({ qemu_build_not_reached(); NULL; })
# define MAXTL_MASK 0
#endif
/* Dynamic PC, must exit to main loop. */
#define DYNAMIC_PC 1
/* Dynamic PC, one of two values according to jump_pc[T2]. */
#define JUMP_PC 2
/* Dynamic PC, may lookup next TB. */
#define DYNAMIC_PC_LOOKUP 3
#define DISAS_EXIT DISAS_TARGET_0
/* global register indexes */
static TCGv_ptr cpu_regwptr;
static TCGv cpu_pc, cpu_npc;
static TCGv cpu_regs[32];
static TCGv cpu_y;
static TCGv cpu_tbr;
static TCGv cpu_cond;
static TCGv cpu_cc_N;
static TCGv cpu_cc_V;
static TCGv cpu_icc_Z;
static TCGv cpu_icc_C;
#ifdef TARGET_SPARC64
static TCGv cpu_xcc_Z;
static TCGv cpu_xcc_C;
static TCGv_i32 cpu_fprs;
static TCGv cpu_gsr;
#else
# define cpu_fprs ({ qemu_build_not_reached(); (TCGv)NULL; })
# define cpu_gsr ({ qemu_build_not_reached(); (TCGv)NULL; })
#endif
#ifdef TARGET_SPARC64
#define cpu_cc_Z cpu_xcc_Z
#define cpu_cc_C cpu_xcc_C
#else
#define cpu_cc_Z cpu_icc_Z
#define cpu_cc_C cpu_icc_C
#define cpu_xcc_Z ({ qemu_build_not_reached(); NULL; })
#define cpu_xcc_C ({ qemu_build_not_reached(); NULL; })
#endif
/* Floating point registers */
static TCGv_i64 cpu_fpr[TARGET_DPREGS];
static TCGv_i32 cpu_fcc[TARGET_FCCREGS];
#define env_field_offsetof(X) offsetof(CPUSPARCState, X)
#ifdef TARGET_SPARC64
# define env32_field_offsetof(X) ({ qemu_build_not_reached(); 0; })
# define env64_field_offsetof(X) env_field_offsetof(X)
#else
# define env32_field_offsetof(X) env_field_offsetof(X)
# define env64_field_offsetof(X) ({ qemu_build_not_reached(); 0; })
#endif
typedef struct DisasCompare {
TCGCond cond;
TCGv c1;
int c2;
} DisasCompare;
typedef struct DisasDelayException {
struct DisasDelayException *next;
TCGLabel *lab;
TCGv_i32 excp;
/* Saved state at parent insn. */
target_ulong pc;
target_ulong npc;
} DisasDelayException;
typedef struct DisasContext {
DisasContextBase base;
target_ulong pc; /* current Program Counter: integer or DYNAMIC_PC */
target_ulong npc; /* next PC: integer or DYNAMIC_PC or JUMP_PC */
/* Used when JUMP_PC value is used. */
DisasCompare jump;
target_ulong jump_pc[2];
int mem_idx;
bool cpu_cond_live;
bool fpu_enabled;
bool address_mask_32bit;
#ifndef CONFIG_USER_ONLY
bool supervisor;
#ifdef TARGET_SPARC64
bool hypervisor;
#endif
#endif
sparc_def_t *def;
#ifdef TARGET_SPARC64
int fprs_dirty;
int asi;
#endif
DisasDelayException *delay_excp_list;
} DisasContext;
// This function uses non-native bit order
#define GET_FIELD(X, FROM, TO) \
((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
// This function uses the order in the manuals, i.e. bit 0 is 2^0
#define GET_FIELD_SP(X, FROM, TO) \
GET_FIELD(X, 31 - (TO), 31 - (FROM))
#define GET_FIELDs(x,a,b) sign_extend (GET_FIELD(x,a,b), (b) - (a) + 1)
#define GET_FIELD_SPs(x,a,b) sign_extend (GET_FIELD_SP(x,a,b), ((b) - (a) + 1))
#ifdef TARGET_SPARC64
#define DFPREG(r) (((r & 1) << 5) | (r & 0x1e))
#define QFPREG(r) (((r & 1) << 5) | (r & 0x1c))
#else
#define DFPREG(r) (r & 0x1e)
#define QFPREG(r) (r & 0x1c)
#endif
#define UA2005_HTRAP_MASK 0xff
#define V8_TRAP_MASK 0x7f
#define IS_IMM (insn & (1<<13))
static void gen_update_fprs_dirty(DisasContext *dc, int rd)
{
#if defined(TARGET_SPARC64)
int bit = (rd < 32) ? 1 : 2;
/* If we know we've already set this bit within the TB,
we can avoid setting it again. */
if (!(dc->fprs_dirty & bit)) {
dc->fprs_dirty |= bit;
tcg_gen_ori_i32(cpu_fprs, cpu_fprs, bit);
}
#endif
}
/* floating point registers moves */
static TCGv_i32 gen_load_fpr_F(DisasContext *dc, unsigned int src)
{
TCGv_i32 ret = tcg_temp_new_i32();
if (src & 1) {
tcg_gen_extrl_i64_i32(ret, cpu_fpr[src / 2]);
} else {
tcg_gen_extrh_i64_i32(ret, cpu_fpr[src / 2]);
}
return ret;
}
static void gen_store_fpr_F(DisasContext *dc, unsigned int dst, TCGv_i32 v)
{
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(t, v);
tcg_gen_deposit_i64(cpu_fpr[dst / 2], cpu_fpr[dst / 2], t,
(dst & 1 ? 0 : 32), 32);
gen_update_fprs_dirty(dc, dst);
}
static TCGv_i64 gen_load_fpr_D(DisasContext *dc, unsigned int src)
{
src = DFPREG(src);
return cpu_fpr[src / 2];
}
static void gen_store_fpr_D(DisasContext *dc, unsigned int dst, TCGv_i64 v)
{
dst = DFPREG(dst);
tcg_gen_mov_i64(cpu_fpr[dst / 2], v);
gen_update_fprs_dirty(dc, dst);
}
static TCGv_i64 gen_dest_fpr_D(DisasContext *dc, unsigned int dst)
{
return cpu_fpr[DFPREG(dst) / 2];
}
static TCGv_i128 gen_load_fpr_Q(DisasContext *dc, unsigned int src)
{
TCGv_i128 ret = tcg_temp_new_i128();
src = QFPREG(src);
tcg_gen_concat_i64_i128(ret, cpu_fpr[src / 2 + 1], cpu_fpr[src / 2]);
return ret;
}
static void gen_store_fpr_Q(DisasContext *dc, unsigned int dst, TCGv_i128 v)
{
dst = DFPREG(dst);
tcg_gen_extr_i128_i64(cpu_fpr[dst / 2 + 1], cpu_fpr[dst / 2], v);
gen_update_fprs_dirty(dc, dst);
}
/* moves */
#ifdef CONFIG_USER_ONLY
#define supervisor(dc) 0
#define hypervisor(dc) 0
#else
#ifdef TARGET_SPARC64
#define hypervisor(dc) (dc->hypervisor)
#define supervisor(dc) (dc->supervisor | dc->hypervisor)
#else
#define supervisor(dc) (dc->supervisor)
#define hypervisor(dc) 0
#endif
#endif
#if !defined(TARGET_SPARC64)
# define AM_CHECK(dc) false
#elif defined(TARGET_ABI32)
# define AM_CHECK(dc) true
#elif defined(CONFIG_USER_ONLY)
# define AM_CHECK(dc) false
#else
# define AM_CHECK(dc) ((dc)->address_mask_32bit)
#endif
static void gen_address_mask(DisasContext *dc, TCGv addr)
{
if (AM_CHECK(dc)) {
tcg_gen_andi_tl(addr, addr, 0xffffffffULL);
}
}
static target_ulong address_mask_i(DisasContext *dc, target_ulong addr)
{
return AM_CHECK(dc) ? (uint32_t)addr : addr;
}
static TCGv gen_load_gpr(DisasContext *dc, int reg)
{
if (reg > 0) {
assert(reg < 32);
return cpu_regs[reg];
} else {
TCGv t = tcg_temp_new();
tcg_gen_movi_tl(t, 0);
return t;
}
}
static void gen_store_gpr(DisasContext *dc, int reg, TCGv v)
{
if (reg > 0) {
assert(reg < 32);
tcg_gen_mov_tl(cpu_regs[reg], v);
}
}
static TCGv gen_dest_gpr(DisasContext *dc, int reg)
{
if (reg > 0) {
assert(reg < 32);
return cpu_regs[reg];
} else {
return tcg_temp_new();
}
}
static bool use_goto_tb(DisasContext *s, target_ulong pc, target_ulong npc)
{
return translator_use_goto_tb(&s->base, pc) &&
translator_use_goto_tb(&s->base, npc);
}
static void gen_goto_tb(DisasContext *s, int tb_num,
target_ulong pc, target_ulong npc)
{
if (use_goto_tb(s, pc, npc)) {
/* jump to same page: we can use a direct jump */
tcg_gen_goto_tb(tb_num);
tcg_gen_movi_tl(cpu_pc, pc);
tcg_gen_movi_tl(cpu_npc, npc);
tcg_gen_exit_tb(s->base.tb, tb_num);
} else {
/* jump to another page: we can use an indirect jump */
tcg_gen_movi_tl(cpu_pc, pc);
tcg_gen_movi_tl(cpu_npc, npc);
tcg_gen_lookup_and_goto_ptr();
}
}
static TCGv gen_carry32(void)
{
if (TARGET_LONG_BITS == 64) {
TCGv t = tcg_temp_new();
tcg_gen_extract_tl(t, cpu_icc_C, 32, 1);
return t;
}
return cpu_icc_C;
}
static void gen_op_addcc_int(TCGv dst, TCGv src1, TCGv src2, TCGv cin)
{
TCGv z = tcg_constant_tl(0);
if (cin) {
tcg_gen_add2_tl(cpu_cc_N, cpu_cc_C, src1, z, cin, z);
tcg_gen_add2_tl(cpu_cc_N, cpu_cc_C, cpu_cc_N, cpu_cc_C, src2, z);
} else {
tcg_gen_add2_tl(cpu_cc_N, cpu_cc_C, src1, z, src2, z);
}
tcg_gen_xor_tl(cpu_cc_Z, src1, src2);
tcg_gen_xor_tl(cpu_cc_V, cpu_cc_N, src2);
tcg_gen_andc_tl(cpu_cc_V, cpu_cc_V, cpu_cc_Z);
if (TARGET_LONG_BITS == 64) {
/*
* Carry-in to bit 32 is result ^ src1 ^ src2.
* We already have the src xor term in Z, from computation of V.
*/
tcg_gen_xor_tl(cpu_icc_C, cpu_cc_Z, cpu_cc_N);
tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N);
}
tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N);
tcg_gen_mov_tl(dst, cpu_cc_N);
}
static void gen_op_addcc(TCGv dst, TCGv src1, TCGv src2)
{
gen_op_addcc_int(dst, src1, src2, NULL);
}
static void gen_op_taddcc(TCGv dst, TCGv src1, TCGv src2)
{
TCGv t = tcg_temp_new();
/* Save the tag bits around modification of dst. */
tcg_gen_or_tl(t, src1, src2);
gen_op_addcc(dst, src1, src2);
/* Incorprate tag bits into icc.V */
tcg_gen_andi_tl(t, t, 3);
tcg_gen_neg_tl(t, t);
tcg_gen_ext32u_tl(t, t);
tcg_gen_or_tl(cpu_cc_V, cpu_cc_V, t);
}
static void gen_op_addc(TCGv dst, TCGv src1, TCGv src2)
{
tcg_gen_add_tl(dst, src1, src2);
tcg_gen_add_tl(dst, dst, gen_carry32());
}
static void gen_op_addccc(TCGv dst, TCGv src1, TCGv src2)
{
gen_op_addcc_int(dst, src1, src2, gen_carry32());
}
static void gen_op_subcc_int(TCGv dst, TCGv src1, TCGv src2, TCGv cin)
{
TCGv z = tcg_constant_tl(0);
if (cin) {
tcg_gen_sub2_tl(cpu_cc_N, cpu_cc_C, src1, z, cin, z);
tcg_gen_sub2_tl(cpu_cc_N, cpu_cc_C, cpu_cc_N, cpu_cc_C, src2, z);
} else {
tcg_gen_sub2_tl(cpu_cc_N, cpu_cc_C, src1, z, src2, z);
}
tcg_gen_neg_tl(cpu_cc_C, cpu_cc_C);
tcg_gen_xor_tl(cpu_cc_Z, src1, src2);
tcg_gen_xor_tl(cpu_cc_V, cpu_cc_N, src1);
tcg_gen_and_tl(cpu_cc_V, cpu_cc_V, cpu_cc_Z);
#ifdef TARGET_SPARC64
tcg_gen_xor_tl(cpu_icc_C, cpu_cc_Z, cpu_cc_N);
tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N);
#endif
tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N);
tcg_gen_mov_tl(dst, cpu_cc_N);
}
static void gen_op_subcc(TCGv dst, TCGv src1, TCGv src2)
{
gen_op_subcc_int(dst, src1, src2, NULL);
}
static void gen_op_tsubcc(TCGv dst, TCGv src1, TCGv src2)
{
TCGv t = tcg_temp_new();
/* Save the tag bits around modification of dst. */
tcg_gen_or_tl(t, src1, src2);
gen_op_subcc(dst, src1, src2);
/* Incorprate tag bits into icc.V */
tcg_gen_andi_tl(t, t, 3);
tcg_gen_neg_tl(t, t);
tcg_gen_ext32u_tl(t, t);
tcg_gen_or_tl(cpu_cc_V, cpu_cc_V, t);
}
static void gen_op_subc(TCGv dst, TCGv src1, TCGv src2)
{
tcg_gen_sub_tl(dst, src1, src2);
tcg_gen_sub_tl(dst, dst, gen_carry32());
}
static void gen_op_subccc(TCGv dst, TCGv src1, TCGv src2)
{
gen_op_subcc_int(dst, src1, src2, gen_carry32());
}
static void gen_op_mulscc(TCGv dst, TCGv src1, TCGv src2)
{
TCGv zero = tcg_constant_tl(0);
TCGv one = tcg_constant_tl(1);
TCGv t_src1 = tcg_temp_new();
TCGv t_src2 = tcg_temp_new();
TCGv t0 = tcg_temp_new();
tcg_gen_ext32u_tl(t_src1, src1);
tcg_gen_ext32u_tl(t_src2, src2);
/*
* if (!(env->y & 1))
* src2 = 0;
*/
tcg_gen_movcond_tl(TCG_COND_TSTEQ, t_src2, cpu_y, one, zero, t_src2);
/*
* b2 = src1 & 1;
* y = (b2 << 31) | (y >> 1);
*/
tcg_gen_extract_tl(t0, cpu_y, 1, 31);
tcg_gen_deposit_tl(cpu_y, t0, src1, 31, 1);
// b1 = N ^ V;
tcg_gen_xor_tl(t0, cpu_cc_N, cpu_cc_V);
/*
* src1 = (b1 << 31) | (src1 >> 1)
*/
tcg_gen_andi_tl(t0, t0, 1u << 31);
tcg_gen_shri_tl(t_src1, t_src1, 1);
tcg_gen_or_tl(t_src1, t_src1, t0);
gen_op_addcc(dst, t_src1, t_src2);
}
static void gen_op_multiply(TCGv dst, TCGv src1, TCGv src2, int sign_ext)
{
#if TARGET_LONG_BITS == 32
if (sign_ext) {
tcg_gen_muls2_tl(dst, cpu_y, src1, src2);
} else {
tcg_gen_mulu2_tl(dst, cpu_y, src1, src2);
}
#else
TCGv t0 = tcg_temp_new_i64();
TCGv t1 = tcg_temp_new_i64();
if (sign_ext) {
tcg_gen_ext32s_i64(t0, src1);
tcg_gen_ext32s_i64(t1, src2);
} else {
tcg_gen_ext32u_i64(t0, src1);
tcg_gen_ext32u_i64(t1, src2);
}
tcg_gen_mul_i64(dst, t0, t1);
tcg_gen_shri_i64(cpu_y, dst, 32);
#endif
}
static void gen_op_umul(TCGv dst, TCGv src1, TCGv src2)
{
/* zero-extend truncated operands before multiplication */
gen_op_multiply(dst, src1, src2, 0);
}
static void gen_op_smul(TCGv dst, TCGv src1, TCGv src2)
{
/* sign-extend truncated operands before multiplication */
gen_op_multiply(dst, src1, src2, 1);
}
static void gen_op_sdiv(TCGv dst, TCGv src1, TCGv src2)
{
#ifdef TARGET_SPARC64
gen_helper_sdiv(dst, tcg_env, src1, src2);
tcg_gen_ext32s_tl(dst, dst);
#else
TCGv_i64 t64 = tcg_temp_new_i64();
gen_helper_sdiv(t64, tcg_env, src1, src2);
tcg_gen_trunc_i64_tl(dst, t64);
#endif
}
static void gen_op_udivcc(TCGv dst, TCGv src1, TCGv src2)
{
TCGv_i64 t64;
#ifdef TARGET_SPARC64
t64 = cpu_cc_V;
#else
t64 = tcg_temp_new_i64();
#endif
gen_helper_udiv(t64, tcg_env, src1, src2);
#ifdef TARGET_SPARC64
tcg_gen_ext32u_tl(cpu_cc_N, t64);
tcg_gen_shri_tl(cpu_cc_V, t64, 32);
tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N);
tcg_gen_movi_tl(cpu_icc_C, 0);
#else
tcg_gen_extr_i64_tl(cpu_cc_N, cpu_cc_V, t64);
#endif
tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N);
tcg_gen_movi_tl(cpu_cc_C, 0);
tcg_gen_mov_tl(dst, cpu_cc_N);
}
static void gen_op_sdivcc(TCGv dst, TCGv src1, TCGv src2)
{
TCGv_i64 t64;
#ifdef TARGET_SPARC64
t64 = cpu_cc_V;
#else
t64 = tcg_temp_new_i64();
#endif
gen_helper_sdiv(t64, tcg_env, src1, src2);
#ifdef TARGET_SPARC64
tcg_gen_ext32s_tl(cpu_cc_N, t64);
tcg_gen_shri_tl(cpu_cc_V, t64, 32);
tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N);
tcg_gen_movi_tl(cpu_icc_C, 0);
#else
tcg_gen_extr_i64_tl(cpu_cc_N, cpu_cc_V, t64);
#endif
tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N);
tcg_gen_movi_tl(cpu_cc_C, 0);
tcg_gen_mov_tl(dst, cpu_cc_N);
}
static void gen_op_taddcctv(TCGv dst, TCGv src1, TCGv src2)
{
gen_helper_taddcctv(dst, tcg_env, src1, src2);
}
static void gen_op_tsubcctv(TCGv dst, TCGv src1, TCGv src2)
{
gen_helper_tsubcctv(dst, tcg_env, src1, src2);
}
static void gen_op_popc(TCGv dst, TCGv src1, TCGv src2)
{
tcg_gen_ctpop_tl(dst, src2);
}
#ifndef TARGET_SPARC64
static void gen_helper_array8(TCGv dst, TCGv src1, TCGv src2)
{
g_assert_not_reached();
}
#endif
static void gen_op_array16(TCGv dst, TCGv src1, TCGv src2)
{
gen_helper_array8(dst, src1, src2);
tcg_gen_shli_tl(dst, dst, 1);
}
static void gen_op_array32(TCGv dst, TCGv src1, TCGv src2)
{
gen_helper_array8(dst, src1, src2);
tcg_gen_shli_tl(dst, dst, 2);
}
static void gen_op_fpack16(TCGv_i32 dst, TCGv_i64 src)
{
#ifdef TARGET_SPARC64
gen_helper_fpack16(dst, cpu_gsr, src);
#else
g_assert_not_reached();
#endif
}
static void gen_op_fpackfix(TCGv_i32 dst, TCGv_i64 src)
{
#ifdef TARGET_SPARC64
gen_helper_fpackfix(dst, cpu_gsr, src);
#else
g_assert_not_reached();
#endif
}
static void gen_op_fpack32(TCGv_i64 dst, TCGv_i64 src1, TCGv_i64 src2)
{
#ifdef TARGET_SPARC64
gen_helper_fpack32(dst, cpu_gsr, src1, src2);
#else
g_assert_not_reached();
#endif
}
static void gen_op_faligndata(TCGv_i64 dst, TCGv_i64 s1, TCGv_i64 s2)
{
#ifdef TARGET_SPARC64
TCGv t1, t2, shift;
t1 = tcg_temp_new();
t2 = tcg_temp_new();
shift = tcg_temp_new();
tcg_gen_andi_tl(shift, cpu_gsr, 7);
tcg_gen_shli_tl(shift, shift, 3);
tcg_gen_shl_tl(t1, s1, shift);
/*
* A shift of 64 does not produce 0 in TCG. Divide this into a
* shift of (up to 63) followed by a constant shift of 1.
