blob: ca22bb79f7bff3f5415bafc57faa47a3fdc0925d [file] [log] [blame]
/*
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
int err;
#include "hex_test.h"
#define CORE_HAS_CABAC (__HEXAGON_ARCH__ <= 71)
static inline void S4_storerhnew_rr(void *p, int index, uint16_t v)
{
asm volatile("{\n\t"
" r0 = %0\n\n"
" memh(%1+%2<<#2) = r0.new\n\t"
"}\n"
:: "r"(v), "r"(p), "r"(index)
: "r0", "memory");
}
static uint32_t data;
static inline void *S4_storerbnew_ap(uint8_t v)
{
void *ret;
asm volatile("{\n\t"
" r0 = %1\n\n"
" memb(%0 = ##data) = r0.new\n\t"
"}\n"
: "=r"(ret)
: "r"(v)
: "r0", "memory");
return ret;
}
static inline void *S4_storerhnew_ap(uint16_t v)
{
void *ret;
asm volatile("{\n\t"
" r0 = %1\n\n"
" memh(%0 = ##data) = r0.new\n\t"
"}\n"
: "=r"(ret)
: "r"(v)
: "r0", "memory");
return ret;
}
static inline void *S4_storerinew_ap(uint32_t v)
{
void *ret;
asm volatile("{\n\t"
" r0 = %1\n\n"
" memw(%0 = ##data) = r0.new\n\t"
"}\n"
: "=r"(ret)
: "r"(v)
: "r0", "memory");
return ret;
}
static inline void S4_storeirbt_io(void *p, bool pred)
{
asm volatile("p0 = cmp.eq(%0, #1)\n\t"
"if (p0) memb(%1+#4)=#27\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirbf_io(void *p, bool pred)
{
asm volatile("p0 = cmp.eq(%0, #1)\n\t"
"if (!p0) memb(%1+#4)=#27\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirbtnew_io(void *p, bool pred)
{
asm volatile("{\n\t"
" p0 = cmp.eq(%0, #1)\n\t"
" if (p0.new) memb(%1+#4)=#27\n\t"
"}\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirbfnew_io(void *p, bool pred)
{
asm volatile("{\n\t"
" p0 = cmp.eq(%0, #1)\n\t"
" if (!p0.new) memb(%1+#4)=#27\n\t"
"}\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirht_io(void *p, bool pred)
{
asm volatile("p0 = cmp.eq(%0, #1)\n\t"
"if (p0) memh(%1+#4)=#27\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirhf_io(void *p, bool pred)
{
asm volatile("p0 = cmp.eq(%0, #1)\n\t"
"if (!p0) memh(%1+#4)=#27\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirhtnew_io(void *p, bool pred)
{
asm volatile("{\n\t"
" p0 = cmp.eq(%0, #1)\n\t"
" if (p0.new) memh(%1+#4)=#27\n\t"
"}\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirhfnew_io(void *p, bool pred)
{
asm volatile("{\n\t"
" p0 = cmp.eq(%0, #1)\n\t"
" if (!p0.new) memh(%1+#4)=#27\n\t"
"}\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirit_io(void *p, bool pred)
{
asm volatile("p0 = cmp.eq(%0, #1)\n\t"
"if (p0) memw(%1+#4)=#27\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirif_io(void *p, bool pred)
{
asm volatile("p0 = cmp.eq(%0, #1)\n\t"
"if (!p0) memw(%1+#4)=#27\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeiritnew_io(void *p, bool pred)
{
asm volatile("{\n\t"
" p0 = cmp.eq(%0, #1)\n\t"
" if (p0.new) memw(%1+#4)=#27\n\t"
"}\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static inline void S4_storeirifnew_io(void *p, bool pred)
{
asm volatile("{\n\t"
" p0 = cmp.eq(%0, #1)\n\t"
" if (!p0.new) memw(%1+#4)=#27\n\t"
"}\n\t"
:: "r"(pred), "r"(p)
: "p0", "memory");
}
static int32_t L2_ploadrifnew_pi(void *p, bool pred)
{
int32_t result;
asm volatile("%0 = #31\n\t"
"{\n\t"
" p0 = cmp.eq(%2, #1)\n\t"
" if (!p0.new) %0 = memw(%1++#4)\n\t"
"}\n\t"
: "=&r"(result), "+r"(p) : "r"(pred)
: "p0");
return result;
}
/*
* Test that compound-compare-jump is executed in 2 parts
* First we have to do all the compares in the packet and
* account for auto-anding. Then, we can do the predicated
* jump.