*/
tcg_gen_xori_tl(shift, shift, 63);
tcg_gen_shr_tl(t2, s2, shift);
tcg_gen_shri_tl(t2, t2, 1);
tcg_gen_or_tl(dst, t1, t2);
#else
g_assert_not_reached();
#endif
}
static void gen_op_bshuffle(TCGv_i64 dst, TCGv_i64 src1, TCGv_i64 src2)
{
#ifdef TARGET_SPARC64
gen_helper_bshuffle(dst, cpu_gsr, src1, src2);
#else
g_assert_not_reached();
#endif
}
static void gen_op_fmul8x16al(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2)
{
tcg_gen_ext16s_i32(src2, src2);
gen_helper_fmul8x16a(dst, src1, src2);
}
static void gen_op_fmul8x16au(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2)
{
tcg_gen_sari_i32(src2, src2, 16);
gen_helper_fmul8x16a(dst, src1, src2);
}
static void gen_op_fmuld8ulx16(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2)
{
TCGv_i32 t0 = tcg_temp_new_i32();
TCGv_i32 t1 = tcg_temp_new_i32();
TCGv_i32 t2 = tcg_temp_new_i32();
tcg_gen_ext8u_i32(t0, src1);
tcg_gen_ext16s_i32(t1, src2);
tcg_gen_mul_i32(t0, t0, t1);
tcg_gen_extract_i32(t1, src1, 16, 8);
tcg_gen_sextract_i32(t2, src2, 16, 16);
tcg_gen_mul_i32(t1, t1, t2);
tcg_gen_concat_i32_i64(dst, t0, t1);
}
static void gen_op_fmuld8sux16(TCGv_i64 dst, TCGv_i32 src1, TCGv_i32 src2)
{
TCGv_i32 t0 = tcg_temp_new_i32();
TCGv_i32 t1 = tcg_temp_new_i32();
TCGv_i32 t2 = tcg_temp_new_i32();
/*
* The insn description talks about extracting the upper 8 bits
* of the signed 16-bit input rs1, performing the multiply, then
* shifting left by 8 bits. Instead, zap the lower 8 bits of
* the rs1 input, which avoids the need for two shifts.
*/
tcg_gen_ext16s_i32(t0, src1);
tcg_gen_andi_i32(t0, t0, ~0xff);
tcg_gen_ext16s_i32(t1, src2);
tcg_gen_mul_i32(t0, t0, t1);
tcg_gen_sextract_i32(t1, src1, 16, 16);
tcg_gen_andi_i32(t1, t1, ~0xff);
tcg_gen_sextract_i32(t2, src2, 16, 16);
tcg_gen_mul_i32(t1, t1, t2);
tcg_gen_concat_i32_i64(dst, t0, t1);
}
static void finishing_insn(DisasContext *dc)
{
/*
* From here, there is no future path through an unwinding exception.
* If the current insn cannot raise an exception, the computation of
* cpu_cond may be able to be elided.
*/
if (dc->cpu_cond_live) {
tcg_gen_discard_tl(cpu_cond);
dc->cpu_cond_live = false;
}
}
static void gen_generic_branch(DisasContext *dc)
{
TCGv npc0 = tcg_constant_tl(dc->jump_pc[0]);
TCGv npc1 = tcg_constant_tl(dc->jump_pc[1]);
TCGv c2 = tcg_constant_tl(dc->jump.c2);
tcg_gen_movcond_tl(dc->jump.cond, cpu_npc, dc->jump.c1, c2, npc0, npc1);
}
/* call this function before using the condition register as it may
have been set for a jump */
static void flush_cond(DisasContext *dc)
{
if (dc->npc == JUMP_PC) {
gen_generic_branch(dc);
dc->npc = DYNAMIC_PC_LOOKUP;
}
}
static void save_npc(DisasContext *dc)
{
if (dc->npc & 3) {
switch (dc->npc) {
case JUMP_PC:
gen_generic_branch(dc);
dc->npc = DYNAMIC_PC_LOOKUP;
break;
case DYNAMIC_PC:
case DYNAMIC_PC_LOOKUP:
break;
default:
g_assert_not_reached();
}
} else {
tcg_gen_movi_tl(cpu_npc, dc->npc);
}
}
static void save_state(DisasContext *dc)
{
tcg_gen_movi_tl(cpu_pc, dc->pc);
save_npc(dc);
}
static void gen_exception(DisasContext *dc, int which)
{
finishing_insn(dc);
save_state(dc);
gen_helper_raise_exception(tcg_env, tcg_constant_i32(which));
dc->base.is_jmp = DISAS_NORETURN;
}
static TCGLabel *delay_exceptionv(DisasContext *dc, TCGv_i32 excp)
{
DisasDelayException *e = g_new0(DisasDelayException, 1);
e->next = dc->delay_excp_list;
dc->delay_excp_list = e;
e->lab = gen_new_label();
e->excp = excp;
e->pc = dc->pc;
/* Caller must have used flush_cond before branch. */
assert(e->npc != JUMP_PC);
e->npc = dc->npc;
return e->lab;
}
static TCGLabel *delay_exception(DisasContext *dc, int excp)
{
return delay_exceptionv(dc, tcg_constant_i32(excp));
}
static void gen_check_align(DisasContext *dc, TCGv addr, int mask)
{
TCGv t = tcg_temp_new();
TCGLabel *lab;
tcg_gen_andi_tl(t, addr, mask);
flush_cond(dc);
lab = delay_exception(dc, TT_UNALIGNED);
tcg_gen_brcondi_tl(TCG_COND_NE, t, 0, lab);
}
static void gen_mov_pc_npc(DisasContext *dc)
{
finishing_insn(dc);
if (dc->npc & 3) {
switch (dc->npc) {
case JUMP_PC:
gen_generic_branch(dc);
tcg_gen_mov_tl(cpu_pc, cpu_npc);
dc->pc = DYNAMIC_PC_LOOKUP;
break;
case DYNAMIC_PC:
case DYNAMIC_PC_LOOKUP:
tcg_gen_mov_tl(cpu_pc, cpu_npc);
dc->pc = dc->npc;
break;
default:
g_assert_not_reached();
}
} else {
dc->pc = dc->npc;
}
}
static void gen_compare(DisasCompare *cmp, bool xcc, unsigned int cond,
DisasContext *dc)
{
TCGv t1;
cmp->c1 = t1 = tcg_temp_new();
cmp->c2 = 0;
switch (cond & 7) {
case 0x0: /* never */
cmp->cond = TCG_COND_NEVER;
cmp->c1 = tcg_constant_tl(0);
break;
case 0x1: /* eq: Z */
cmp->cond = TCG_COND_EQ;
if (TARGET_LONG_BITS == 32 || xcc) {
tcg_gen_mov_tl(t1, cpu_cc_Z);
} else {
tcg_gen_ext32u_tl(t1, cpu_icc_Z);
}
break;
case 0x2: /* le: Z | (N ^ V) */
/*
* Simplify:
* cc_Z || (N ^ V) < 0 NE
* cc_Z && !((N ^ V) < 0) EQ
* cc_Z & ~((N ^ V) >> TLB) EQ
*/
cmp->cond = TCG_COND_EQ;
tcg_gen_xor_tl(t1, cpu_cc_N, cpu_cc_V);
tcg_gen_sextract_tl(t1, t1, xcc ? 63 : 31, 1);
tcg_gen_andc_tl(t1, xcc ? cpu_cc_Z : cpu_icc_Z, t1);
if (TARGET_LONG_BITS == 64 && !xcc) {
tcg_gen_ext32u_tl(t1, t1);
}
break;
case 0x3: /* lt: N ^ V */
cmp->cond = TCG_COND_LT;
tcg_gen_xor_tl(t1, cpu_cc_N, cpu_cc_V);
if (TARGET_LONG_BITS == 64 && !xcc) {
tcg_gen_ext32s_tl(t1, t1);
}
break;
case 0x4: /* leu: Z | C */
/*
* Simplify:
* cc_Z == 0 || cc_C != 0 NE
* cc_Z != 0 && cc_C == 0 EQ
* cc_Z & (cc_C ? 0 : -1) EQ
* cc_Z & (cc_C - 1) EQ
*/
cmp->cond = TCG_COND_EQ;
if (TARGET_LONG_BITS == 32 || xcc) {
tcg_gen_subi_tl(t1, cpu_cc_C, 1);
tcg_gen_and_tl(t1, t1, cpu_cc_Z);
} else {
tcg_gen_extract_tl(t1, cpu_icc_C, 32, 1);
tcg_gen_subi_tl(t1, t1, 1);
tcg_gen_and_tl(t1, t1, cpu_icc_Z);
tcg_gen_ext32u_tl(t1, t1);
}
break;
case 0x5: /* ltu: C */
cmp->cond = TCG_COND_NE;
if (TARGET_LONG_BITS == 32 || xcc) {
tcg_gen_mov_tl(t1, cpu_cc_C);
} else {
tcg_gen_extract_tl(t1, cpu_icc_C, 32, 1);
}
break;
case 0x6: /* neg: N */
cmp->cond = TCG_COND_LT;
if (TARGET_LONG_BITS == 32 || xcc) {
tcg_gen_mov_tl(t1, cpu_cc_N);
} else {
tcg_gen_ext32s_tl(t1, cpu_cc_N);
}
break;
case 0x7: /* vs: V */
cmp->cond = TCG_COND_LT;
if (TARGET_LONG_BITS == 32 || xcc) {
tcg_gen_mov_tl(t1, cpu_cc_V);
} else {
tcg_gen_ext32s_tl(t1, cpu_cc_V);
}
break;
}
if (cond & 8) {
cmp->cond = tcg_invert_cond(cmp->cond);
}
}
static void gen_fcompare(DisasCompare *cmp, unsigned int cc, unsigned int cond)
{
TCGv_i32 fcc = cpu_fcc[cc];
TCGv_i32 c1 = fcc;
int c2 = 0;
TCGCond tcond;
/*
* FCC values:
* 0 =
* 1 <
* 2 >
* 3 unordered
*/
switch (cond & 7) {
case 0x0: /* fbn */
tcond = TCG_COND_NEVER;
break;
case 0x1: /* fbne : !0 */
tcond = TCG_COND_NE;
break;
case 0x2: /* fblg : 1 or 2 */
/* fcc in {1,2} - 1 -> fcc in {0,1} */
c1 = tcg_temp_new_i32();
tcg_gen_addi_i32(c1, fcc, -1);
c2 = 1;
tcond = TCG_COND_LEU;
break;
case 0x3: /* fbul : 1 or 3 */
c1 = tcg_temp_new_i32();
tcg_gen_andi_i32(c1, fcc, 1);
tcond = TCG_COND_NE;
break;
case 0x4: /* fbl : 1 */
c2 = 1;
tcond = TCG_COND_EQ;
break;
case 0x5: /* fbug : 2 or 3 */
c2 = 2;
tcond = TCG_COND_GEU;
break;
case 0x6: /* fbg : 2 */
c2 = 2;
tcond = TCG_COND_EQ;
break;
case 0x7: /* fbu : 3 */
c2 = 3;
tcond = TCG_COND_EQ;
break;
}
if (cond & 8) {
tcond = tcg_invert_cond(tcond);
}
cmp->cond = tcond;
cmp->c2 = c2;
cmp->c1 = tcg_temp_new();
tcg_gen_extu_i32_tl(cmp->c1, c1);
}
static bool gen_compare_reg(DisasCompare *cmp, int cond, TCGv r_src)
{
static const TCGCond cond_reg[4] = {
TCG_COND_NEVER, /* reserved */
TCG_COND_EQ,
TCG_COND_LE,
TCG_COND_LT,
};
TCGCond tcond;
if ((cond & 3) == 0) {
return false;
}
tcond = cond_reg[cond & 3];
if (cond & 4) {
tcond = tcg_invert_cond(tcond);
}
cmp->cond = tcond;
cmp->c1 = tcg_temp_new();
cmp->c2 = 0;
tcg_gen_mov_tl(cmp->c1, r_src);
return true;
}
static void gen_op_clear_ieee_excp_and_FTT(void)
{
tcg_gen_st_i32(tcg_constant_i32(0), tcg_env,
offsetof(CPUSPARCState, fsr_cexc_ftt));
}
static void gen_op_fmovs(TCGv_i32 dst, TCGv_i32 src)
{
gen_op_clear_ieee_excp_and_FTT();
tcg_gen_mov_i32(dst, src);
}
static void gen_op_fnegs(TCGv_i32 dst, TCGv_i32 src)
{
gen_op_clear_ieee_excp_and_FTT();
tcg_gen_xori_i32(dst, src, 1u << 31);
}
static void gen_op_fabss(TCGv_i32 dst, TCGv_i32 src)
{
gen_op_clear_ieee_excp_and_FTT();
tcg_gen_andi_i32(dst, src, ~(1u << 31));
}
static void gen_op_fmovd(TCGv_i64 dst, TCGv_i64 src)
{
gen_op_clear_ieee_excp_and_FTT();
tcg_gen_mov_i64(dst, src);
}
static void gen_op_fnegd(TCGv_i64 dst, TCGv_i64 src)
{
gen_op_clear_ieee_excp_and_FTT();
tcg_gen_xori_i64(dst, src, 1ull << 63);
}
static void gen_op_fabsd(TCGv_i64 dst, TCGv_i64 src)
{
gen_op_clear_ieee_excp_and_FTT();
tcg_gen_andi_i64(dst, src, ~(1ull << 63));
}
static void gen_op_fnegq(TCGv_i128 dst, TCGv_i128 src)
{
TCGv_i64 l = tcg_temp_new_i64();
TCGv_i64 h = tcg_temp_new_i64();
tcg_gen_extr_i128_i64(l, h, src);
tcg_gen_xori_i64(h, h, 1ull << 63);
tcg_gen_concat_i64_i128(dst, l, h);
}
static void gen_op_fabsq(TCGv_i128 dst, TCGv_i128 src)
{
TCGv_i64 l = tcg_temp_new_i64();
TCGv_i64 h = tcg_temp_new_i64();
tcg_gen_extr_i128_i64(l, h, src);
tcg_gen_andi_i64(h, h, ~(1ull << 63));
tcg_gen_concat_i64_i128(dst, l, h);
}
static void gen_op_fpexception_im(DisasContext *dc, int ftt)
{
/*
* CEXC is only set when succesfully completing an FPop,
* or when raising FSR_FTT_IEEE_EXCP, i.e. check_ieee_exception.
* Thus we can simply store FTT into this field.
*/
tcg_gen_st_i32(tcg_constant_i32(ftt), tcg_env,
offsetof(CPUSPARCState, fsr_cexc_ftt));
gen_exception(dc, TT_FP_EXCP);
}
static int gen_trap_ifnofpu(DisasContext *dc)
{
#if !defined(CONFIG_USER_ONLY)
if (!dc->fpu_enabled) {
gen_exception(dc, TT_NFPU_INSN);
return 1;
}
#endif
return 0;
}
/* asi moves */
typedef enum {
GET_ASI_HELPER,
GET_ASI_EXCP,
GET_ASI_DIRECT,
GET_ASI_DTWINX,
GET_ASI_CODE,
GET_ASI_BLOCK,
GET_ASI_SHORT,
GET_ASI_BCOPY,
GET_ASI_BFILL,
} ASIType;
typedef struct {
ASIType type;
int asi;
int mem_idx;
MemOp memop;
} DisasASI;
/*
* Build DisasASI.
* For asi == -1, treat as non-asi.
* For ask == -2, treat as immediate offset (v8 error, v9 %asi).
*/
static DisasASI resolve_asi(DisasContext *dc, int asi, MemOp memop)
{
ASIType type = GET_ASI_HELPER;
int mem_idx = dc->mem_idx;
if (asi == -1) {
/* Artificial "non-asi" case. */
type = GET_ASI_DIRECT;
goto done;
}
#ifndef TARGET_SPARC64
/* Before v9, all asis are immediate and privileged. */
if (asi < 0) {
gen_exception(dc, TT_ILL_INSN);
type = GET_ASI_EXCP;
} else if (supervisor(dc)
/* Note that LEON accepts ASI_USERDATA in user mode, for
use with CASA. Also note that previous versions of
QEMU allowed (and old versions of gcc emitted) ASI_P
for LEON, which is incorrect. */
|| (asi == ASI_USERDATA
&& (dc->def->features & CPU_FEATURE_CASA))) {
switch (asi) {
case ASI_USERDATA: /* User data access */
mem_idx = MMU_USER_IDX;
type = GET_ASI_DIRECT;
break;
case ASI_KERNELDATA: /* Supervisor data access */
mem_idx = MMU_KERNEL_IDX;
type = GET_ASI_DIRECT;
break;
case ASI_USERTXT: /* User text access */
mem_idx = MMU_USER_IDX;
type = GET_ASI_CODE;
break;
case ASI_KERNELTXT: /* Supervisor text access */
mem_idx = MMU_KERNEL_IDX;
type = GET_ASI_CODE;
break;
case ASI_M_BYPASS: /* MMU passthrough */
case ASI_LEON_BYPASS: /* LEON MMU passthrough */
mem_idx = MMU_PHYS_IDX;
type = GET_ASI_DIRECT;
break;
case ASI_M_BCOPY: /* Block copy, sta access */
mem_idx = MMU_KERNEL_IDX;
type = GET_ASI_BCOPY;
break;
case ASI_M_BFILL: /* Block fill, stda access */
mem_idx = MMU_KERNEL_IDX;
type = GET_ASI_BFILL;
break;
}
/* MMU_PHYS_IDX is used when the MMU is disabled to passthrough the
* permissions check in get_physical_address(..).
*/
mem_idx = (dc->mem_idx == MMU_PHYS_IDX) ? MMU_PHYS_IDX : mem_idx;
} else {
gen_exception(dc, TT_PRIV_INSN);
type = GET_ASI_EXCP;
}
#else
if (asi < 0) {
asi = dc->asi;
}
/* With v9, all asis below 0x80 are privileged. */
/* ??? We ought to check cpu_has_hypervisor, but we didn't copy
down that bit into DisasContext. For the moment that's ok,
since the direct implementations below doesn't have any ASIs
in the restricted [0x30, 0x7f] range, and the check will be
done properly in the helper. */
if (!supervisor(dc) && asi < 0x80) {
gen_exception(dc, TT_PRIV_ACT);
type = GET_ASI_EXCP;
} else {
switch (asi) {
case ASI_REAL: /* Bypass */
case ASI_REAL_IO: /* Bypass, non-cacheable */
case ASI_REAL_L: /* Bypass LE */
case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
case ASI_TWINX_REAL: /* Real address, twinx */
case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
case ASI_QUAD_LDD_PHYS:
case ASI_QUAD_LDD_PHYS_L:
mem_idx = MMU_PHYS_IDX;
break;
case ASI_N: /* Nucleus */
case ASI_NL: /* Nucleus LE */
case ASI_TWINX_N:
case ASI_TWINX_NL:
case ASI_NUCLEUS_QUAD_LDD:
case ASI_NUCLEUS_QUAD_LDD_L:
if (hypervisor(dc)) {
mem_idx = MMU_PHYS_IDX;
} else {
mem_idx = MMU_NUCLEUS_IDX;
}
break;
case ASI_AIUP: /* As if user primary */
case ASI_AIUPL: /* As if user primary LE */
case ASI_TWINX_AIUP:
case ASI_TWINX_AIUP_L:
case ASI_BLK_AIUP_4V:
case ASI_BLK_AIUP_L_4V:
case ASI_BLK_AIUP:
case ASI_BLK_AIUPL:
mem_idx = MMU_USER_IDX;
break;
case ASI_AIUS: /* As if user secondary */
case ASI_AIUSL: /* As if user secondary LE */
case ASI_TWINX_AIUS:
case ASI_TWINX_AIUS_L:
case ASI_BLK_AIUS_4V:
case ASI_BLK_AIUS_L_4V:
case ASI_BLK_AIUS:
case ASI_BLK_AIUSL:
mem_idx = MMU_USER_SECONDARY_IDX;
break;
case ASI_S: /* Secondary */
case ASI_SL: /* Secondary LE */
case ASI_TWINX_S:
case ASI_TWINX_SL:
case ASI_BLK_COMMIT_S:
case ASI_BLK_S:
case ASI_BLK_SL:
case ASI_FL8_S:
case ASI_FL8_SL:
case ASI_FL16_S:
case ASI_FL16_SL:
if (mem_idx == MMU_USER_IDX) {
mem_idx = MMU_USER_SECONDARY_IDX;
} else if (mem_idx == MMU_KERNEL_IDX) {
mem_idx = MMU_KERNEL_SECONDARY_IDX;
}
break;
case ASI_P: /* Primary */
case ASI_PL: /* Primary LE */
case ASI_TWINX_P:
case ASI_TWINX_PL:
case ASI_BLK_COMMIT_P:
case ASI_BLK_P:
case ASI_BLK_PL:
case ASI_FL8_P:
case ASI_FL8_PL:
case ASI_FL16_P:
case ASI_FL16_PL:
break;
}
switch (asi) {
case ASI_REAL:
case ASI_REAL_IO:
case ASI_REAL_L:
case ASI_REAL_IO_L:
case ASI_N:
case ASI_NL:
case ASI_AIUP:
case ASI_AIUPL:
case ASI_AIUS:
case ASI_AIUSL:
case ASI_S:
case ASI_SL:
case ASI_P:
case ASI_PL:
type = GET_ASI_DIRECT;
break;
case ASI_TWINX_REAL:
case ASI_TWINX_REAL_L:
case ASI_TWINX_N:
case ASI_TWINX_NL:
case ASI_TWINX_AIUP:
case ASI_TWINX_AIUP_L:
case ASI_TWINX_AIUS:
case ASI_TWINX_AIUS_L:
case ASI_TWINX_P:
case ASI_TWINX_PL:
case ASI_TWINX_S:
case ASI_TWINX_SL:
case ASI_QUAD_LDD_PHYS:
case ASI_QUAD_LDD_PHYS_L:
case ASI_NUCLEUS_QUAD_LDD:
case ASI_NUCLEUS_QUAD_LDD_L:
type = GET_ASI_DTWINX;
break;
case ASI_BLK_COMMIT_P:
case ASI_BLK_COMMIT_S:
case ASI_BLK_AIUP_4V:
case ASI_BLK_AIUP_L_4V:
case ASI_BLK_AIUP:
case ASI_BLK_AIUPL:
case ASI_BLK_AIUS_4V:
case ASI_BLK_AIUS_L_4V:
case ASI_BLK_AIUS:
case ASI_BLK_AIUSL:
case ASI_BLK_S:
case ASI_BLK_SL:
case ASI_BLK_P:
case ASI_BLK_PL:
type = GET_ASI_BLOCK;
break;
case ASI_FL8_S:
case ASI_FL8_SL:
case ASI_FL8_P:
case ASI_FL8_PL:
memop = MO_UB;
type = GET_ASI_SHORT;
break;
case ASI_FL16_S:
case ASI_FL16_SL:
case ASI_FL16_P:
case ASI_FL16_PL:
memop = MO_TEUW;
type = GET_ASI_SHORT;
break;
}
/* The little-endian asis all have bit 3 set. */
if (asi & 8) {
memop ^= MO_BSWAP;
}
}
#endif
done:
return (DisasASI){ type, asi, mem_idx, memop };
}
#if defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64)
static void gen_helper_ld_asi(TCGv_i64 r, TCGv_env e, TCGv a,
TCGv_i32 asi, TCGv_i32 mop)
{
g_assert_not_reached();
}
static void gen_helper_st_asi(TCGv_env e, TCGv a, TCGv_i64 r,
TCGv_i32 asi, TCGv_i32 mop)
{
g_assert_not_reached();
}
#endif
static void gen_ld_asi(DisasContext *dc, DisasASI *da, TCGv dst, TCGv addr)
{
switch (da->type) {
case GET_ASI_EXCP:
break;
case GET_ASI_DTWINX: /* Reserved for ldda. */
gen_exception(dc, TT_ILL_INSN);
break;
case GET_ASI_DIRECT:
tcg_gen_qemu_ld_tl(dst, addr, da->mem_idx, da->memop | MO_ALIGN);
break;
case GET_ASI_CODE:
#if !defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64)
{
MemOpIdx oi = make_memop_idx(da->memop, da->mem_idx);
TCGv_i64 t64 = tcg_temp_new_i64();
gen_helper_ld_code(t64, tcg_env, addr, tcg_constant_i32(oi));
tcg_gen_trunc_i64_tl(dst, t64);
}
break;
#else
g_assert_not_reached();
#endif
default:
{
TCGv_i32 r_asi = tcg_constant_i32(da->asi);
TCGv_i32 r_mop = tcg_constant_i32(da->memop | MO_ALIGN);
save_state(dc);
#ifdef TARGET_SPARC64
gen_helper_ld_asi(dst, tcg_env, addr, r_asi, r_mop);
#else
{
TCGv_i64 t64 = tcg_temp_new_i64();
gen_helper_ld_asi(t64, tcg_env, addr, r_asi, r_mop);
tcg_gen_trunc_i64_tl(dst, t64);
}
#endif
}
break;
}
}
static void gen_st_asi(DisasContext *dc, DisasASI *da, TCGv src, TCGv addr)
{
switch (da->type) {
case GET_ASI_EXCP:
break;
case GET_ASI_DTWINX: /* Reserved for stda. */
if (TARGET_LONG_BITS == 32) {
gen_exception(dc, TT_ILL_INSN);
break;
} else if (!(dc->def->features & CPU_FEATURE_HYPV)) {
/* Pre OpenSPARC CPUs don't have these */
gen_exception(dc, TT_ILL_INSN);
break;
}
/* In OpenSPARC T1+ CPUs TWINX ASIs in store are ST_BLKINIT_ ASIs */
/* fall through */
case GET_ASI_DIRECT:
tcg_gen_qemu_st_tl(src, addr, da->mem_idx, da->memop | MO_ALIGN);
break;
case GET_ASI_BCOPY:
assert(TARGET_LONG_BITS == 32);
/*
* Copy 32 bytes from the address in SRC to ADDR.
*
* From Ross RT625 hyperSPARC manual, section 4.6:
* "Block Copy and Block Fill will work only on cache line boundaries."
*
* It does not specify if an unaliged address is truncated or trapped.
* Previous qemu behaviour was to truncate to 4 byte alignment, which
* is obviously wrong. The only place I can see this used is in the
* Linux kernel which begins with page alignment, advancing by 32,
* so is always aligned. Assume truncation as the simpler option.
*
* Since the loads and stores are paired, allow the copy to happen
* in the host endianness. The copy need not be atomic.
*/
{
MemOp mop = MO_128 | MO_ATOM_IFALIGN_PAIR;
TCGv saddr = tcg_temp_new();
TCGv daddr = tcg_temp_new();
TCGv_i128 tmp = tcg_temp_new_i128();
tcg_gen_andi_tl(saddr, src, -32);
tcg_gen_andi_tl(daddr, addr, -32);
tcg_gen_qemu_ld_i128(tmp, saddr, da->mem_idx, mop);
tcg_gen_qemu_st_i128(tmp, daddr, da->mem_idx, mop);
tcg_gen_addi_tl(saddr, saddr, 16);
tcg_gen_addi_tl(daddr, daddr, 16);
tcg_gen_qemu_ld_i128(tmp, saddr, da->mem_idx, mop);
tcg_gen_qemu_st_i128(tmp, daddr, da->mem_idx, mop);
}
break;
default:
{
TCGv_i32 r_asi = tcg_constant_i32(da->asi);
TCGv_i32 r_mop = tcg_constant_i32(da->memop | MO_ALIGN);
save_state(dc);
#ifdef TARGET_SPARC64
gen_helper_st_asi(tcg_env, addr, src, r_asi, r_mop);
#else
{
TCGv_i64 t64 = tcg_temp_new_i64();
tcg_gen_extu_tl_i64(t64, src);
gen_helper_st_asi(tcg_env, addr, t64, r_asi, r_mop);
}
#endif
/* A write to a TLB register may alter page maps. End the TB. */
dc->npc = DYNAMIC_PC;
}
break;
}
}
static void gen_swap_asi(DisasContext *dc, DisasASI *da,
TCGv dst, TCGv src, TCGv addr)
{
switch (da->type) {
case GET_ASI_EXCP:
break;
case GET_ASI_DIRECT:
tcg_gen_atomic_xchg_tl(dst, addr, src,
da->mem_idx, da->memop | MO_ALIGN);
break;
default:
/* ??? Should be DAE_invalid_asi. */
gen_exception(dc, TT_DATA_ACCESS);
break;
}
}
static void gen_cas_asi(DisasContext *dc, DisasASI *da,
TCGv oldv, TCGv newv, TCGv cmpv, TCGv addr)
{
switch (da->type) {
case GET_ASI_EXCP:
return;
case GET_ASI_DIRECT:
tcg_gen_atomic_cmpxchg_tl(oldv, addr, cmpv, newv,
da->mem_idx, da->memop | MO_ALIGN);
break;
default:
/* ??? Should be DAE_invalid_asi. */
gen_exception(dc, TT_DATA_ACCESS);
break;
}
}
static void gen_ldstub_asi(DisasContext *dc, DisasASI *da, TCGv dst, TCGv addr)
{
switch (da->type) {
case GET_ASI_EXCP:
break;
case GET_ASI_DIRECT:
tcg_gen_atomic_xchg_tl(dst, addr, tcg_constant_tl(0xff),
da->mem_idx, MO_UB);
break;
default:
/* ??? In theory, this should be raise DAE_invalid_asi.
But the SS-20 roms do ldstuba [%l0] #ASI_M_CTL, %o1. */
if (tb_cflags(dc->base.tb) & CF_PARALLEL) {
gen_helper_exit_atomic(tcg_env);
} else {
TCGv_i32 r_asi = tcg_constant_i32(da->asi);
TCGv_i32 r_mop = tcg_constant_i32(MO_UB);
TCGv_i64 s64, t64;
save_state(dc);
t64 = tcg_temp_new_i64();
gen_helper_ld_asi(t64, tcg_env, addr, r_asi, r_mop);
s64 = tcg_constant_i64(0xff);
gen_helper_st_asi(tcg_env, addr, s64, r_asi, r_mop);
tcg_gen_trunc_i64_tl(dst, t64);
/* End the TB. */
dc->npc = DYNAMIC_PC;
}
break;
}
}
static void gen_ldf_asi(DisasContext *dc, DisasASI *da, MemOp orig_size,
TCGv addr, int rd)
{
MemOp memop = da->memop;
MemOp size = memop & MO_SIZE;
TCGv_i32 d32;
TCGv_i64 d64;
TCGv addr_tmp;
/* TODO: Use 128-bit load/store below. */
if (size == MO_128) {
memop = (memop & ~MO_SIZE) | MO_64;
}
switch (da->type) {
case GET_ASI_EXCP:
break;
case GET_ASI_DIRECT:
memop |= MO_ALIGN_4;
switch (size) {
case MO_32:
d32 = tcg_temp_new_i32();
tcg_gen_qemu_ld_i32(d32, addr, da->mem_idx, memop);
gen_store_fpr_F(dc, rd, d32);
break;
case MO_64:
tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2], addr, da->mem_idx, memop);
break;
case MO_128:
d64 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(d64, addr, da->mem_idx, memop);
addr_tmp = tcg_temp_new();
tcg_gen_addi_tl(addr_tmp, addr, 8);
tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2 + 1], addr_tmp, da->mem_idx, memop);
tcg_gen_mov_i64(cpu_fpr[rd / 2], d64);
break;
default:
g_assert_not_reached();
}
break;
case GET_ASI_BLOCK:
/* Valid for lddfa on aligned registers only. */
if (orig_size == MO_64 && (rd & 7) == 0) {
/* The first operation checks required alignment. */
addr_tmp = tcg_temp_new();
for (int i = 0; ; ++i) {
tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2 + i], addr, da->mem_idx,
memop | (i == 0 ? MO_ALIGN_64 : 0));
if (i == 7) {
break;
}
tcg_gen_addi_tl(addr_tmp, addr, 8);
addr = addr_tmp;
}
} else {
gen_exception(dc, TT_ILL_INSN);
}
break;
case GET_ASI_SHORT:
/* Valid for lddfa only. */
if (orig_size == MO_64) {
tcg_gen_qemu_ld_i64(cpu_fpr[rd / 2], addr, da->mem_idx,
memop | MO_ALIGN);
} else {
gen_exception(dc, TT_ILL_INSN);
}
break;
default:
{
TCGv_i32 r_asi = tcg_constant_i32(da->asi);
TCGv_i32 r_mop = tcg_constant_i32(memop | MO_ALIGN);
save_state(dc);
/* According to the table in the UA2011 manual, the only
other asis that are valid for ldfa/lddfa/ldqfa are
the NO_FAULT asis. We still need a helper for these,
but we can just use the integer asi helper for them. */
switch (size) {
case MO_32:
d64 = tcg_temp_new_i64();
gen_helper_ld_asi(d64, tcg_env, addr, r_asi, r_mop);
d32 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(d32, d64);
gen_store_fpr_F(dc, rd, d32);
break;
case MO_64:
gen_helper_ld_asi(cpu_fpr[rd / 2], tcg_env, addr,
r_asi, r_mop);
break;
case MO_128:
d64 = tcg_temp_new_i64();
gen_helper_ld_asi(d64, tcg_env, addr, r_asi, r_mop);
addr_tmp = tcg_temp_new();
tcg_gen_addi_tl(addr_tmp, addr, 8);
gen_helper_ld_asi(cpu_fpr[rd / 2 + 1], tcg_env, addr_tmp,
r_asi, r_mop);
tcg_gen_mov_i64(cpu_fpr[rd / 2], d64);
break;
default:
g_assert_not_reached();
}
}
break;
}
}
static void gen_stf_asi(DisasContext *dc, DisasASI *da, MemOp orig_size,
TCGv addr, int rd)
{
MemOp memop = da->memop;
MemOp size = memop & MO_SIZE;
TCGv_i32 d32;
TCGv addr_tmp;
/* TODO: Use 128-bit load/store below. */
if (size == MO_128) {
memop = (memop & ~MO_SIZE) | MO_64;
}
switch (da->type) {
case GET_ASI_EXCP:
break;
case GET_ASI_DIRECT:
memop |= MO_ALIGN_4;
switch (size) {
case MO_32:
d32 = gen_load_fpr_F(dc, rd);
tcg_gen_qemu_st_i32(d32, addr, da->mem_idx, memop | MO_ALIGN);
break;
case MO_64:
tcg_gen_qemu_st_i64(cpu_fpr[rd / 2], addr, da->mem_idx,
memop | MO_ALIGN_4);
break;
case MO_128:
/* Only 4-byte alignment required. However, it is legal for the
cpu to signal the alignment fault, and the OS trap handler is
required to fix it up. Requiring 16-byte alignment here avoids
having to probe the second page before performing the first
write. */
tcg_gen_qemu_st_i64(cpu_fpr[rd / 2], addr, da->mem_idx,
memop | MO_ALIGN_16);
addr_tmp = tcg_temp_new();
tcg_gen_addi_tl(addr_tmp, addr, 8);
tcg_gen_qemu_st_i64(cpu_fpr[rd / 2 + 1], addr_tmp, da->mem_idx, memop);
break;
default:
g_assert_not_reached();
}
break;
case GET_ASI_BLOCK:
/* Valid for stdfa on aligned registers only. */
if (orig_size == MO_64 && (rd & 7) == 0) {
/* The first operation checks required alignment. */
addr_tmp = tcg_temp_new();
for (int i = 0; ; ++i) {
tcg_gen_qemu_st_i64(cpu_fpr[rd / 2 + i], addr, da->mem_idx,
memop | (i == 0 ? MO_ALIGN_64 : 0));
if (i == 7) {
break;
}
tcg_gen_addi_tl(addr_tmp, addr, 8);
addr = addr_tmp;
}
} else {
gen_exception(dc, TT_ILL_INSN);
}
break;
case GET_ASI_SHORT:
/* Valid for stdfa only. */
if (orig_size == MO_64) {
tcg_gen_qemu_st_i64(cpu_fpr[rd / 2], addr, da->mem_idx,
memop | MO_ALIGN);
} else {
gen_exception(dc, TT_ILL_INSN);
}
break;
default:
/* According to the table in the UA2011 manual, the only
other asis that are valid for ldfa/lddfa/ldqfa are
the PST* asis, which aren't currently handled. */
gen_exception(dc, TT_ILL_INSN);
break;
}
}
static void gen_ldda_asi(DisasContext *dc, DisasASI *da, TCGv addr, int rd)
{
TCGv hi = gen_dest_gpr(dc, rd);
TCGv lo = gen_dest_gpr(dc, rd + 1);
switch (da->type) {
case GET_ASI_EXCP:
return;
case GET_ASI_DTWINX:
#ifdef TARGET_SPARC64
{
MemOp mop = (da->memop & MO_BSWAP) | MO_128 | MO_ALIGN_16;
TCGv_i128 t = tcg_temp_new_i128();
tcg_gen_qemu_ld_i128(t, addr, da->mem_idx, mop);
/*
* Note that LE twinx acts as if each 64-bit register result is
* byte swapped. We perform one 128-bit LE load, so must swap
* the order of the writebacks.
*/
if ((mop & MO_BSWAP) == MO_TE) {
tcg_gen_extr_i128_i64(lo, hi, t);
} else {
tcg_gen_extr_i128_i64(hi, lo, t);
}
}
break;
#else
g_assert_not_reached();
#endif
case GET_ASI_DIRECT:
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmp, addr, da->mem_idx, da->memop | MO_ALIGN);
/* Note that LE ldda acts as if each 32-bit register
result is byte swapped. Having just performed one
64-bit bswap, we need now to swap the writebacks. */
if ((da->memop & MO_BSWAP) == MO_TE) {
tcg_gen_extr_i64_tl(lo, hi, tmp);
} else {
tcg_gen_extr_i64_tl(hi, lo, tmp);
}
}
break;
case GET_ASI_CODE:
#if !defined(CONFIG_USER_ONLY) && !defined(TARGET_SPARC64)
{
MemOpIdx oi = make_memop_idx(da->memop, da->mem_idx);
TCGv_i64 tmp = tcg_temp_new_i64();
gen_helper_ld_code(tmp, tcg_env, addr, tcg_constant_i32(oi));
/* See above. */
if ((da->memop & MO_BSWAP) == MO_TE) {
tcg_gen_extr_i64_tl(lo, hi, tmp);
} else {
tcg_gen_extr_i64_tl(hi, lo, tmp);
}
}
break;
#else
g_assert_not_reached();
#endif
default:
/* ??? In theory we've handled all of the ASIs that are valid
for ldda, and this should raise DAE_invalid_asi. However,
real hardware allows others. This can be seen with e.g.
FreeBSD 10.3 wrt ASI_IC_TAG. */
{
TCGv_i32 r_asi = tcg_constant_i32(da->asi);
TCGv_i32 r_mop = tcg_constant_i32(da->memop);
TCGv_i64 tmp = tcg_temp_new_i64();
save_state(dc);
gen_helper_ld_asi(tmp, tcg_env, addr, r_asi, r_mop);
/* See above. */
if ((da->memop & MO_BSWAP) == MO_TE) {
tcg_gen_extr_i64_tl(lo, hi, tmp);
} else {
tcg_gen_extr_i64_tl(hi, lo, tmp);
}
}
break;
}
gen_store_gpr(dc, rd, hi);
gen_store_gpr(dc, rd + 1, lo);
}
static void gen_stda_asi(DisasContext *dc, DisasASI *da, TCGv addr, int rd)
{
TCGv hi = gen_load_gpr(dc, rd);
TCGv lo = gen_load_gpr(dc, rd + 1);
switch (da->type) {
case GET_ASI_EXCP:
break;
case GET_ASI_DTWINX:
#ifdef TARGET_SPARC64
{
MemOp mop = (da->memop & MO_BSWAP) | MO_128 | MO_ALIGN_16;
TCGv_i128 t = tcg_temp_new_i128();
/*
* Note that LE twinx acts as if each 64-bit register result is
* byte swapped. We perform one 128-bit LE store, so must swap
* the order of the construction.