*/
static inline int32_t cmpnd_cmp_jump(void)
{
int32_t retval;
asm ("r5 = #7\n\t"
"r6 = #9\n\t"
"{\n\t"
" p0 = cmp.eq(r5, #7)\n\t"
" if (p0.new) jump:nt 1f\n\t"
" p0 = cmp.eq(r6, #7)\n\t"
"}\n\t"
"%0 = #12\n\t"
"jump 2f\n\t"
"1:\n\t"
"%0 = #13\n\t"
"2:\n\t"
: "=r"(retval) :: "r5", "r6", "p0");
return retval;
}
static inline int32_t test_clrtnew(int32_t arg1, int32_t old_val)
{
int32_t ret;
asm volatile("r5 = %2\n\t"
"{\n\t"
"p0 = cmp.eq(%1, #1)\n\t"
"if (p0.new) r5=#0\n\t"
"}\n\t"
"%0 = r5\n\t"
: "=r"(ret)
: "r"(arg1), "r"(old_val)
: "p0", "r5");
return ret;
}
uint32_t init[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
uint32_t array[10];
bool early_exit;
/*
* Write this as a function because we can't guarantee the compiler will
* allocate a frame with just the SL2_return_tnew packet.
*/
static void SL2_return_tnew(bool pred);
asm ("SL2_return_tnew:\n\t"
" allocframe(#0)\n\t"
" r1 = #1\n\t"
" memw(##early_exit) = r1\n\t"
" {\n\t"
" p0 = cmp.eq(r0, #1)\n\t"
" if (p0.new) dealloc_return:nt\n\t" /* SL2_return_tnew */
" }\n\t"
" r1 = #0\n\t"
" memw(##early_exit) = r1\n\t"
" dealloc_return\n\t"
);
static int64_t creg_pair(int32_t x, int32_t y)
{
int64_t retval;
asm ("m0 = %1\n\t"
"m1 = %2\n\t"
"%0 = c7:6\n\t"
: "=r"(retval) : "r"(x), "r"(y) : "m0", "m1");
return retval;
}
#if CORE_HAS_CABAC
static int64_t decbin(int64_t x, int64_t y, bool *pred)
{
int64_t retval;
asm ("%0 = decbin(%2, %3)\n\t"
"%1 = p0\n\t"
: "=r"(retval), "=r"(*pred)
: "r"(x), "r"(y));
return retval;
}
#endif
/* Check that predicates are auto-and'ed in a packet */
static bool auto_and(void)
{
bool retval;
asm ("r5 = #1\n\t"
"{\n\t"
" p0 = cmp.eq(r1, #1)\n\t"
" p0 = cmp.eq(r1, #2)\n\t"
"}\n\t"
"%0 = p0\n\t"
: "=r"(retval)
:
: "r5", "p0");
return retval;
}
void test_lsbnew(void)
{
int32_t result;
asm("r0 = #2\n\t"
"r1 = #5\n\t"
"{\n\t"
" p0 = r0\n\t"
" if (p0.new) r1 = #3\n\t"
"}\n\t"
"%0 = r1\n\t"
: "=r"(result) :: "r0", "r1", "p0");
check32(result, 5);
}
void test_l2fetch(void)
{
/* These don't do anything in qemu, just make sure they don't assert */
asm volatile ("l2fetch(r0, r1)\n\t"
"l2fetch(r0, r3:2)\n\t");
}
static inline int32_t ct0(uint32_t x)
{
int32_t res;
asm("%0 = ct0(%1)\n\t" : "=r"(res) : "r"(x));
return res;
}
static inline int32_t ct1(uint32_t x)
{
int32_t res;
asm("%0 = ct1(%1)\n\t" : "=r"(res) : "r"(x));
return res;
}
static inline int32_t ct0p(uint64_t x)
{
int32_t res;
asm("%0 = ct0(%1)\n\t" : "=r"(res) : "r"(x));
return res;
}
static inline int32_t ct1p(uint64_t x)