*/
if ((mop & MO_BSWAP) == MO_TE) {
tcg_gen_concat_i64_i128(t, lo, hi);
} else {
tcg_gen_concat_i64_i128(t, hi, lo);
}
tcg_gen_qemu_st_i128(t, addr, da->mem_idx, mop);
}
break;
#else
g_assert_not_reached();
#endif
case GET_ASI_DIRECT:
{
TCGv_i64 t64 = tcg_temp_new_i64();
/* Note that LE stda acts as if each 32-bit register result is
byte swapped. We will perform one 64-bit LE store, so now
we must swap the order of the construction. */
if ((da->memop & MO_BSWAP) == MO_TE) {
tcg_gen_concat_tl_i64(t64, lo, hi);
} else {
tcg_gen_concat_tl_i64(t64, hi, lo);
}
tcg_gen_qemu_st_i64(t64, addr, da->mem_idx, da->memop | MO_ALIGN);
}
break;
case GET_ASI_BFILL:
assert(TARGET_LONG_BITS == 32);
/*
* Store 32 bytes of [rd:rd+1] to ADDR.
* See comments for GET_ASI_COPY above.
*/
{
MemOp mop = MO_TE | MO_128 | MO_ATOM_IFALIGN_PAIR;
TCGv_i64 t8 = tcg_temp_new_i64();
TCGv_i128 t16 = tcg_temp_new_i128();
TCGv daddr = tcg_temp_new();
tcg_gen_concat_tl_i64(t8, lo, hi);
tcg_gen_concat_i64_i128(t16, t8, t8);
tcg_gen_andi_tl(daddr, addr, -32);
tcg_gen_qemu_st_i128(t16, daddr, da->mem_idx, mop);
tcg_gen_addi_tl(daddr, daddr, 16);
tcg_gen_qemu_st_i128(t16, daddr, da->mem_idx, mop);
}
break;
default:
/* ??? In theory we've handled all of the ASIs that are valid
for stda, and this should raise DAE_invalid_asi. */
{
TCGv_i32 r_asi = tcg_constant_i32(da->asi);
TCGv_i32 r_mop = tcg_constant_i32(da->memop);
TCGv_i64 t64 = tcg_temp_new_i64();
/* See above. */
if ((da->memop & MO_BSWAP) == MO_TE) {
tcg_gen_concat_tl_i64(t64, lo, hi);
} else {
tcg_gen_concat_tl_i64(t64, hi, lo);
}
save_state(dc);
gen_helper_st_asi(tcg_env, addr, t64, r_asi, r_mop);
}
break;
}
}
static void gen_fmovs(DisasContext *dc, DisasCompare *cmp, int rd, int rs)
{
#ifdef TARGET_SPARC64
TCGv_i32 c32, zero, dst, s1, s2;
TCGv_i64 c64 = tcg_temp_new_i64();
/* We have two choices here: extend the 32 bit data and use movcond_i64,
or fold the comparison down to 32 bits and use movcond_i32. Choose
the later. */
c32 = tcg_temp_new_i32();
tcg_gen_setcondi_i64(cmp->cond, c64, cmp->c1, cmp->c2);
tcg_gen_extrl_i64_i32(c32, c64);
s1 = gen_load_fpr_F(dc, rs);
s2 = gen_load_fpr_F(dc, rd);
dst = tcg_temp_new_i32();
zero = tcg_constant_i32(0);
tcg_gen_movcond_i32(TCG_COND_NE, dst, c32, zero, s1, s2);
gen_store_fpr_F(dc, rd, dst);
#else
qemu_build_not_reached();
#endif
}
static void gen_fmovd(DisasContext *dc, DisasCompare *cmp, int rd, int rs)
{
#ifdef TARGET_SPARC64
TCGv_i64 dst = gen_dest_fpr_D(dc, rd);
tcg_gen_movcond_i64(cmp->cond, dst, cmp->c1, tcg_constant_tl(cmp->c2),
gen_load_fpr_D(dc, rs),
gen_load_fpr_D(dc, rd));
gen_store_fpr_D(dc, rd, dst);
#else
qemu_build_not_reached();
#endif
}
static void gen_fmovq(DisasContext *dc, DisasCompare *cmp, int rd, int rs)
{
#ifdef TARGET_SPARC64
int qd = QFPREG(rd);
int qs = QFPREG(rs);
TCGv c2 = tcg_constant_tl(cmp->c2);
tcg_gen_movcond_i64(cmp->cond, cpu_fpr[qd / 2], cmp->c1, c2,
cpu_fpr[qs / 2], cpu_fpr[qd / 2]);
tcg_gen_movcond_i64(cmp->cond, cpu_fpr[qd / 2 + 1], cmp->c1, c2,
cpu_fpr[qs / 2 + 1], cpu_fpr[qd / 2 + 1]);
gen_update_fprs_dirty(dc, qd);
#else
qemu_build_not_reached();
#endif
}
#ifdef TARGET_SPARC64
static void gen_load_trap_state_at_tl(TCGv_ptr r_tsptr)
{
TCGv_i32 r_tl = tcg_temp_new_i32();
/* load env->tl into r_tl */
tcg_gen_ld_i32(r_tl, tcg_env, offsetof(CPUSPARCState, tl));
/* tl = [0 ... MAXTL_MASK] where MAXTL_MASK must be power of 2 */
tcg_gen_andi_i32(r_tl, r_tl, MAXTL_MASK);
/* calculate offset to current trap state from env->ts, reuse r_tl */
tcg_gen_muli_i32(r_tl, r_tl, sizeof (trap_state));
tcg_gen_addi_ptr(r_tsptr, tcg_env, offsetof(CPUSPARCState, ts));
/* tsptr = env->ts[env->tl & MAXTL_MASK] */
{
TCGv_ptr r_tl_tmp = tcg_temp_new_ptr();
tcg_gen_ext_i32_ptr(r_tl_tmp, r_tl);
tcg_gen_add_ptr(r_tsptr, r_tsptr, r_tl_tmp);
}
}
#endif
static int extract_dfpreg(DisasContext *dc, int x)
{
return DFPREG(x);
}
static int extract_qfpreg(DisasContext *dc, int x)
{
return QFPREG(x);
}
/* Include the auto-generated decoder. */
#include "decode-insns.c.inc"
#define TRANS(NAME, AVAIL, FUNC, ...) \
static bool trans_##NAME(DisasContext *dc, arg_##NAME *a) \
{ return avail_##AVAIL(dc) && FUNC(dc, __VA_ARGS__); }
#define avail_ALL(C) true
#ifdef TARGET_SPARC64
# define avail_32(C) false
# define avail_ASR17(C) false
# define avail_CASA(C) true
# define avail_DIV(C) true
# define avail_MUL(C) true
# define avail_POWERDOWN(C) false
# define avail_64(C) true
# define avail_GL(C) ((C)->def->features & CPU_FEATURE_GL)
# define avail_HYPV(C) ((C)->def->features & CPU_FEATURE_HYPV)
# define avail_VIS1(C) ((C)->def->features & CPU_FEATURE_VIS1)
# define avail_VIS2(C) ((C)->def->features & CPU_FEATURE_VIS2)
#else
# define avail_32(C) true
# define avail_ASR17(C) ((C)->def->features & CPU_FEATURE_ASR17)
# define avail_CASA(C) ((C)->def->features & CPU_FEATURE_CASA)
# define avail_DIV(C) ((C)->def->features & CPU_FEATURE_DIV)
# define avail_MUL(C) ((C)->def->features & CPU_FEATURE_MUL)
# define avail_POWERDOWN(C) ((C)->def->features & CPU_FEATURE_POWERDOWN)
# define avail_64(C) false
# define avail_GL(C) false
# define avail_HYPV(C) false
# define avail_VIS1(C) false
# define avail_VIS2(C) false
#endif
/* Default case for non jump instructions. */
static bool advance_pc(DisasContext *dc)
{
TCGLabel *l1;
finishing_insn(dc);
if (dc->npc & 3) {
switch (dc->npc) {
case DYNAMIC_PC:
case DYNAMIC_PC_LOOKUP:
dc->pc = dc->npc;
tcg_gen_mov_tl(cpu_pc, cpu_npc);
tcg_gen_addi_tl(cpu_npc, cpu_npc, 4);
break;
case JUMP_PC:
/* we can do a static jump */
l1 = gen_new_label();
tcg_gen_brcondi_tl(dc->jump.cond, dc->jump.c1, dc->jump.c2, l1);
/* jump not taken */
gen_goto_tb(dc, 1, dc->jump_pc[1], dc->jump_pc[1] + 4);
/* jump taken */
gen_set_label(l1);
gen_goto_tb(dc, 0, dc->jump_pc[0], dc->jump_pc[0] + 4);
dc->base.is_jmp = DISAS_NORETURN;
break;
default:
g_assert_not_reached();
}
} else {
dc->pc = dc->npc;
dc->npc = dc->npc + 4;
}
return true;
}
/*
* Major opcodes 00 and 01 -- branches, call, and sethi
*/
static bool advance_jump_cond(DisasContext *dc, DisasCompare *cmp,
bool annul, int disp)
{
target_ulong dest = address_mask_i(dc, dc->pc + disp * 4);
target_ulong npc;
finishing_insn(dc);
if (cmp->cond == TCG_COND_ALWAYS) {
if (annul) {
dc->pc = dest;
dc->npc = dest + 4;
} else {
gen_mov_pc_npc(dc);
dc->npc = dest;
}
return true;
}
if (cmp->cond == TCG_COND_NEVER) {
npc = dc->npc;
if (npc & 3) {
gen_mov_pc_npc(dc);
if (annul) {
tcg_gen_addi_tl(cpu_pc, cpu_pc, 4);
}
tcg_gen_addi_tl(cpu_npc, cpu_pc, 4);
} else {
dc->pc = npc + (annul ? 4 : 0);
dc->npc = dc->pc + 4;
}
return true;
}
flush_cond(dc);
npc = dc->npc;
if (annul) {
TCGLabel *l1 = gen_new_label();
tcg_gen_brcondi_tl(tcg_invert_cond(cmp->cond), cmp->c1, cmp->c2, l1);
gen_goto_tb(dc, 0, npc, dest);
gen_set_label(l1);
gen_goto_tb(dc, 1, npc + 4, npc + 8);
dc->base.is_jmp = DISAS_NORETURN;
} else {
if (npc & 3) {
switch (npc) {
case DYNAMIC_PC:
case DYNAMIC_PC_LOOKUP:
tcg_gen_mov_tl(cpu_pc, cpu_npc);
tcg_gen_addi_tl(cpu_npc, cpu_npc, 4);
tcg_gen_movcond_tl(cmp->cond, cpu_npc,
cmp->c1, tcg_constant_tl(cmp->c2),
tcg_constant_tl(dest), cpu_npc);
dc->pc = npc;
break;
default:
g_assert_not_reached();
}
} else {
dc->pc = npc;
dc->npc = JUMP_PC;
dc->jump = *cmp;
dc->jump_pc[0] = dest;
dc->jump_pc[1] = npc + 4;
/* The condition for cpu_cond is always NE -- normalize. */
if (cmp->cond == TCG_COND_NE) {
tcg_gen_xori_tl(cpu_cond, cmp->c1, cmp->c2);
} else {
tcg_gen_setcondi_tl(cmp->cond, cpu_cond, cmp->c1, cmp->c2);
}
dc->cpu_cond_live = true;
}
}
return true;
}
static bool raise_priv(DisasContext *dc)
{
gen_exception(dc, TT_PRIV_INSN);
return true;
}
static bool raise_unimpfpop(DisasContext *dc)
{
gen_op_fpexception_im(dc, FSR_FTT_UNIMPFPOP);
return true;
}
static bool gen_trap_float128(DisasContext *dc)
{
if (dc->def->features & CPU_FEATURE_FLOAT128) {
return false;
}
return raise_unimpfpop(dc);
}
static bool do_bpcc(DisasContext *dc, arg_bcc *a)
{
DisasCompare cmp;
gen_compare(&cmp, a->cc, a->cond, dc);
return advance_jump_cond(dc, &cmp, a->a, a->i);
}
TRANS(Bicc, ALL, do_bpcc, a)
TRANS(BPcc, 64, do_bpcc, a)
static bool do_fbpfcc(DisasContext *dc, arg_bcc *a)
{
DisasCompare cmp;
if (gen_trap_ifnofpu(dc)) {
return true;
}
gen_fcompare(&cmp, a->cc, a->cond);
return advance_jump_cond(dc, &cmp, a->a, a->i);
}
TRANS(FBPfcc, 64, do_fbpfcc, a)
TRANS(FBfcc, ALL, do_fbpfcc, a)
static bool trans_BPr(DisasContext *dc, arg_BPr *a)
{
DisasCompare cmp;
if (!avail_64(dc)) {
return false;
}
if (!gen_compare_reg(&cmp, a->cond, gen_load_gpr(dc, a->rs1))) {
return false;
}
return advance_jump_cond(dc, &cmp, a->a, a->i);
}
static bool trans_CALL(DisasContext *dc, arg_CALL *a)
{
target_long target = address_mask_i(dc, dc->pc + a->i * 4);
gen_store_gpr(dc, 15, tcg_constant_tl(dc->pc));
gen_mov_pc_npc(dc);
dc->npc = target;
return true;
}
static bool trans_NCP(DisasContext *dc, arg_NCP *a)
{
/*
* For sparc32, always generate the no-coprocessor exception.
* For sparc64, always generate illegal instruction.
*/
#ifdef TARGET_SPARC64
return false;
#else
gen_exception(dc, TT_NCP_INSN);
return true;
#endif
}
static bool trans_SETHI(DisasContext *dc, arg_SETHI *a)
{
/* Special-case %g0 because that's the canonical nop. */
if (a->rd) {
gen_store_gpr(dc, a->rd, tcg_constant_tl((uint32_t)a->i << 10));
}
return advance_pc(dc);
}
/*
* Major Opcode 10 -- integer, floating-point, vis, and system insns.
*/
static bool do_tcc(DisasContext *dc, int cond, int cc,
int rs1, bool imm, int rs2_or_imm)
{
int mask = ((dc->def->features & CPU_FEATURE_HYPV) && supervisor(dc)
? UA2005_HTRAP_MASK : V8_TRAP_MASK);
DisasCompare cmp;
TCGLabel *lab;
TCGv_i32 trap;
/* Trap never. */
if (cond == 0) {
return advance_pc(dc);
}
/*
* Immediate traps are the most common case. Since this value is
* live across the branch, it really pays to evaluate the constant.
*/
if (rs1 == 0 && (imm || rs2_or_imm == 0)) {
trap = tcg_constant_i32((rs2_or_imm & mask) + TT_TRAP);
} else {
trap = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(trap, gen_load_gpr(dc, rs1));
if (imm) {
tcg_gen_addi_i32(trap, trap, rs2_or_imm);
} else {
TCGv_i32 t2 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(t2, gen_load_gpr(dc, rs2_or_imm));
tcg_gen_add_i32(trap, trap, t2);
}
tcg_gen_andi_i32(trap, trap, mask);
tcg_gen_addi_i32(trap, trap, TT_TRAP);
}
finishing_insn(dc);
/* Trap always. */
if (cond == 8) {
save_state(dc);
gen_helper_raise_exception(tcg_env, trap);
dc->base.is_jmp = DISAS_NORETURN;
return true;
}
/* Conditional trap. */
flush_cond(dc);
lab = delay_exceptionv(dc, trap);
gen_compare(&cmp, cc, cond, dc);
tcg_gen_brcondi_tl(cmp.cond, cmp.c1, cmp.c2, lab);
return advance_pc(dc);
}
static bool trans_Tcc_r(DisasContext *dc, arg_Tcc_r *a)
{
if (avail_32(dc) && a->cc) {
return false;
}
return do_tcc(dc, a->cond, a->cc, a->rs1, false, a->rs2);
}
static bool trans_Tcc_i_v7(DisasContext *dc, arg_Tcc_i_v7 *a)
{
if (avail_64(dc)) {
return false;
}
return do_tcc(dc, a->cond, 0, a->rs1, true, a->i);
}
static bool trans_Tcc_i_v9(DisasContext *dc, arg_Tcc_i_v9 *a)
{
if (avail_32(dc)) {
return false;
}
return do_tcc(dc, a->cond, a->cc, a->rs1, true, a->i);
}
static bool trans_STBAR(DisasContext *dc, arg_STBAR *a)
{
tcg_gen_mb(TCG_MO_ST_ST | TCG_BAR_SC);
return advance_pc(dc);
}
static bool trans_MEMBAR(DisasContext *dc, arg_MEMBAR *a)
{
if (avail_32(dc)) {
return false;
}
if (a->mmask) {
/* Note TCG_MO_* was modeled on sparc64, so mmask matches. */
tcg_gen_mb(a->mmask | TCG_BAR_SC);
}
if (a->cmask) {
/* For #Sync, etc, end the TB to recognize interrupts. */
dc->base.is_jmp = DISAS_EXIT;
}
return advance_pc(dc);
}
static bool do_rd_special(DisasContext *dc, bool priv, int rd,
TCGv (*func)(DisasContext *, TCGv))
{
if (!priv) {
return raise_priv(dc);
}
gen_store_gpr(dc, rd, func(dc, gen_dest_gpr(dc, rd)));
return advance_pc(dc);
}
static TCGv do_rdy(DisasContext *dc, TCGv dst)
{
return cpu_y;
}
static bool trans_RDY(DisasContext *dc, arg_RDY *a)
{
/*
* TODO: Need a feature bit for sparcv8. In the meantime, treat all
* 32-bit cpus like sparcv7, which ignores the rs1 field.
* This matches after all other ASR, so Leon3 Asr17 is handled first.
*/
if (avail_64(dc) && a->rs1 != 0) {
return false;
}
return do_rd_special(dc, true, a->rd, do_rdy);
}
static TCGv do_rd_leon3_config(DisasContext *dc, TCGv dst)
{
gen_helper_rdasr17(dst, tcg_env);
return dst;
}
TRANS(RDASR17, ASR17, do_rd_special, true, a->rd, do_rd_leon3_config)
static TCGv do_rdccr(DisasContext *dc, TCGv dst)
{
gen_helper_rdccr(dst, tcg_env);
return dst;
}
TRANS(RDCCR, 64, do_rd_special, true, a->rd, do_rdccr)
static TCGv do_rdasi(DisasContext *dc, TCGv dst)
{
#ifdef TARGET_SPARC64
return tcg_constant_tl(dc->asi);
#else
qemu_build_not_reached();
#endif
}
TRANS(RDASI, 64, do_rd_special, true, a->rd, do_rdasi)
static TCGv do_rdtick(DisasContext *dc, TCGv dst)
{
TCGv_ptr r_tickptr = tcg_temp_new_ptr();
tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(tick));
if (translator_io_start(&dc->base)) {
dc->base.is_jmp = DISAS_EXIT;
}
gen_helper_tick_get_count(dst, tcg_env, r_tickptr,
tcg_constant_i32(dc->mem_idx));
return dst;
}
/* TODO: non-priv access only allowed when enabled. */
TRANS(RDTICK, 64, do_rd_special, true, a->rd, do_rdtick)
static TCGv do_rdpc(DisasContext *dc, TCGv dst)
{
return tcg_constant_tl(address_mask_i(dc, dc->pc));
}
TRANS(RDPC, 64, do_rd_special, true, a->rd, do_rdpc)
static TCGv do_rdfprs(DisasContext *dc, TCGv dst)
{
tcg_gen_ext_i32_tl(dst, cpu_fprs);
return dst;
}
TRANS(RDFPRS, 64, do_rd_special, true, a->rd, do_rdfprs)
static TCGv do_rdgsr(DisasContext *dc, TCGv dst)
{
gen_trap_ifnofpu(dc);
return cpu_gsr;
}
TRANS(RDGSR, 64, do_rd_special, true, a->rd, do_rdgsr)
static TCGv do_rdsoftint(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(softint));
return dst;
}
TRANS(RDSOFTINT, 64, do_rd_special, supervisor(dc), a->rd, do_rdsoftint)
static TCGv do_rdtick_cmpr(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(tick_cmpr));
return dst;
}
/* TODO: non-priv access only allowed when enabled. */
TRANS(RDTICK_CMPR, 64, do_rd_special, true, a->rd, do_rdtick_cmpr)
static TCGv do_rdstick(DisasContext *dc, TCGv dst)
{
TCGv_ptr r_tickptr = tcg_temp_new_ptr();
tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(stick));
if (translator_io_start(&dc->base)) {
dc->base.is_jmp = DISAS_EXIT;
}
gen_helper_tick_get_count(dst, tcg_env, r_tickptr,
tcg_constant_i32(dc->mem_idx));
return dst;
}
/* TODO: non-priv access only allowed when enabled. */
TRANS(RDSTICK, 64, do_rd_special, true, a->rd, do_rdstick)
static TCGv do_rdstick_cmpr(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(stick_cmpr));
return dst;
}
/* TODO: supervisor access only allowed when enabled by hypervisor. */
TRANS(RDSTICK_CMPR, 64, do_rd_special, supervisor(dc), a->rd, do_rdstick_cmpr)
/*
* UltraSPARC-T1 Strand status.
* HYPV check maybe not enough, UA2005 & UA2007 describe
* this ASR as impl. dep
*/
static TCGv do_rdstrand_status(DisasContext *dc, TCGv dst)
{
return tcg_constant_tl(1);
}
TRANS(RDSTRAND_STATUS, HYPV, do_rd_special, true, a->rd, do_rdstrand_status)
static TCGv do_rdpsr(DisasContext *dc, TCGv dst)
{
gen_helper_rdpsr(dst, tcg_env);
return dst;
}
TRANS(RDPSR, 32, do_rd_special, supervisor(dc), a->rd, do_rdpsr)
static TCGv do_rdhpstate(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hpstate));
return dst;
}
TRANS(RDHPR_hpstate, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhpstate)
static TCGv do_rdhtstate(DisasContext *dc, TCGv dst)
{
TCGv_i32 tl = tcg_temp_new_i32();
TCGv_ptr tp = tcg_temp_new_ptr();
tcg_gen_ld_i32(tl, tcg_env, env64_field_offsetof(tl));
tcg_gen_andi_i32(tl, tl, MAXTL_MASK);
tcg_gen_shli_i32(tl, tl, 3);
tcg_gen_ext_i32_ptr(tp, tl);
tcg_gen_add_ptr(tp, tp, tcg_env);
tcg_gen_ld_tl(dst, tp, env64_field_offsetof(htstate));
return dst;
}
TRANS(RDHPR_htstate, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhtstate)
static TCGv do_rdhintp(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hintp));
return dst;
}
TRANS(RDHPR_hintp, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhintp)
static TCGv do_rdhtba(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(htba));
return dst;
}
TRANS(RDHPR_htba, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhtba)
static TCGv do_rdhver(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hver));
return dst;
}
TRANS(RDHPR_hver, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdhver)
static TCGv do_rdhstick_cmpr(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(hstick_cmpr));
return dst;
}
TRANS(RDHPR_hstick_cmpr, HYPV, do_rd_special, hypervisor(dc), a->rd,
do_rdhstick_cmpr)
static TCGv do_rdwim(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env32_field_offsetof(wim));
return dst;
}
TRANS(RDWIM, 32, do_rd_special, supervisor(dc), a->rd, do_rdwim)
static TCGv do_rdtpc(DisasContext *dc, TCGv dst)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_ld_tl(dst, r_tsptr, offsetof(trap_state, tpc));
return dst;
#else
qemu_build_not_reached();
#endif
}
TRANS(RDPR_tpc, 64, do_rd_special, supervisor(dc), a->rd, do_rdtpc)
static TCGv do_rdtnpc(DisasContext *dc, TCGv dst)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_ld_tl(dst, r_tsptr, offsetof(trap_state, tnpc));
return dst;
#else
qemu_build_not_reached();
#endif
}
TRANS(RDPR_tnpc, 64, do_rd_special, supervisor(dc), a->rd, do_rdtnpc)
static TCGv do_rdtstate(DisasContext *dc, TCGv dst)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_ld_tl(dst, r_tsptr, offsetof(trap_state, tstate));
return dst;
#else
qemu_build_not_reached();
#endif
}
TRANS(RDPR_tstate, 64, do_rd_special, supervisor(dc), a->rd, do_rdtstate)
static TCGv do_rdtt(DisasContext *dc, TCGv dst)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_ld32s_tl(dst, r_tsptr, offsetof(trap_state, tt));
return dst;
#else
qemu_build_not_reached();
#endif
}
TRANS(RDPR_tt, 64, do_rd_special, supervisor(dc), a->rd, do_rdtt)
TRANS(RDPR_tick, 64, do_rd_special, supervisor(dc), a->rd, do_rdtick)
static TCGv do_rdtba(DisasContext *dc, TCGv dst)
{
return cpu_tbr;
}
TRANS(RDTBR, 32, do_rd_special, supervisor(dc), a->rd, do_rdtba)
TRANS(RDPR_tba, 64, do_rd_special, supervisor(dc), a->rd, do_rdtba)
static TCGv do_rdpstate(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(pstate));
return dst;
}
TRANS(RDPR_pstate, 64, do_rd_special, supervisor(dc), a->rd, do_rdpstate)
static TCGv do_rdtl(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(tl));
return dst;
}
TRANS(RDPR_tl, 64, do_rd_special, supervisor(dc), a->rd, do_rdtl)
static TCGv do_rdpil(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env_field_offsetof(psrpil));
return dst;
}
TRANS(RDPR_pil, 64, do_rd_special, supervisor(dc), a->rd, do_rdpil)
static TCGv do_rdcwp(DisasContext *dc, TCGv dst)
{
gen_helper_rdcwp(dst, tcg_env);
return dst;
}
TRANS(RDPR_cwp, 64, do_rd_special, supervisor(dc), a->rd, do_rdcwp)
static TCGv do_rdcansave(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(cansave));
return dst;
}
TRANS(RDPR_cansave, 64, do_rd_special, supervisor(dc), a->rd, do_rdcansave)
static TCGv do_rdcanrestore(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(canrestore));
return dst;
}
TRANS(RDPR_canrestore, 64, do_rd_special, supervisor(dc), a->rd,
do_rdcanrestore)
static TCGv do_rdcleanwin(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(cleanwin));
return dst;
}
TRANS(RDPR_cleanwin, 64, do_rd_special, supervisor(dc), a->rd, do_rdcleanwin)
static TCGv do_rdotherwin(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(otherwin));
return dst;
}
TRANS(RDPR_otherwin, 64, do_rd_special, supervisor(dc), a->rd, do_rdotherwin)
static TCGv do_rdwstate(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(wstate));
return dst;
}
TRANS(RDPR_wstate, 64, do_rd_special, supervisor(dc), a->rd, do_rdwstate)
static TCGv do_rdgl(DisasContext *dc, TCGv dst)
{
tcg_gen_ld32s_tl(dst, tcg_env, env64_field_offsetof(gl));
return dst;
}
TRANS(RDPR_gl, GL, do_rd_special, supervisor(dc), a->rd, do_rdgl)
/* UA2005 strand status */
static TCGv do_rdssr(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(ssr));
return dst;
}
TRANS(RDPR_strand_status, HYPV, do_rd_special, hypervisor(dc), a->rd, do_rdssr)
static TCGv do_rdver(DisasContext *dc, TCGv dst)
{
tcg_gen_ld_tl(dst, tcg_env, env64_field_offsetof(version));
return dst;
}
TRANS(RDPR_ver, 64, do_rd_special, supervisor(dc), a->rd, do_rdver)
static bool trans_FLUSHW(DisasContext *dc, arg_FLUSHW *a)
{
if (avail_64(dc)) {
gen_helper_flushw(tcg_env);
return advance_pc(dc);
}
return false;
}
static bool do_wr_special(DisasContext *dc, arg_r_r_ri *a, bool priv,
void (*func)(DisasContext *, TCGv))
{
TCGv src;
/* For simplicity, we under-decoded the rs2 form. */
if (!a->imm && (a->rs2_or_imm & ~0x1f)) {
return false;
}
if (!priv) {
return raise_priv(dc);
}
if (a->rs1 == 0 && (a->imm || a->rs2_or_imm == 0)) {
src = tcg_constant_tl(a->rs2_or_imm);
} else {
TCGv src1 = gen_load_gpr(dc, a->rs1);
if (a->rs2_or_imm == 0) {
src = src1;
} else {
src = tcg_temp_new();
if (a->imm) {
tcg_gen_xori_tl(src, src1, a->rs2_or_imm);
} else {
tcg_gen_xor_tl(src, src1, gen_load_gpr(dc, a->rs2_or_imm));
}
}
}
func(dc, src);
return advance_pc(dc);
}
static void do_wry(DisasContext *dc, TCGv src)
{
tcg_gen_ext32u_tl(cpu_y, src);
}
TRANS(WRY, ALL, do_wr_special, a, true, do_wry)
static void do_wrccr(DisasContext *dc, TCGv src)
{
gen_helper_wrccr(tcg_env, src);
}
TRANS(WRCCR, 64, do_wr_special, a, true, do_wrccr)
static void do_wrasi(DisasContext *dc, TCGv src)
{
TCGv tmp = tcg_temp_new();
tcg_gen_ext8u_tl(tmp, src);
tcg_gen_st32_tl(tmp, tcg_env, env64_field_offsetof(asi));
/* End TB to notice changed ASI. */
dc->base.is_jmp = DISAS_EXIT;
}
TRANS(WRASI, 64, do_wr_special, a, true, do_wrasi)
static void do_wrfprs(DisasContext *dc, TCGv src)
{
#ifdef TARGET_SPARC64
tcg_gen_trunc_tl_i32(cpu_fprs, src);
dc->fprs_dirty = 0;
dc->base.is_jmp = DISAS_EXIT;
#else
qemu_build_not_reached();
#endif
}
TRANS(WRFPRS, 64, do_wr_special, a, true, do_wrfprs)
static void do_wrgsr(DisasContext *dc, TCGv src)
{
gen_trap_ifnofpu(dc);
tcg_gen_mov_tl(cpu_gsr, src);
}
TRANS(WRGSR, 64, do_wr_special, a, true, do_wrgsr)
static void do_wrsoftint_set(DisasContext *dc, TCGv src)
{
gen_helper_set_softint(tcg_env, src);
}
TRANS(WRSOFTINT_SET, 64, do_wr_special, a, supervisor(dc), do_wrsoftint_set)
static void do_wrsoftint_clr(DisasContext *dc, TCGv src)
{
gen_helper_clear_softint(tcg_env, src);
}
TRANS(WRSOFTINT_CLR, 64, do_wr_special, a, supervisor(dc), do_wrsoftint_clr)
static void do_wrsoftint(DisasContext *dc, TCGv src)
{
gen_helper_write_softint(tcg_env, src);
}
TRANS(WRSOFTINT, 64, do_wr_special, a, supervisor(dc), do_wrsoftint)
static void do_wrtick_cmpr(DisasContext *dc, TCGv src)
{
TCGv_ptr r_tickptr = tcg_temp_new_ptr();
tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(tick_cmpr));
tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(tick));
translator_io_start(&dc->base);
gen_helper_tick_set_limit(r_tickptr, src);
/* End TB to handle timer interrupt */
dc->base.is_jmp = DISAS_EXIT;
}
TRANS(WRTICK_CMPR, 64, do_wr_special, a, supervisor(dc), do_wrtick_cmpr)
static void do_wrstick(DisasContext *dc, TCGv src)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tickptr = tcg_temp_new_ptr();
tcg_gen_ld_ptr(r_tickptr, tcg_env, offsetof(CPUSPARCState, stick));
translator_io_start(&dc->base);
gen_helper_tick_set_count(r_tickptr, src);
/* End TB to handle timer interrupt */
dc->base.is_jmp = DISAS_EXIT;
#else
qemu_build_not_reached();
#endif
}
TRANS(WRSTICK, 64, do_wr_special, a, supervisor(dc), do_wrstick)
static void do_wrstick_cmpr(DisasContext *dc, TCGv src)
{
TCGv_ptr r_tickptr = tcg_temp_new_ptr();
tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(stick_cmpr));
tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(stick));
translator_io_start(&dc->base);
gen_helper_tick_set_limit(r_tickptr, src);
/* End TB to handle timer interrupt */
dc->base.is_jmp = DISAS_EXIT;
}
TRANS(WRSTICK_CMPR, 64, do_wr_special, a, supervisor(dc), do_wrstick_cmpr)
static void do_wrpowerdown(DisasContext *dc, TCGv src)
{
finishing_insn(dc);
save_state(dc);
gen_helper_power_down(tcg_env);
}
TRANS(WRPOWERDOWN, POWERDOWN, do_wr_special, a, supervisor(dc), do_wrpowerdown)
static void do_wrpsr(DisasContext *dc, TCGv src)
{
gen_helper_wrpsr(tcg_env, src);
dc->base.is_jmp = DISAS_EXIT;
}
TRANS(WRPSR, 32, do_wr_special, a, supervisor(dc), do_wrpsr)
static void do_wrwim(DisasContext *dc, TCGv src)
{
target_ulong mask = MAKE_64BIT_MASK(0, dc->def->nwindows);
TCGv tmp = tcg_temp_new();
tcg_gen_andi_tl(tmp, src, mask);
tcg_gen_st_tl(tmp, tcg_env, env32_field_offsetof(wim));
}
TRANS(WRWIM, 32, do_wr_special, a, supervisor(dc), do_wrwim)
static void do_wrtpc(DisasContext *dc, TCGv src)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_st_tl(src, r_tsptr, offsetof(trap_state, tpc));
#else
qemu_build_not_reached();
#endif
}
TRANS(WRPR_tpc, 64, do_wr_special, a, supervisor(dc), do_wrtpc)
static void do_wrtnpc(DisasContext *dc, TCGv src)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_st_tl(src, r_tsptr, offsetof(trap_state, tnpc));
#else
qemu_build_not_reached();
#endif
}
TRANS(WRPR_tnpc, 64, do_wr_special, a, supervisor(dc), do_wrtnpc)
static void do_wrtstate(DisasContext *dc, TCGv src)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_st_tl(src, r_tsptr, offsetof(trap_state, tstate));
#else
qemu_build_not_reached();
#endif
}
TRANS(WRPR_tstate, 64, do_wr_special, a, supervisor(dc), do_wrtstate)
static void do_wrtt(DisasContext *dc, TCGv src)
{
#ifdef TARGET_SPARC64
TCGv_ptr r_tsptr = tcg_temp_new_ptr();
gen_load_trap_state_at_tl(r_tsptr);
tcg_gen_st32_tl(src, r_tsptr, offsetof(trap_state, tt));
#else
qemu_build_not_reached();
#endif
}
TRANS(WRPR_tt, 64, do_wr_special, a, supervisor(dc), do_wrtt)
static void do_wrtick(DisasContext *dc, TCGv src)
{
TCGv_ptr r_tickptr = tcg_temp_new_ptr();
tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(tick));
translator_io_start(&dc->base);
gen_helper_tick_set_count(r_tickptr, src);
/* End TB to handle timer interrupt */
dc->base.is_jmp = DISAS_EXIT;
}
TRANS(WRPR_tick, 64, do_wr_special, a, supervisor(dc), do_wrtick)
static void do_wrtba(DisasContext *dc, TCGv src)
{
tcg_gen_mov_tl(cpu_tbr, src);
}
TRANS(WRPR_tba, 64, do_wr_special, a, supervisor(dc), do_wrtba)
static void do_wrpstate(DisasContext *dc, TCGv src)
{
save_state(dc);
if (translator_io_start(&dc->base)) {
dc->base.is_jmp = DISAS_EXIT;
}
gen_helper_wrpstate(tcg_env, src);
dc->npc = DYNAMIC_PC;
}
TRANS(WRPR_pstate, 64, do_wr_special, a, supervisor(dc), do_wrpstate)
static void do_wrtl(DisasContext *dc, TCGv src)
{
save_state(dc);
tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(tl));
dc->npc = DYNAMIC_PC;
}
TRANS(WRPR_tl, 64, do_wr_special, a, supervisor(dc), do_wrtl)
static void do_wrpil(DisasContext *dc, TCGv src)
{
if (translator_io_start(&dc->base)) {
dc->base.is_jmp = DISAS_EXIT;
}
gen_helper_wrpil(tcg_env, src);
}
TRANS(WRPR_pil, 64, do_wr_special, a, supervisor(dc), do_wrpil)
static void do_wrcwp(DisasContext *dc, TCGv src)
{
gen_helper_wrcwp(tcg_env, src);
}
TRANS(WRPR_cwp, 64, do_wr_special, a, supervisor(dc), do_wrcwp)
static void do_wrcansave(DisasContext *dc, TCGv src)
{
tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(cansave));
}
TRANS(WRPR_cansave, 64, do_wr_special, a, supervisor(dc), do_wrcansave)
static void do_wrcanrestore(DisasContext *dc, TCGv src)
{
tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(canrestore));
}
TRANS(WRPR_canrestore, 64, do_wr_special, a, supervisor(dc), do_wrcanrestore)
static void do_wrcleanwin(DisasContext *dc, TCGv src)
{
tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(cleanwin));
}
TRANS(WRPR_cleanwin, 64, do_wr_special, a, supervisor(dc), do_wrcleanwin)
static void do_wrotherwin(DisasContext *dc, TCGv src)
{
tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(otherwin));
}
TRANS(WRPR_otherwin, 64, do_wr_special, a, supervisor(dc), do_wrotherwin)
static void do_wrwstate(DisasContext *dc, TCGv src)
{
tcg_gen_st32_tl(src, tcg_env, env64_field_offsetof(wstate));
}
TRANS(WRPR_wstate, 64, do_wr_special, a, supervisor(dc), do_wrwstate)
static void do_wrgl(DisasContext *dc, TCGv src)
{
gen_helper_wrgl(tcg_env, src);
}
TRANS(WRPR_gl, GL, do_wr_special, a, supervisor(dc), do_wrgl)
/* UA2005 strand status */
static void do_wrssr(DisasContext *dc, TCGv src)
{
tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(ssr));
}
TRANS(WRPR_strand_status, HYPV, do_wr_special, a, hypervisor(dc), do_wrssr)
TRANS(WRTBR, 32, do_wr_special, a, supervisor(dc), do_wrtba)
static void do_wrhpstate(DisasContext *dc, TCGv src)
{
tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(hpstate));
dc->base.is_jmp = DISAS_EXIT;
}
TRANS(WRHPR_hpstate, HYPV, do_wr_special, a, hypervisor(dc), do_wrhpstate)
static void do_wrhtstate(DisasContext *dc, TCGv src)
{
TCGv_i32 tl = tcg_temp_new_i32();
TCGv_ptr tp = tcg_temp_new_ptr();
tcg_gen_ld_i32(tl, tcg_env, env64_field_offsetof(tl));
tcg_gen_andi_i32(tl, tl, MAXTL_MASK);
tcg_gen_shli_i32(tl, tl, 3);
tcg_gen_ext_i32_ptr(tp, tl);
tcg_gen_add_ptr(tp, tp, tcg_env);
tcg_gen_st_tl(src, tp, env64_field_offsetof(htstate));
}
TRANS(WRHPR_htstate, HYPV, do_wr_special, a, hypervisor(dc), do_wrhtstate)
static void do_wrhintp(DisasContext *dc, TCGv src)
{
tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(hintp));
}
TRANS(WRHPR_hintp, HYPV, do_wr_special, a, hypervisor(dc), do_wrhintp)
static void do_wrhtba(DisasContext *dc, TCGv src)
{
tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(htba));
}
TRANS(WRHPR_htba, HYPV, do_wr_special, a, hypervisor(dc), do_wrhtba)
static void do_wrhstick_cmpr(DisasContext *dc, TCGv src)
{
TCGv_ptr r_tickptr = tcg_temp_new_ptr();
tcg_gen_st_tl(src, tcg_env, env64_field_offsetof(hstick_cmpr));
tcg_gen_ld_ptr(r_tickptr, tcg_env, env64_field_offsetof(hstick));
translator_io_start(&dc->base);
gen_helper_tick_set_limit(r_tickptr, src);
/* End TB to handle timer interrupt */
dc->base.is_jmp = DISAS_EXIT;
}
TRANS(WRHPR_hstick_cmpr, HYPV, do_wr_special, a, hypervisor(dc),
do_wrhstick_cmpr)
static bool do_saved_restored(DisasContext *dc, bool saved)
{
if (!supervisor(dc)) {
return raise_priv(dc);
}
if (saved) {
gen_helper_saved(tcg_env);
} else {
gen_helper_restored(tcg_env);
}
return advance_pc(dc);
}
TRANS(SAVED, 64, do_saved_restored, true)
TRANS(RESTORED, 64, do_saved_restored, false)
static bool trans_NOP(DisasContext *dc, arg_NOP *a)
{
return advance_pc(dc);
}
/*
* TODO: Need a feature bit for sparcv8.
* In the meantime, treat all 32-bit cpus like sparcv7.