{
int32_t res;
asm("%0 = ct1(%1)\n\t" : "=r"(res) : "r"(x));
return res;
}
void test_count_trailing_zeros_ones(void)
{
check32(ct0(0x0000000f), 0);
check32(ct0(0x00000000), 32);
check32(ct0(0x000000f0), 4);
check32(ct1(0x000000f0), 0);
check32(ct1(0x0000000f), 4);
check32(ct1(0x00000000), 0);
check32(ct1(0xffffffff), 32);
check32(ct0p(0x000000000000000fULL), 0);
check32(ct0p(0x0000000000000000ULL), 64);
check32(ct0p(0x00000000000000f0ULL), 4);
check32(ct1p(0x00000000000000f0ULL), 0);
check32(ct1p(0x000000000000000fULL), 4);
check32(ct1p(0x0000000000000000ULL), 0);
check32(ct1p(0xffffffffffffffffULL), 64);
check32(ct1p(0xffffffffff0fffffULL), 20);
check32(ct1p(0xffffff0fffffffffULL), 36);
}
static inline int32_t dpmpyss_rnd_s0(int32_t x, int32_t y)
{
int32_t res;
asm("%0 = mpy(%1, %2):rnd\n\t" : "=r"(res) : "r"(x), "r"(y));
return res;
}
void test_dpmpyss_rnd_s0(void)
{
check32(dpmpyss_rnd_s0(-1, 0x80000000), 1);
check32(dpmpyss_rnd_s0(0, 0x80000000), 0);
check32(dpmpyss_rnd_s0(1, 0x80000000), 0);
check32(dpmpyss_rnd_s0(0x7fffffff, 0x80000000), 0xc0000001);
check32(dpmpyss_rnd_s0(0x80000000, -1), 1);
check32(dpmpyss_rnd_s0(-1, -1), 0);
check32(dpmpyss_rnd_s0(0, -1), 0);
check32(dpmpyss_rnd_s0(1, -1), 0);
check32(dpmpyss_rnd_s0(0x7fffffff, -1), 0);
check32(dpmpyss_rnd_s0(0x80000000, 0), 0);
check32(dpmpyss_rnd_s0(-1, 0), 0);
check32(dpmpyss_rnd_s0(0, 0), 0);
check32(dpmpyss_rnd_s0(1, 0), 0);
check32(dpmpyss_rnd_s0(-1, -1), 0);
check32(dpmpyss_rnd_s0(0, -1), 0);
check32(dpmpyss_rnd_s0(1, -1), 0);
check32(dpmpyss_rnd_s0(0x7fffffff, 1), 0);
check32(dpmpyss_rnd_s0(0x80000000, 0x7fffffff), 0xc0000001);
check32(dpmpyss_rnd_s0(-1, 0x7fffffff), 0);
check32(dpmpyss_rnd_s0(0, 0x7fffffff), 0);
check32(dpmpyss_rnd_s0(1, 0x7fffffff), 0);
check32(dpmpyss_rnd_s0(0x7fffffff, 0x7fffffff), 0x3fffffff);
}
int main()
{
int32_t res;
int64_t res64;
bool pred;
memcpy(array, init, sizeof(array));
S4_storerhnew_rr(array, 4, 0xffff);
check32(array[4], 0xffff);
data = ~0;
checkp(S4_storerbnew_ap(0x12), &data);
check32(data, 0xffffff12);
data = ~0;
checkp(S4_storerhnew_ap(0x1234), &data);
check32(data, 0xffff1234);
data = ~0;
checkp(S4_storerinew_ap(0x12345678), &data);
check32(data, 0x12345678);
/* Byte */
memcpy(array, init, sizeof(array));
S4_storeirbt_io(&array[1], true);
check32(array[2], 27);
S4_storeirbt_io(&array[2], false);
check32(array[3], 3);
memcpy(array, init, sizeof(array));
S4_storeirbf_io(&array[3], false);
check32(array[4], 27);
S4_storeirbf_io(&array[4], true);