*/
TRANS(NOP_v7, 32, trans_NOP, a)
TRANS(NOP_v9, 64, trans_NOP, a)
static bool do_arith_int(DisasContext *dc, arg_r_r_ri_cc *a,
void (*func)(TCGv, TCGv, TCGv),
void (*funci)(TCGv, TCGv, target_long),
bool logic_cc)
{
TCGv dst, src1;
/* For simplicity, we under-decoded the rs2 form. */
if (!a->imm && a->rs2_or_imm & ~0x1f) {
return false;
}
if (logic_cc) {
dst = cpu_cc_N;
} else {
dst = gen_dest_gpr(dc, a->rd);
}
src1 = gen_load_gpr(dc, a->rs1);
if (a->imm || a->rs2_or_imm == 0) {
if (funci) {
funci(dst, src1, a->rs2_or_imm);
} else {
func(dst, src1, tcg_constant_tl(a->rs2_or_imm));
}
} else {
func(dst, src1, cpu_regs[a->rs2_or_imm]);
}
if (logic_cc) {
if (TARGET_LONG_BITS == 64) {
tcg_gen_mov_tl(cpu_icc_Z, cpu_cc_N);
tcg_gen_movi_tl(cpu_icc_C, 0);
}
tcg_gen_mov_tl(cpu_cc_Z, cpu_cc_N);
tcg_gen_movi_tl(cpu_cc_C, 0);
tcg_gen_movi_tl(cpu_cc_V, 0);
}
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
static bool do_arith(DisasContext *dc, arg_r_r_ri_cc *a,
void (*func)(TCGv, TCGv, TCGv),
void (*funci)(TCGv, TCGv, target_long),
void (*func_cc)(TCGv, TCGv, TCGv))
{
if (a->cc) {
return do_arith_int(dc, a, func_cc, NULL, false);
}
return do_arith_int(dc, a, func, funci, false);
}
static bool do_logic(DisasContext *dc, arg_r_r_ri_cc *a,
void (*func)(TCGv, TCGv, TCGv),
void (*funci)(TCGv, TCGv, target_long))
{
return do_arith_int(dc, a, func, funci, a->cc);
}
TRANS(ADD, ALL, do_arith, a, tcg_gen_add_tl, tcg_gen_addi_tl, gen_op_addcc)
TRANS(SUB, ALL, do_arith, a, tcg_gen_sub_tl, tcg_gen_subi_tl, gen_op_subcc)
TRANS(ADDC, ALL, do_arith, a, gen_op_addc, NULL, gen_op_addccc)
TRANS(SUBC, ALL, do_arith, a, gen_op_subc, NULL, gen_op_subccc)
TRANS(TADDcc, ALL, do_arith, a, NULL, NULL, gen_op_taddcc)
TRANS(TSUBcc, ALL, do_arith, a, NULL, NULL, gen_op_tsubcc)
TRANS(TADDccTV, ALL, do_arith, a, NULL, NULL, gen_op_taddcctv)
TRANS(TSUBccTV, ALL, do_arith, a, NULL, NULL, gen_op_tsubcctv)
TRANS(AND, ALL, do_logic, a, tcg_gen_and_tl, tcg_gen_andi_tl)
TRANS(XOR, ALL, do_logic, a, tcg_gen_xor_tl, tcg_gen_xori_tl)
TRANS(ANDN, ALL, do_logic, a, tcg_gen_andc_tl, NULL)
TRANS(ORN, ALL, do_logic, a, tcg_gen_orc_tl, NULL)
TRANS(XORN, ALL, do_logic, a, tcg_gen_eqv_tl, NULL)
TRANS(MULX, 64, do_arith, a, tcg_gen_mul_tl, tcg_gen_muli_tl, NULL)
TRANS(UMUL, MUL, do_logic, a, gen_op_umul, NULL)
TRANS(SMUL, MUL, do_logic, a, gen_op_smul, NULL)
TRANS(MULScc, ALL, do_arith, a, NULL, NULL, gen_op_mulscc)
TRANS(UDIVcc, DIV, do_arith, a, NULL, NULL, gen_op_udivcc)
TRANS(SDIV, DIV, do_arith, a, gen_op_sdiv, NULL, gen_op_sdivcc)
/* TODO: Should have feature bit -- comes in with UltraSparc T2. */
TRANS(POPC, 64, do_arith, a, gen_op_popc, NULL, NULL)
static bool trans_OR(DisasContext *dc, arg_r_r_ri_cc *a)
{
/* OR with %g0 is the canonical alias for MOV. */
if (!a->cc && a->rs1 == 0) {
if (a->imm || a->rs2_or_imm == 0) {
gen_store_gpr(dc, a->rd, tcg_constant_tl(a->rs2_or_imm));
} else if (a->rs2_or_imm & ~0x1f) {
/* For simplicity, we under-decoded the rs2 form. */
return false;
} else {
gen_store_gpr(dc, a->rd, cpu_regs[a->rs2_or_imm]);
}
return advance_pc(dc);
}
return do_logic(dc, a, tcg_gen_or_tl, tcg_gen_ori_tl);
}
static bool trans_UDIV(DisasContext *dc, arg_r_r_ri *a)
{
TCGv_i64 t1, t2;
TCGv dst;
if (!avail_DIV(dc)) {
return false;
}
/* For simplicity, we under-decoded the rs2 form. */
if (!a->imm && a->rs2_or_imm & ~0x1f) {
return false;
}
if (unlikely(a->rs2_or_imm == 0)) {
gen_exception(dc, TT_DIV_ZERO);
return true;
}
if (a->imm) {
t2 = tcg_constant_i64((uint32_t)a->rs2_or_imm);
} else {
TCGLabel *lab;
TCGv_i32 n2;
finishing_insn(dc);
flush_cond(dc);
n2 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(n2, cpu_regs[a->rs2_or_imm]);
lab = delay_exception(dc, TT_DIV_ZERO);
tcg_gen_brcondi_i32(TCG_COND_EQ, n2, 0, lab);
t2 = tcg_temp_new_i64();
#ifdef TARGET_SPARC64
tcg_gen_ext32u_i64(t2, cpu_regs[a->rs2_or_imm]);
#else
tcg_gen_extu_i32_i64(t2, cpu_regs[a->rs2_or_imm]);
#endif
}
t1 = tcg_temp_new_i64();
tcg_gen_concat_tl_i64(t1, gen_load_gpr(dc, a->rs1), cpu_y);
tcg_gen_divu_i64(t1, t1, t2);
tcg_gen_umin_i64(t1, t1, tcg_constant_i64(UINT32_MAX));
dst = gen_dest_gpr(dc, a->rd);
tcg_gen_trunc_i64_tl(dst, t1);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
static bool trans_UDIVX(DisasContext *dc, arg_r_r_ri *a)
{
TCGv dst, src1, src2;
if (!avail_64(dc)) {
return false;
}
/* For simplicity, we under-decoded the rs2 form. */
if (!a->imm && a->rs2_or_imm & ~0x1f) {
return false;
}
if (unlikely(a->rs2_or_imm == 0)) {
gen_exception(dc, TT_DIV_ZERO);
return true;
}
if (a->imm) {
src2 = tcg_constant_tl(a->rs2_or_imm);
} else {
TCGLabel *lab;
finishing_insn(dc);
flush_cond(dc);
lab = delay_exception(dc, TT_DIV_ZERO);
src2 = cpu_regs[a->rs2_or_imm];
tcg_gen_brcondi_tl(TCG_COND_EQ, src2, 0, lab);
}
dst = gen_dest_gpr(dc, a->rd);
src1 = gen_load_gpr(dc, a->rs1);
tcg_gen_divu_tl(dst, src1, src2);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
static bool trans_SDIVX(DisasContext *dc, arg_r_r_ri *a)
{
TCGv dst, src1, src2;
if (!avail_64(dc)) {
return false;
}
/* For simplicity, we under-decoded the rs2 form. */
if (!a->imm && a->rs2_or_imm & ~0x1f) {
return false;
}
if (unlikely(a->rs2_or_imm == 0)) {
gen_exception(dc, TT_DIV_ZERO);
return true;
}
dst = gen_dest_gpr(dc, a->rd);
src1 = gen_load_gpr(dc, a->rs1);
if (a->imm) {
if (unlikely(a->rs2_or_imm == -1)) {
tcg_gen_neg_tl(dst, src1);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
src2 = tcg_constant_tl(a->rs2_or_imm);
} else {
TCGLabel *lab;
TCGv t1, t2;
finishing_insn(dc);
flush_cond(dc);
lab = delay_exception(dc, TT_DIV_ZERO);
src2 = cpu_regs[a->rs2_or_imm];
tcg_gen_brcondi_tl(TCG_COND_EQ, src2, 0, lab);
/*
* Need to avoid INT64_MIN / -1, which will trap on x86 host.
* Set SRC2 to 1 as a new divisor, to produce the correct result.
*/
t1 = tcg_temp_new();
t2 = tcg_temp_new();
tcg_gen_setcondi_tl(TCG_COND_EQ, t1, src1, (target_long)INT64_MIN);
tcg_gen_setcondi_tl(TCG_COND_EQ, t2, src2, -1);
tcg_gen_and_tl(t1, t1, t2);
tcg_gen_movcond_tl(TCG_COND_NE, t1, t1, tcg_constant_tl(0),
tcg_constant_tl(1), src2);
src2 = t1;
}
tcg_gen_div_tl(dst, src1, src2);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
static bool gen_edge(DisasContext *dc, arg_r_r_r *a,
int width, bool cc, bool left)
{
TCGv dst, s1, s2, lo1, lo2;
uint64_t amask, tabl, tabr;
int shift, imask, omask;
dst = gen_dest_gpr(dc, a->rd);
s1 = gen_load_gpr(dc, a->rs1);
s2 = gen_load_gpr(dc, a->rs2);
if (cc) {
gen_op_subcc(cpu_cc_N, s1, s2);
}
/*
* Theory of operation: there are two tables, left and right (not to
* be confused with the left and right versions of the opcode). These
* are indexed by the low 3 bits of the inputs. To make things "easy",
* these tables are loaded into two constants, TABL and TABR below.
* The operation index = (input & imask) << shift calculates the index
* into the constant, while val = (table >> index) & omask calculates
* the value we're looking for.
*/
switch (width) {
case 8:
imask = 0x7;
shift = 3;
omask = 0xff;
if (left) {
tabl = 0x80c0e0f0f8fcfeffULL;
tabr = 0xff7f3f1f0f070301ULL;
} else {
tabl = 0x0103070f1f3f7fffULL;
tabr = 0xfffefcf8f0e0c080ULL;
}
break;
case 16:
imask = 0x6;
shift = 1;
omask = 0xf;
if (left) {
tabl = 0x8cef;
tabr = 0xf731;
} else {
tabl = 0x137f;
tabr = 0xfec8;
}
break;
case 32:
imask = 0x4;
shift = 0;
omask = 0x3;
if (left) {
tabl = (2 << 2) | 3;
tabr = (3 << 2) | 1;
} else {
tabl = (1 << 2) | 3;
tabr = (3 << 2) | 2;
}
break;
default:
abort();
}
lo1 = tcg_temp_new();
lo2 = tcg_temp_new();
tcg_gen_andi_tl(lo1, s1, imask);
tcg_gen_andi_tl(lo2, s2, imask);
tcg_gen_shli_tl(lo1, lo1, shift);
tcg_gen_shli_tl(lo2, lo2, shift);
tcg_gen_shr_tl(lo1, tcg_constant_tl(tabl), lo1);
tcg_gen_shr_tl(lo2, tcg_constant_tl(tabr), lo2);
tcg_gen_andi_tl(lo1, lo1, omask);
tcg_gen_andi_tl(lo2, lo2, omask);
amask = address_mask_i(dc, -8);
tcg_gen_andi_tl(s1, s1, amask);
tcg_gen_andi_tl(s2, s2, amask);
/* Compute dst = (s1 == s2 ? lo1 : lo1 & lo2). */
tcg_gen_and_tl(lo2, lo2, lo1);
tcg_gen_movcond_tl(TCG_COND_EQ, dst, s1, s2, lo1, lo2);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(EDGE8cc, VIS1, gen_edge, a, 8, 1, 0)
TRANS(EDGE8Lcc, VIS1, gen_edge, a, 8, 1, 1)
TRANS(EDGE16cc, VIS1, gen_edge, a, 16, 1, 0)
TRANS(EDGE16Lcc, VIS1, gen_edge, a, 16, 1, 1)
TRANS(EDGE32cc, VIS1, gen_edge, a, 32, 1, 0)
TRANS(EDGE32Lcc, VIS1, gen_edge, a, 32, 1, 1)
TRANS(EDGE8N, VIS2, gen_edge, a, 8, 0, 0)
TRANS(EDGE8LN, VIS2, gen_edge, a, 8, 0, 1)
TRANS(EDGE16N, VIS2, gen_edge, a, 16, 0, 0)
TRANS(EDGE16LN, VIS2, gen_edge, a, 16, 0, 1)
TRANS(EDGE32N, VIS2, gen_edge, a, 32, 0, 0)
TRANS(EDGE32LN, VIS2, gen_edge, a, 32, 0, 1)
static bool do_rrr(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv, TCGv, TCGv))
{
TCGv dst = gen_dest_gpr(dc, a->rd);
TCGv src1 = gen_load_gpr(dc, a->rs1);
TCGv src2 = gen_load_gpr(dc, a->rs2);
func(dst, src1, src2);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(ARRAY8, VIS1, do_rrr, a, gen_helper_array8)
TRANS(ARRAY16, VIS1, do_rrr, a, gen_op_array16)
TRANS(ARRAY32, VIS1, do_rrr, a, gen_op_array32)
static void gen_op_alignaddr(TCGv dst, TCGv s1, TCGv s2)
{
#ifdef TARGET_SPARC64
TCGv tmp = tcg_temp_new();
tcg_gen_add_tl(tmp, s1, s2);
tcg_gen_andi_tl(dst, tmp, -8);
tcg_gen_deposit_tl(cpu_gsr, cpu_gsr, tmp, 0, 3);
#else
g_assert_not_reached();
#endif
}
static void gen_op_alignaddrl(TCGv dst, TCGv s1, TCGv s2)
{
#ifdef TARGET_SPARC64
TCGv tmp = tcg_temp_new();
tcg_gen_add_tl(tmp, s1, s2);
tcg_gen_andi_tl(dst, tmp, -8);
tcg_gen_neg_tl(tmp, tmp);
tcg_gen_deposit_tl(cpu_gsr, cpu_gsr, tmp, 0, 3);
#else
g_assert_not_reached();
#endif
}
TRANS(ALIGNADDR, VIS1, do_rrr, a, gen_op_alignaddr)
TRANS(ALIGNADDRL, VIS1, do_rrr, a, gen_op_alignaddrl)
static void gen_op_bmask(TCGv dst, TCGv s1, TCGv s2)
{
#ifdef TARGET_SPARC64
tcg_gen_add_tl(dst, s1, s2);
tcg_gen_deposit_tl(cpu_gsr, cpu_gsr, dst, 32, 32);
#else
g_assert_not_reached();
#endif
}
TRANS(BMASK, VIS2, do_rrr, a, gen_op_bmask)
static bool do_shift_r(DisasContext *dc, arg_shiftr *a, bool l, bool u)
{
TCGv dst, src1, src2;
/* Reject 64-bit shifts for sparc32. */
if (avail_32(dc) && a->x) {
return false;
}
src2 = tcg_temp_new();
tcg_gen_andi_tl(src2, gen_load_gpr(dc, a->rs2), a->x ? 63 : 31);
src1 = gen_load_gpr(dc, a->rs1);
dst = gen_dest_gpr(dc, a->rd);
if (l) {
tcg_gen_shl_tl(dst, src1, src2);
if (!a->x) {
tcg_gen_ext32u_tl(dst, dst);
}
} else if (u) {
if (!a->x) {
tcg_gen_ext32u_tl(dst, src1);
src1 = dst;
}
tcg_gen_shr_tl(dst, src1, src2);
} else {
if (!a->x) {
tcg_gen_ext32s_tl(dst, src1);
src1 = dst;
}
tcg_gen_sar_tl(dst, src1, src2);
}
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(SLL_r, ALL, do_shift_r, a, true, true)
TRANS(SRL_r, ALL, do_shift_r, a, false, true)
TRANS(SRA_r, ALL, do_shift_r, a, false, false)
static bool do_shift_i(DisasContext *dc, arg_shifti *a, bool l, bool u)
{
TCGv dst, src1;
/* Reject 64-bit shifts for sparc32. */
if (avail_32(dc) && (a->x || a->i >= 32)) {
return false;
}
src1 = gen_load_gpr(dc, a->rs1);
dst = gen_dest_gpr(dc, a->rd);
if (avail_32(dc) || a->x) {
if (l) {
tcg_gen_shli_tl(dst, src1, a->i);
} else if (u) {
tcg_gen_shri_tl(dst, src1, a->i);
} else {
tcg_gen_sari_tl(dst, src1, a->i);
}
} else {
if (l) {
tcg_gen_deposit_z_tl(dst, src1, a->i, 32 - a->i);
} else if (u) {
tcg_gen_extract_tl(dst, src1, a->i, 32 - a->i);
} else {
tcg_gen_sextract_tl(dst, src1, a->i, 32 - a->i);
}
}
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(SLL_i, ALL, do_shift_i, a, true, true)
TRANS(SRL_i, ALL, do_shift_i, a, false, true)
TRANS(SRA_i, ALL, do_shift_i, a, false, false)
static TCGv gen_rs2_or_imm(DisasContext *dc, bool imm, int rs2_or_imm)
{
/* For simplicity, we under-decoded the rs2 form. */
if (!imm && rs2_or_imm & ~0x1f) {
return NULL;
}
if (imm || rs2_or_imm == 0) {
return tcg_constant_tl(rs2_or_imm);
} else {
return cpu_regs[rs2_or_imm];
}
}
static bool do_mov_cond(DisasContext *dc, DisasCompare *cmp, int rd, TCGv src2)
{
TCGv dst = gen_load_gpr(dc, rd);
TCGv c2 = tcg_constant_tl(cmp->c2);
tcg_gen_movcond_tl(cmp->cond, dst, cmp->c1, c2, src2, dst);
gen_store_gpr(dc, rd, dst);
return advance_pc(dc);
}
static bool trans_MOVcc(DisasContext *dc, arg_MOVcc *a)
{
TCGv src2 = gen_rs2_or_imm(dc, a->imm, a->rs2_or_imm);
DisasCompare cmp;
if (src2 == NULL) {
return false;
}
gen_compare(&cmp, a->cc, a->cond, dc);
return do_mov_cond(dc, &cmp, a->rd, src2);
}
static bool trans_MOVfcc(DisasContext *dc, arg_MOVfcc *a)
{
TCGv src2 = gen_rs2_or_imm(dc, a->imm, a->rs2_or_imm);
DisasCompare cmp;
if (src2 == NULL) {
return false;
}
gen_fcompare(&cmp, a->cc, a->cond);
return do_mov_cond(dc, &cmp, a->rd, src2);
}
static bool trans_MOVR(DisasContext *dc, arg_MOVR *a)
{
TCGv src2 = gen_rs2_or_imm(dc, a->imm, a->rs2_or_imm);
DisasCompare cmp;
if (src2 == NULL) {
return false;
}
if (!gen_compare_reg(&cmp, a->cond, gen_load_gpr(dc, a->rs1))) {
return false;
}
return do_mov_cond(dc, &cmp, a->rd, src2);
}
static bool do_add_special(DisasContext *dc, arg_r_r_ri *a,
bool (*func)(DisasContext *dc, int rd, TCGv src))
{
TCGv src1, sum;
/* For simplicity, we under-decoded the rs2 form. */
if (!a->imm && a->rs2_or_imm & ~0x1f) {
return false;
}
/*
* Always load the sum into a new temporary.
* This is required to capture the value across a window change,
* e.g. SAVE and RESTORE, and may be optimized away otherwise.
*/
sum = tcg_temp_new();
src1 = gen_load_gpr(dc, a->rs1);
if (a->imm || a->rs2_or_imm == 0) {
tcg_gen_addi_tl(sum, src1, a->rs2_or_imm);
} else {
tcg_gen_add_tl(sum, src1, cpu_regs[a->rs2_or_imm]);
}
return func(dc, a->rd, sum);
}
static bool do_jmpl(DisasContext *dc, int rd, TCGv src)
{
/*
* Preserve pc across advance, so that we can delay
* the writeback to rd until after src is consumed.
*/
target_ulong cur_pc = dc->pc;
gen_check_align(dc, src, 3);
gen_mov_pc_npc(dc);
tcg_gen_mov_tl(cpu_npc, src);
gen_address_mask(dc, cpu_npc);
gen_store_gpr(dc, rd, tcg_constant_tl(cur_pc));
dc->npc = DYNAMIC_PC_LOOKUP;
return true;
}
TRANS(JMPL, ALL, do_add_special, a, do_jmpl)
static bool do_rett(DisasContext *dc, int rd, TCGv src)
{
if (!supervisor(dc)) {
return raise_priv(dc);
}
gen_check_align(dc, src, 3);
gen_mov_pc_npc(dc);
tcg_gen_mov_tl(cpu_npc, src);
gen_helper_rett(tcg_env);
dc->npc = DYNAMIC_PC;
return true;
}
TRANS(RETT, 32, do_add_special, a, do_rett)
static bool do_return(DisasContext *dc, int rd, TCGv src)
{
gen_check_align(dc, src, 3);
gen_helper_restore(tcg_env);
gen_mov_pc_npc(dc);
tcg_gen_mov_tl(cpu_npc, src);
gen_address_mask(dc, cpu_npc);
dc->npc = DYNAMIC_PC_LOOKUP;
return true;
}
TRANS(RETURN, 64, do_add_special, a, do_return)
static bool do_save(DisasContext *dc, int rd, TCGv src)
{
gen_helper_save(tcg_env);
gen_store_gpr(dc, rd, src);
return advance_pc(dc);
}
TRANS(SAVE, ALL, do_add_special, a, do_save)
static bool do_restore(DisasContext *dc, int rd, TCGv src)
{
gen_helper_restore(tcg_env);
gen_store_gpr(dc, rd, src);
return advance_pc(dc);
}
TRANS(RESTORE, ALL, do_add_special, a, do_restore)
static bool do_done_retry(DisasContext *dc, bool done)
{
if (!supervisor(dc)) {
return raise_priv(dc);
}
dc->npc = DYNAMIC_PC;
dc->pc = DYNAMIC_PC;
translator_io_start(&dc->base);
if (done) {
gen_helper_done(tcg_env);
} else {
gen_helper_retry(tcg_env);
}
return true;
}
TRANS(DONE, 64, do_done_retry, true)
TRANS(RETRY, 64, do_done_retry, false)
/*
* Major opcode 11 -- load and store instructions
*/
static TCGv gen_ldst_addr(DisasContext *dc, int rs1, bool imm, int rs2_or_imm)
{
TCGv addr, tmp = NULL;
/* For simplicity, we under-decoded the rs2 form. */
if (!imm && rs2_or_imm & ~0x1f) {
return NULL;
}
addr = gen_load_gpr(dc, rs1);
if (rs2_or_imm) {
tmp = tcg_temp_new();
if (imm) {
tcg_gen_addi_tl(tmp, addr, rs2_or_imm);
} else {
tcg_gen_add_tl(tmp, addr, cpu_regs[rs2_or_imm]);
}
addr = tmp;
}
if (AM_CHECK(dc)) {
if (!tmp) {
tmp = tcg_temp_new();
}
tcg_gen_ext32u_tl(tmp, addr);
addr = tmp;
}
return addr;
}
static bool do_ld_gpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp mop)
{
TCGv reg, addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
DisasASI da;
if (addr == NULL) {
return false;
}
da = resolve_asi(dc, a->asi, mop);
reg = gen_dest_gpr(dc, a->rd);
gen_ld_asi(dc, &da, reg, addr);
gen_store_gpr(dc, a->rd, reg);
return advance_pc(dc);
}
TRANS(LDUW, ALL, do_ld_gpr, a, MO_TEUL)
TRANS(LDUB, ALL, do_ld_gpr, a, MO_UB)
TRANS(LDUH, ALL, do_ld_gpr, a, MO_TEUW)
TRANS(LDSB, ALL, do_ld_gpr, a, MO_SB)
TRANS(LDSH, ALL, do_ld_gpr, a, MO_TESW)
TRANS(LDSW, 64, do_ld_gpr, a, MO_TESL)
TRANS(LDX, 64, do_ld_gpr, a, MO_TEUQ)
static bool do_st_gpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp mop)
{
TCGv reg, addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
DisasASI da;
if (addr == NULL) {
return false;
}
da = resolve_asi(dc, a->asi, mop);
reg = gen_load_gpr(dc, a->rd);
gen_st_asi(dc, &da, reg, addr);
return advance_pc(dc);
}
TRANS(STW, ALL, do_st_gpr, a, MO_TEUL)
TRANS(STB, ALL, do_st_gpr, a, MO_UB)
TRANS(STH, ALL, do_st_gpr, a, MO_TEUW)
TRANS(STX, 64, do_st_gpr, a, MO_TEUQ)
static bool trans_LDD(DisasContext *dc, arg_r_r_ri_asi *a)
{
TCGv addr;
DisasASI da;
if (a->rd & 1) {
return false;
}
addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
if (addr == NULL) {
return false;
}
da = resolve_asi(dc, a->asi, MO_TEUQ);
gen_ldda_asi(dc, &da, addr, a->rd);
return advance_pc(dc);
}
static bool trans_STD(DisasContext *dc, arg_r_r_ri_asi *a)
{
TCGv addr;
DisasASI da;
if (a->rd & 1) {
return false;
}
addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
if (addr == NULL) {
return false;
}
da = resolve_asi(dc, a->asi, MO_TEUQ);
gen_stda_asi(dc, &da, addr, a->rd);
return advance_pc(dc);
}
static bool trans_LDSTUB(DisasContext *dc, arg_r_r_ri_asi *a)
{
TCGv addr, reg;
DisasASI da;
addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
if (addr == NULL) {
return false;
}
da = resolve_asi(dc, a->asi, MO_UB);
reg = gen_dest_gpr(dc, a->rd);
gen_ldstub_asi(dc, &da, reg, addr);
gen_store_gpr(dc, a->rd, reg);
return advance_pc(dc);
}
static bool trans_SWAP(DisasContext *dc, arg_r_r_ri_asi *a)
{
TCGv addr, dst, src;
DisasASI da;
addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
if (addr == NULL) {
return false;
}
da = resolve_asi(dc, a->asi, MO_TEUL);
dst = gen_dest_gpr(dc, a->rd);
src = gen_load_gpr(dc, a->rd);
gen_swap_asi(dc, &da, dst, src, addr);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
static bool do_casa(DisasContext *dc, arg_r_r_ri_asi *a, MemOp mop)
{
TCGv addr, o, n, c;
DisasASI da;
addr = gen_ldst_addr(dc, a->rs1, true, 0);
if (addr == NULL) {
return false;
}
da = resolve_asi(dc, a->asi, mop);
o = gen_dest_gpr(dc, a->rd);
n = gen_load_gpr(dc, a->rd);
c = gen_load_gpr(dc, a->rs2_or_imm);
gen_cas_asi(dc, &da, o, n, c, addr);
gen_store_gpr(dc, a->rd, o);
return advance_pc(dc);
}
TRANS(CASA, CASA, do_casa, a, MO_TEUL)
TRANS(CASXA, 64, do_casa, a, MO_TEUQ)
static bool do_ld_fpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp sz)
{
TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
DisasASI da;
if (addr == NULL) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (sz == MO_128 && gen_trap_float128(dc)) {
return true;
}
da = resolve_asi(dc, a->asi, MO_TE | sz);
gen_ldf_asi(dc, &da, sz, addr, a->rd);
gen_update_fprs_dirty(dc, a->rd);
return advance_pc(dc);
}
TRANS(LDF, ALL, do_ld_fpr, a, MO_32)
TRANS(LDDF, ALL, do_ld_fpr, a, MO_64)
TRANS(LDQF, ALL, do_ld_fpr, a, MO_128)
TRANS(LDFA, 64, do_ld_fpr, a, MO_32)
TRANS(LDDFA, 64, do_ld_fpr, a, MO_64)
TRANS(LDQFA, 64, do_ld_fpr, a, MO_128)
static bool do_st_fpr(DisasContext *dc, arg_r_r_ri_asi *a, MemOp sz)
{
TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
DisasASI da;
if (addr == NULL) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (sz == MO_128 && gen_trap_float128(dc)) {
return true;
}
da = resolve_asi(dc, a->asi, MO_TE | sz);
gen_stf_asi(dc, &da, sz, addr, a->rd);
return advance_pc(dc);
}
TRANS(STF, ALL, do_st_fpr, a, MO_32)
TRANS(STDF, ALL, do_st_fpr, a, MO_64)
TRANS(STQF, ALL, do_st_fpr, a, MO_128)
TRANS(STFA, 64, do_st_fpr, a, MO_32)
TRANS(STDFA, 64, do_st_fpr, a, MO_64)
TRANS(STQFA, 64, do_st_fpr, a, MO_128)
static bool trans_STDFQ(DisasContext *dc, arg_STDFQ *a)
{
if (!avail_32(dc)) {
return false;
}
if (!supervisor(dc)) {
return raise_priv(dc);
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
gen_op_fpexception_im(dc, FSR_FTT_SEQ_ERROR);
return true;
}
static bool trans_LDFSR(DisasContext *dc, arg_r_r_ri *a)
{
TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
TCGv_i32 tmp;
if (addr == NULL) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
tmp = tcg_temp_new_i32();
tcg_gen_qemu_ld_i32(tmp, addr, dc->mem_idx, MO_TEUL | MO_ALIGN);
tcg_gen_extract_i32(cpu_fcc[0], tmp, FSR_FCC0_SHIFT, 2);
/* LDFSR does not change FCC[1-3]. */
gen_helper_set_fsr_nofcc_noftt(tcg_env, tmp);
return advance_pc(dc);
}
static bool trans_LDXFSR(DisasContext *dc, arg_r_r_ri *a)
{
#ifdef TARGET_SPARC64
TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
TCGv_i64 t64;
TCGv_i32 lo, hi;
if (addr == NULL) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
t64 = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(t64, addr, dc->mem_idx, MO_TEUQ | MO_ALIGN);
lo = tcg_temp_new_i32();
hi = cpu_fcc[3];
tcg_gen_extr_i64_i32(lo, hi, t64);
tcg_gen_extract_i32(cpu_fcc[0], lo, FSR_FCC0_SHIFT, 2);
tcg_gen_extract_i32(cpu_fcc[1], hi, FSR_FCC1_SHIFT - 32, 2);
tcg_gen_extract_i32(cpu_fcc[2], hi, FSR_FCC2_SHIFT - 32, 2);
tcg_gen_extract_i32(cpu_fcc[3], hi, FSR_FCC3_SHIFT - 32, 2);
gen_helper_set_fsr_nofcc_noftt(tcg_env, lo);
return advance_pc(dc);
#else
return false;
#endif
}
static bool do_stfsr(DisasContext *dc, arg_r_r_ri *a, MemOp mop)
{
TCGv addr = gen_ldst_addr(dc, a->rs1, a->imm, a->rs2_or_imm);
TCGv fsr;
if (addr == NULL) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
fsr = tcg_temp_new();
gen_helper_get_fsr(fsr, tcg_env);
tcg_gen_qemu_st_tl(fsr, addr, dc->mem_idx, mop | MO_ALIGN);
return advance_pc(dc);
}
TRANS(STFSR, ALL, do_stfsr, a, MO_TEUL)
TRANS(STXFSR, 64, do_stfsr, a, MO_TEUQ)
static bool do_fc(DisasContext *dc, int rd, bool c)
{
uint64_t mask;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (rd & 1) {
mask = MAKE_64BIT_MASK(0, 32);
} else {
mask = MAKE_64BIT_MASK(32, 32);
}
if (c) {
tcg_gen_ori_i64(cpu_fpr[rd / 2], cpu_fpr[rd / 2], mask);
} else {
tcg_gen_andi_i64(cpu_fpr[rd / 2], cpu_fpr[rd / 2], ~mask);
}
gen_update_fprs_dirty(dc, rd);
return advance_pc(dc);
}
TRANS(FZEROs, VIS1, do_fc, a->rd, 0)
TRANS(FONEs, VIS1, do_fc, a->rd, 1)
static bool do_dc(DisasContext *dc, int rd, int64_t c)
{
if (gen_trap_ifnofpu(dc)) {
return true;
}
tcg_gen_movi_i64(cpu_fpr[rd / 2], c);
gen_update_fprs_dirty(dc, rd);
return advance_pc(dc);
}
TRANS(FZEROd, VIS1, do_dc, a->rd, 0)
TRANS(FONEd, VIS1, do_dc, a->rd, -1)
static bool do_ff(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i32, TCGv_i32))
{
TCGv_i32 tmp;
if (gen_trap_ifnofpu(dc)) {
return true;
}
tmp = gen_load_fpr_F(dc, a->rs);
func(tmp, tmp);
gen_store_fpr_F(dc, a->rd, tmp);
return advance_pc(dc);
}
TRANS(FMOVs, ALL, do_ff, a, gen_op_fmovs)
TRANS(FNEGs, ALL, do_ff, a, gen_op_fnegs)
TRANS(FABSs, ALL, do_ff, a, gen_op_fabss)
TRANS(FSRCs, VIS1, do_ff, a, tcg_gen_mov_i32)
TRANS(FNOTs, VIS1, do_ff, a, tcg_gen_not_i32)
static bool do_fd(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i32, TCGv_i64))
{
TCGv_i32 dst;
TCGv_i64 src;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = tcg_temp_new_i32();
src = gen_load_fpr_D(dc, a->rs);
func(dst, src);
gen_store_fpr_F(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FPACK16, VIS1, do_fd, a, gen_op_fpack16)
TRANS(FPACKFIX, VIS1, do_fd, a, gen_op_fpackfix)
static bool do_env_ff(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i32, TCGv_env, TCGv_i32))
{
TCGv_i32 tmp;
if (gen_trap_ifnofpu(dc)) {
return true;
}
tmp = gen_load_fpr_F(dc, a->rs);
func(tmp, tcg_env, tmp);
gen_store_fpr_F(dc, a->rd, tmp);
return advance_pc(dc);
}
TRANS(FSQRTs, ALL, do_env_ff, a, gen_helper_fsqrts)
TRANS(FiTOs, ALL, do_env_ff, a, gen_helper_fitos)
TRANS(FsTOi, ALL, do_env_ff, a, gen_helper_fstoi)
static bool do_env_fd(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i32, TCGv_env, TCGv_i64))
{
TCGv_i32 dst;
TCGv_i64 src;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = tcg_temp_new_i32();
src = gen_load_fpr_D(dc, a->rs);
func(dst, tcg_env, src);
gen_store_fpr_F(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FdTOs, ALL, do_env_fd, a, gen_helper_fdtos)
TRANS(FdTOi, ALL, do_env_fd, a, gen_helper_fdtoi)
TRANS(FxTOs, 64, do_env_fd, a, gen_helper_fxtos)
static bool do_dd(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i64, TCGv_i64))
{
TCGv_i64 dst, src;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src = gen_load_fpr_D(dc, a->rs);
func(dst, src);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FMOVd, 64, do_dd, a, gen_op_fmovd)
TRANS(FNEGd, 64, do_dd, a, gen_op_fnegd)
TRANS(FABSd, 64, do_dd, a, gen_op_fabsd)
TRANS(FSRCd, VIS1, do_dd, a, tcg_gen_mov_i64)
TRANS(FNOTd, VIS1, do_dd, a, tcg_gen_not_i64)
static bool do_env_dd(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i64, TCGv_env, TCGv_i64))
{
TCGv_i64 dst, src;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src = gen_load_fpr_D(dc, a->rs);
func(dst, tcg_env, src);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FSQRTd, ALL, do_env_dd, a, gen_helper_fsqrtd)
TRANS(FxTOd, 64, do_env_dd, a, gen_helper_fxtod)
TRANS(FdTOx, 64, do_env_dd, a, gen_helper_fdtox)
static bool do_df(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i64, TCGv_i32))
{
TCGv_i64 dst;
TCGv_i32 src;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = tcg_temp_new_i64();
src = gen_load_fpr_F(dc, a->rs);
func(dst, src);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FEXPAND, VIS1, do_df, a, gen_helper_fexpand)
static bool do_env_df(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i64, TCGv_env, TCGv_i32))
{
TCGv_i64 dst;
TCGv_i32 src;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src = gen_load_fpr_F(dc, a->rs);
func(dst, tcg_env, src);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FiTOd, ALL, do_env_df, a, gen_helper_fitod)
TRANS(FsTOd, ALL, do_env_df, a, gen_helper_fstod)
TRANS(FsTOx, 64, do_env_df, a, gen_helper_fstox)
static bool do_qq(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i128, TCGv_i128))
{
TCGv_i128 t;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
gen_op_clear_ieee_excp_and_FTT();
t = gen_load_fpr_Q(dc, a->rs);
func(t, t);
gen_store_fpr_Q(dc, a->rd, t);
return advance_pc(dc);
}
TRANS(FMOVq, 64, do_qq, a, tcg_gen_mov_i128)
TRANS(FNEGq, 64, do_qq, a, gen_op_fnegq)
TRANS(FABSq, 64, do_qq, a, gen_op_fabsq)
static bool do_env_qq(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i128, TCGv_env, TCGv_i128))
{
TCGv_i128 t;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
t = gen_load_fpr_Q(dc, a->rs);
func(t, tcg_env, t);
gen_store_fpr_Q(dc, a->rd, t);
return advance_pc(dc);
}
TRANS(FSQRTq, ALL, do_env_qq, a, gen_helper_fsqrtq)
static bool do_env_fq(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i32, TCGv_env, TCGv_i128))
{
TCGv_i128 src;
TCGv_i32 dst;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
src = gen_load_fpr_Q(dc, a->rs);
dst = tcg_temp_new_i32();
func(dst, tcg_env, src);
gen_store_fpr_F(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FqTOs, ALL, do_env_fq, a, gen_helper_fqtos)
TRANS(FqTOi, ALL, do_env_fq, a, gen_helper_fqtoi)
static bool do_env_dq(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i64, TCGv_env, TCGv_i128))
{
TCGv_i128 src;
TCGv_i64 dst;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
src = gen_load_fpr_Q(dc, a->rs);
dst = gen_dest_fpr_D(dc, a->rd);
func(dst, tcg_env, src);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FqTOd, ALL, do_env_dq, a, gen_helper_fqtod)
TRANS(FqTOx, 64, do_env_dq, a, gen_helper_fqtox)
static bool do_env_qf(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i128, TCGv_env, TCGv_i32))
{
TCGv_i32 src;
TCGv_i128 dst;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
src = gen_load_fpr_F(dc, a->rs);
dst = tcg_temp_new_i128();
func(dst, tcg_env, src);
gen_store_fpr_Q(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FiTOq, ALL, do_env_qf, a, gen_helper_fitoq)
TRANS(FsTOq, ALL, do_env_qf, a, gen_helper_fstoq)
static bool do_env_qd(DisasContext *dc, arg_r_r *a,
void (*func)(TCGv_i128, TCGv_env, TCGv_i64))
{
TCGv_i64 src;
TCGv_i128 dst;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
src = gen_load_fpr_D(dc, a->rs);
dst = tcg_temp_new_i128();
func(dst, tcg_env, src);
gen_store_fpr_Q(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FdTOq, ALL, do_env_qd, a, gen_helper_fdtoq)
TRANS(FxTOq, 64, do_env_qd, a, gen_helper_fxtoq)
static bool do_fff(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i32, TCGv_i32, TCGv_i32))
{
TCGv_i32 src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
src1 = gen_load_fpr_F(dc, a->rs1);
src2 = gen_load_fpr_F(dc, a->rs2);
func(src1, src1, src2);
gen_store_fpr_F(dc, a->rd, src1);
return advance_pc(dc);
}
TRANS(FPADD16s, VIS1, do_fff, a, tcg_gen_vec_add16_i32)
TRANS(FPADD32s, VIS1, do_fff, a, tcg_gen_add_i32)
TRANS(FPSUB16s, VIS1, do_fff, a, tcg_gen_vec_sub16_i32)
TRANS(FPSUB32s, VIS1, do_fff, a, tcg_gen_sub_i32)
TRANS(FNORs, VIS1, do_fff, a, tcg_gen_nor_i32)
TRANS(FANDNOTs, VIS1, do_fff, a, tcg_gen_andc_i32)
TRANS(FXORs, VIS1, do_fff, a, tcg_gen_xor_i32)