check32(array[5], 5);
memcpy(array, init, sizeof(array));
S4_storeirbtnew_io(&array[5], true);
check32(array[6], 27);
S4_storeirbtnew_io(&array[6], false);
check32(array[7], 7);
memcpy(array, init, sizeof(array));
S4_storeirbfnew_io(&array[7], false);
check32(array[8], 27);
S4_storeirbfnew_io(&array[8], true);
check32(array[9], 9);
/* Half word */
memcpy(array, init, sizeof(array));
S4_storeirht_io(&array[1], true);
check32(array[2], 27);
S4_storeirht_io(&array[2], false);
check32(array[3], 3);
memcpy(array, init, sizeof(array));
S4_storeirhf_io(&array[3], false);
check32(array[4], 27);
S4_storeirhf_io(&array[4], true);
check32(array[5], 5);
memcpy(array, init, sizeof(array));
S4_storeirhtnew_io(&array[5], true);
check32(array[6], 27);
S4_storeirhtnew_io(&array[6], false);
check32(array[7], 7);
memcpy(array, init, sizeof(array));
S4_storeirhfnew_io(&array[7], false);
check32(array[8], 27);
S4_storeirhfnew_io(&array[8], true);
check32(array[9], 9);
/* Word */
memcpy(array, init, sizeof(array));
S4_storeirit_io(&array[1], true);
check32(array[2], 27);
S4_storeirit_io(&array[2], false);
check32(array[3], 3);
memcpy(array, init, sizeof(array));
S4_storeirif_io(&array[3], false);
check32(array[4], 27);
S4_storeirif_io(&array[4], true);
check32(array[5], 5);
memcpy(array, init, sizeof(array));
S4_storeiritnew_io(&array[5], true);
check32(array[6], 27);
S4_storeiritnew_io(&array[6], false);
check32(array[7], 7);
memcpy(array, init, sizeof(array));
S4_storeirifnew_io(&array[7], false);
check32(array[8], 27);
S4_storeirifnew_io(&array[8], true);
check32(array[9], 9);
memcpy(array, init, sizeof(array));
res = L2_ploadrifnew_pi(&array[6], false);
check32(res, 6);
res = L2_ploadrifnew_pi(&array[7], true);
check32(res, 31);
res = cmpnd_cmp_jump();
check32(res, 12);
SL2_return_tnew(false);
check32(early_exit, false);
SL2_return_tnew(true);
check32(early_exit, true);
res64 = creg_pair(5, 7);
check32((int32_t)res64, 5);
check32((int32_t)(res64 >> 32), 7);
res = test_clrtnew(1, 7);
check32(res, 0);
res = test_clrtnew(2, 7);
check32(res, 7);
#if CORE_HAS_CABAC
res64 = decbin(0xf0f1f2f3f4f5f6f7LL, 0x7f6f5f4f3f2f1f0fLL, &pred);
check64(res64, 0x357980003700010cLL);
check32(pred, false);
res64 = decbin(0xfLL, 0x1bLL, &pred);
check64(res64, 0x78000100LL);
check32(pred, true);
#else
puts("Skipping cabac tests");
#endif
pred = auto_and();
check32(pred, false);
test_lsbnew();
test_l2fetch();
test_count_trailing_zeros_ones();
test_dpmpyss_rnd_s0();
puts(err ? "FAIL" : "PASS");
return err;
}