TRANS(FNANDs, VIS1, do_fff, a, tcg_gen_nand_i32)
TRANS(FANDs, VIS1, do_fff, a, tcg_gen_and_i32)
TRANS(FXNORs, VIS1, do_fff, a, tcg_gen_eqv_i32)
TRANS(FORNOTs, VIS1, do_fff, a, tcg_gen_orc_i32)
TRANS(FORs, VIS1, do_fff, a, tcg_gen_or_i32)
static bool do_env_fff(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32))
{
TCGv_i32 src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
src1 = gen_load_fpr_F(dc, a->rs1);
src2 = gen_load_fpr_F(dc, a->rs2);
func(src1, tcg_env, src1, src2);
gen_store_fpr_F(dc, a->rd, src1);
return advance_pc(dc);
}
TRANS(FADDs, ALL, do_env_fff, a, gen_helper_fadds)
TRANS(FSUBs, ALL, do_env_fff, a, gen_helper_fsubs)
TRANS(FMULs, ALL, do_env_fff, a, gen_helper_fmuls)
TRANS(FDIVs, ALL, do_env_fff, a, gen_helper_fdivs)
static bool do_dff(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i64, TCGv_i32, TCGv_i32))
{
TCGv_i64 dst;
TCGv_i32 src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src1 = gen_load_fpr_F(dc, a->rs1);
src2 = gen_load_fpr_F(dc, a->rs2);
func(dst, src1, src2);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FMUL8x16AU, VIS1, do_dff, a, gen_op_fmul8x16au)
TRANS(FMUL8x16AL, VIS1, do_dff, a, gen_op_fmul8x16al)
TRANS(FMULD8SUx16, VIS1, do_dff, a, gen_op_fmuld8sux16)
TRANS(FMULD8ULx16, VIS1, do_dff, a, gen_op_fmuld8ulx16)
TRANS(FPMERGE, VIS1, do_dff, a, gen_helper_fpmerge)
static bool do_dfd(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i64, TCGv_i32, TCGv_i64))
{
TCGv_i64 dst, src2;
TCGv_i32 src1;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src1 = gen_load_fpr_F(dc, a->rs1);
src2 = gen_load_fpr_D(dc, a->rs2);
func(dst, src1, src2);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FMUL8x16, VIS1, do_dfd, a, gen_helper_fmul8x16)
static bool do_ddd(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i64, TCGv_i64, TCGv_i64))
{
TCGv_i64 dst, src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src1 = gen_load_fpr_D(dc, a->rs1);
src2 = gen_load_fpr_D(dc, a->rs2);
func(dst, src1, src2);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FMUL8SUx16, VIS1, do_ddd, a, gen_helper_fmul8sux16)
TRANS(FMUL8ULx16, VIS1, do_ddd, a, gen_helper_fmul8ulx16)
TRANS(FPADD16, VIS1, do_ddd, a, tcg_gen_vec_add16_i64)
TRANS(FPADD32, VIS1, do_ddd, a, tcg_gen_vec_add32_i64)
TRANS(FPSUB16, VIS1, do_ddd, a, tcg_gen_vec_sub16_i64)
TRANS(FPSUB32, VIS1, do_ddd, a, tcg_gen_vec_sub32_i64)
TRANS(FNORd, VIS1, do_ddd, a, tcg_gen_nor_i64)
TRANS(FANDNOTd, VIS1, do_ddd, a, tcg_gen_andc_i64)
TRANS(FXORd, VIS1, do_ddd, a, tcg_gen_xor_i64)
TRANS(FNANDd, VIS1, do_ddd, a, tcg_gen_nand_i64)
TRANS(FANDd, VIS1, do_ddd, a, tcg_gen_and_i64)
TRANS(FXNORd, VIS1, do_ddd, a, tcg_gen_eqv_i64)
TRANS(FORNOTd, VIS1, do_ddd, a, tcg_gen_orc_i64)
TRANS(FORd, VIS1, do_ddd, a, tcg_gen_or_i64)
TRANS(FPACK32, VIS1, do_ddd, a, gen_op_fpack32)
TRANS(FALIGNDATAg, VIS1, do_ddd, a, gen_op_faligndata)
TRANS(BSHUFFLE, VIS2, do_ddd, a, gen_op_bshuffle)
static bool do_rdd(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv, TCGv_i64, TCGv_i64))
{
TCGv_i64 src1, src2;
TCGv dst;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_gpr(dc, a->rd);
src1 = gen_load_fpr_D(dc, a->rs1);
src2 = gen_load_fpr_D(dc, a->rs2);
func(dst, src1, src2);
gen_store_gpr(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FPCMPLE16, VIS1, do_rdd, a, gen_helper_fcmple16)
TRANS(FPCMPNE16, VIS1, do_rdd, a, gen_helper_fcmpne16)
TRANS(FPCMPGT16, VIS1, do_rdd, a, gen_helper_fcmpgt16)
TRANS(FPCMPEQ16, VIS1, do_rdd, a, gen_helper_fcmpeq16)
TRANS(FPCMPLE32, VIS1, do_rdd, a, gen_helper_fcmple32)
TRANS(FPCMPNE32, VIS1, do_rdd, a, gen_helper_fcmpne32)
TRANS(FPCMPGT32, VIS1, do_rdd, a, gen_helper_fcmpgt32)
TRANS(FPCMPEQ32, VIS1, do_rdd, a, gen_helper_fcmpeq32)
static bool do_env_ddd(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i64, TCGv_env, TCGv_i64, TCGv_i64))
{
TCGv_i64 dst, src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src1 = gen_load_fpr_D(dc, a->rs1);
src2 = gen_load_fpr_D(dc, a->rs2);
func(dst, tcg_env, src1, src2);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(FADDd, ALL, do_env_ddd, a, gen_helper_faddd)
TRANS(FSUBd, ALL, do_env_ddd, a, gen_helper_fsubd)
TRANS(FMULd, ALL, do_env_ddd, a, gen_helper_fmuld)
TRANS(FDIVd, ALL, do_env_ddd, a, gen_helper_fdivd)
static bool trans_FsMULd(DisasContext *dc, arg_r_r_r *a)
{
TCGv_i64 dst;
TCGv_i32 src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (!(dc->def->features & CPU_FEATURE_FSMULD)) {
return raise_unimpfpop(dc);
}
dst = gen_dest_fpr_D(dc, a->rd);
src1 = gen_load_fpr_F(dc, a->rs1);
src2 = gen_load_fpr_F(dc, a->rs2);
gen_helper_fsmuld(dst, tcg_env, src1, src2);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
static bool do_dddd(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
{
TCGv_i64 dst, src0, src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
dst = gen_dest_fpr_D(dc, a->rd);
src0 = gen_load_fpr_D(dc, a->rd);
src1 = gen_load_fpr_D(dc, a->rs1);
src2 = gen_load_fpr_D(dc, a->rs2);
func(dst, src0, src1, src2);
gen_store_fpr_D(dc, a->rd, dst);
return advance_pc(dc);
}
TRANS(PDIST, VIS1, do_dddd, a, gen_helper_pdist)
static bool do_env_qqq(DisasContext *dc, arg_r_r_r *a,
void (*func)(TCGv_i128, TCGv_env, TCGv_i128, TCGv_i128))
{
TCGv_i128 src1, src2;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
src1 = gen_load_fpr_Q(dc, a->rs1);
src2 = gen_load_fpr_Q(dc, a->rs2);
func(src1, tcg_env, src1, src2);
gen_store_fpr_Q(dc, a->rd, src1);
return advance_pc(dc);
}
TRANS(FADDq, ALL, do_env_qqq, a, gen_helper_faddq)
TRANS(FSUBq, ALL, do_env_qqq, a, gen_helper_fsubq)
TRANS(FMULq, ALL, do_env_qqq, a, gen_helper_fmulq)
TRANS(FDIVq, ALL, do_env_qqq, a, gen_helper_fdivq)
static bool trans_FdMULq(DisasContext *dc, arg_r_r_r *a)
{
TCGv_i64 src1, src2;
TCGv_i128 dst;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
src1 = gen_load_fpr_D(dc, a->rs1);
src2 = gen_load_fpr_D(dc, a->rs2);
dst = tcg_temp_new_i128();
gen_helper_fdmulq(dst, tcg_env, src1, src2);
gen_store_fpr_Q(dc, a->rd, dst);
return advance_pc(dc);
}
static bool do_fmovr(DisasContext *dc, arg_FMOVRs *a, bool is_128,
void (*func)(DisasContext *, DisasCompare *, int, int))
{
DisasCompare cmp;
if (!gen_compare_reg(&cmp, a->cond, gen_load_gpr(dc, a->rs1))) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (is_128 && gen_trap_float128(dc)) {
return true;
}
gen_op_clear_ieee_excp_and_FTT();
func(dc, &cmp, a->rd, a->rs2);
return advance_pc(dc);
}
TRANS(FMOVRs, 64, do_fmovr, a, false, gen_fmovs)
TRANS(FMOVRd, 64, do_fmovr, a, false, gen_fmovd)
TRANS(FMOVRq, 64, do_fmovr, a, true, gen_fmovq)
static bool do_fmovcc(DisasContext *dc, arg_FMOVscc *a, bool is_128,
void (*func)(DisasContext *, DisasCompare *, int, int))
{
DisasCompare cmp;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (is_128 && gen_trap_float128(dc)) {
return true;
}
gen_op_clear_ieee_excp_and_FTT();
gen_compare(&cmp, a->cc, a->cond, dc);
func(dc, &cmp, a->rd, a->rs2);
return advance_pc(dc);
}
TRANS(FMOVscc, 64, do_fmovcc, a, false, gen_fmovs)
TRANS(FMOVdcc, 64, do_fmovcc, a, false, gen_fmovd)
TRANS(FMOVqcc, 64, do_fmovcc, a, true, gen_fmovq)
static bool do_fmovfcc(DisasContext *dc, arg_FMOVsfcc *a, bool is_128,
void (*func)(DisasContext *, DisasCompare *, int, int))
{
DisasCompare cmp;
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (is_128 && gen_trap_float128(dc)) {
return true;
}
gen_op_clear_ieee_excp_and_FTT();
gen_fcompare(&cmp, a->cc, a->cond);
func(dc, &cmp, a->rd, a->rs2);
return advance_pc(dc);
}
TRANS(FMOVsfcc, 64, do_fmovfcc, a, false, gen_fmovs)
TRANS(FMOVdfcc, 64, do_fmovfcc, a, false, gen_fmovd)
TRANS(FMOVqfcc, 64, do_fmovfcc, a, true, gen_fmovq)
static bool do_fcmps(DisasContext *dc, arg_FCMPs *a, bool e)
{
TCGv_i32 src1, src2;
if (avail_32(dc) && a->cc != 0) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
src1 = gen_load_fpr_F(dc, a->rs1);
src2 = gen_load_fpr_F(dc, a->rs2);
if (e) {
gen_helper_fcmpes(cpu_fcc[a->cc], tcg_env, src1, src2);
} else {
gen_helper_fcmps(cpu_fcc[a->cc], tcg_env, src1, src2);
}
return advance_pc(dc);
}
TRANS(FCMPs, ALL, do_fcmps, a, false)
TRANS(FCMPEs, ALL, do_fcmps, a, true)
static bool do_fcmpd(DisasContext *dc, arg_FCMPd *a, bool e)
{
TCGv_i64 src1, src2;
if (avail_32(dc) && a->cc != 0) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
src1 = gen_load_fpr_D(dc, a->rs1);
src2 = gen_load_fpr_D(dc, a->rs2);
if (e) {
gen_helper_fcmped(cpu_fcc[a->cc], tcg_env, src1, src2);
} else {
gen_helper_fcmpd(cpu_fcc[a->cc], tcg_env, src1, src2);
}
return advance_pc(dc);
}
TRANS(FCMPd, ALL, do_fcmpd, a, false)
TRANS(FCMPEd, ALL, do_fcmpd, a, true)
static bool do_fcmpq(DisasContext *dc, arg_FCMPq *a, bool e)
{
TCGv_i128 src1, src2;
if (avail_32(dc) && a->cc != 0) {
return false;
}
if (gen_trap_ifnofpu(dc)) {
return true;
}
if (gen_trap_float128(dc)) {
return true;
}
src1 = gen_load_fpr_Q(dc, a->rs1);
src2 = gen_load_fpr_Q(dc, a->rs2);
if (e) {
gen_helper_fcmpeq(cpu_fcc[a->cc], tcg_env, src1, src2);
} else {
gen_helper_fcmpq(cpu_fcc[a->cc], tcg_env, src1, src2);
}
return advance_pc(dc);
}
TRANS(FCMPq, ALL, do_fcmpq, a, false)
TRANS(FCMPEq, ALL, do_fcmpq, a, true)
static void sparc_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
int bound;
dc->pc = dc->base.pc_first;
dc->npc = (target_ulong)dc->base.tb->cs_base;
dc->mem_idx = dc->base.tb->flags & TB_FLAG_MMU_MASK;
dc->def = &cpu_env(cs)->def;
dc->fpu_enabled = tb_fpu_enabled(dc->base.tb->flags);
dc->address_mask_32bit = tb_am_enabled(dc->base.tb->flags);
#ifndef CONFIG_USER_ONLY
dc->supervisor = (dc->base.tb->flags & TB_FLAG_SUPER) != 0;
#endif
#ifdef TARGET_SPARC64
dc->fprs_dirty = 0;
dc->asi = (dc->base.tb->flags >> TB_FLAG_ASI_SHIFT) & 0xff;
#ifndef CONFIG_USER_ONLY
dc->hypervisor = (dc->base.tb->flags & TB_FLAG_HYPER) != 0;
#endif
#endif
/*
* if we reach a page boundary, we stop generation so that the
* PC of a TT_TFAULT exception is always in the right page
*/
bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
dc->base.max_insns = MIN(dc->base.max_insns, bound);
}
static void sparc_tr_tb_start(DisasContextBase *db, CPUState *cs)
{
}
static void sparc_tr_insn_start(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
target_ulong npc = dc->npc;
if (npc & 3) {
switch (npc) {
case JUMP_PC:
assert(dc->jump_pc[1] == dc->pc + 4);
npc = dc->jump_pc[0] | JUMP_PC;
break;
case DYNAMIC_PC:
case DYNAMIC_PC_LOOKUP:
npc = DYNAMIC_PC;
break;
default:
g_assert_not_reached();
}
}
tcg_gen_insn_start(dc->pc, npc);
}
static void sparc_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
unsigned int insn;
insn = translator_ldl(cpu_env(cs), &dc->base, dc->pc);
dc->base.pc_next += 4;
if (!decode(dc, insn)) {
gen_exception(dc, TT_ILL_INSN);
}
if (dc->base.is_jmp == DISAS_NORETURN) {
return;
}
if (dc->pc != dc->base.pc_next) {
dc->base.is_jmp = DISAS_TOO_MANY;
}
}
static void sparc_tr_tb_stop(DisasContextBase *dcbase, CPUState *cs)
{
DisasContext *dc = container_of(dcbase, DisasContext, base);
DisasDelayException *e, *e_next;
bool may_lookup;
finishing_insn(dc);
switch (dc->base.is_jmp) {
case DISAS_NEXT:
case DISAS_TOO_MANY:
if (((dc->pc | dc->npc) & 3) == 0) {
/* static PC and NPC: we can use direct chaining */
gen_goto_tb(dc, 0, dc->pc, dc->npc);
break;
}
may_lookup = true;
if (dc->pc & 3) {
switch (dc->pc) {
case DYNAMIC_PC_LOOKUP:
break;
case DYNAMIC_PC:
may_lookup = false;
break;
default:
g_assert_not_reached();
}
} else {
tcg_gen_movi_tl(cpu_pc, dc->pc);
}
if (dc->npc & 3) {
switch (dc->npc) {
case JUMP_PC:
gen_generic_branch(dc);
break;
case DYNAMIC_PC:
may_lookup = false;
break;
case DYNAMIC_PC_LOOKUP:
break;
default:
g_assert_not_reached();
}
} else {
tcg_gen_movi_tl(cpu_npc, dc->npc);
}
if (may_lookup) {
tcg_gen_lookup_and_goto_ptr();
} else {
tcg_gen_exit_tb(NULL, 0);
}
break;
case DISAS_NORETURN:
break;
case DISAS_EXIT:
/* Exit TB */
save_state(dc);
tcg_gen_exit_tb(NULL, 0);
break;
default:
g_assert_not_reached();
}
for (e = dc->delay_excp_list; e ; e = e_next) {
gen_set_label(e->lab);
tcg_gen_movi_tl(cpu_pc, e->pc);
if (e->npc % 4 == 0) {
tcg_gen_movi_tl(cpu_npc, e->npc);
}
gen_helper_raise_exception(tcg_env, e->excp);
e_next = e->next;
g_free(e);
}
}
static void sparc_tr_disas_log(const DisasContextBase *dcbase,
CPUState *cpu, FILE *logfile)
{
fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
}
static const TranslatorOps sparc_tr_ops = {
.init_disas_context = sparc_tr_init_disas_context,
.tb_start = sparc_tr_tb_start,
.insn_start = sparc_tr_insn_start,
.translate_insn = sparc_tr_translate_insn,
.tb_stop = sparc_tr_tb_stop,
.disas_log = sparc_tr_disas_log,
};
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
vaddr pc, void *host_pc)
{
DisasContext dc = {};
translator_loop(cs, tb, max_insns, pc, host_pc, &sparc_tr_ops, &dc.base);
}
void sparc_tcg_init(void)
{
static const char gregnames[32][4] = {
"g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
"o0", "o1", "o2", "o3", "o4", "o5", "o6", "o7",
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
"i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7",
};
static const char fregnames[32][4] = {
"f0", "f2", "f4", "f6", "f8", "f10", "f12", "f14",
"f16", "f18", "f20", "f22", "f24", "f26", "f28", "f30",
"f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
"f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
};
static const struct { TCGv_i32 *ptr; int off; const char *name; } r32[] = {
#ifdef TARGET_SPARC64
{ &cpu_fprs, offsetof(CPUSPARCState, fprs), "fprs" },
{ &cpu_fcc[0], offsetof(CPUSPARCState, fcc[0]), "fcc0" },
{ &cpu_fcc[1], offsetof(CPUSPARCState, fcc[1]), "fcc1" },
{ &cpu_fcc[2], offsetof(CPUSPARCState, fcc[2]), "fcc2" },
{ &cpu_fcc[3], offsetof(CPUSPARCState, fcc[3]), "fcc3" },
#else
{ &cpu_fcc[0], offsetof(CPUSPARCState, fcc[0]), "fcc" },
#endif
};
static const struct { TCGv *ptr; int off; const char *name; } rtl[] = {
#ifdef TARGET_SPARC64
{ &cpu_gsr, offsetof(CPUSPARCState, gsr), "gsr" },
{ &cpu_xcc_Z, offsetof(CPUSPARCState, xcc_Z), "xcc_Z" },
{ &cpu_xcc_C, offsetof(CPUSPARCState, xcc_C), "xcc_C" },
#endif
{ &cpu_cc_N, offsetof(CPUSPARCState, cc_N), "cc_N" },
{ &cpu_cc_V, offsetof(CPUSPARCState, cc_V), "cc_V" },
{ &cpu_icc_Z, offsetof(CPUSPARCState, icc_Z), "icc_Z" },
{ &cpu_icc_C, offsetof(CPUSPARCState, icc_C), "icc_C" },
{ &cpu_cond, offsetof(CPUSPARCState, cond), "cond" },
{ &cpu_pc, offsetof(CPUSPARCState, pc), "pc" },
{ &cpu_npc, offsetof(CPUSPARCState, npc), "npc" },
{ &cpu_y, offsetof(CPUSPARCState, y), "y" },
{ &cpu_tbr, offsetof(CPUSPARCState, tbr), "tbr" },
};
unsigned int i;
cpu_regwptr = tcg_global_mem_new_ptr(tcg_env,
offsetof(CPUSPARCState, regwptr),
"regwptr");
for (i = 0; i < ARRAY_SIZE(r32); ++i) {
*r32[i].ptr = tcg_global_mem_new_i32(tcg_env, r32[i].off, r32[i].name);
}
for (i = 0; i < ARRAY_SIZE(rtl); ++i) {
*rtl[i].ptr = tcg_global_mem_new(tcg_env, rtl[i].off, rtl[i].name);
}
cpu_regs[0] = NULL;
for (i = 1; i < 8; ++i) {
cpu_regs[i] = tcg_global_mem_new(tcg_env,
offsetof(CPUSPARCState, gregs[i]),
gregnames[i]);
}
for (i = 8; i < 32; ++i) {
cpu_regs[i] = tcg_global_mem_new(cpu_regwptr,
(i - 8) * sizeof(target_ulong),
gregnames[i]);
}
for (i = 0; i < TARGET_DPREGS; i++) {
cpu_fpr[i] = tcg_global_mem_new_i64(tcg_env,
offsetof(CPUSPARCState, fpr[i]),
fregnames[i]);
}
}
void sparc_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
CPUSPARCState *env = cpu_env(cs);
target_ulong pc = data[0];
target_ulong npc = data[1];
env->pc = pc;
if (npc == DYNAMIC_PC) {
/* dynamic NPC: already stored */
} else if (npc & JUMP_PC) {
/* jump PC: use 'cond' and the jump targets of the translation */
if (env->cond) {
env->npc = npc & ~3;
} else {
env->npc = pc + 4;
}
} else {
env->npc = npc;
}
}