blob: ab949ebef1c595e0e8b8f775273f2372d7c31127 [file] [log] [blame]
/*
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
int err;
#include "hex_test.h"
#define DEBUG 0
#define DEBUG_PRINTF(...) \
do { \
if (DEBUG) { \
printf(__VA_ARGS__); \
} \
} while (0)
#define NBYTES (1 << 8)
#define NHALFS (NBYTES / sizeof(short))
#define NWORDS (NBYTES / sizeof(int))
#define NDOBLS (NBYTES / sizeof(long long))
int64_t dbuf[NDOBLS] __attribute__((aligned(1 << 12))) = {0};
int32_t wbuf[NWORDS] __attribute__((aligned(1 << 12))) = {0};
int16_t hbuf[NHALFS] __attribute__((aligned(1 << 12))) = {0};
uint8_t bbuf[NBYTES] __attribute__((aligned(1 << 12))) = {0};
/*
* We use the C preporcessor to deal with the combinations of types
*/
#define INIT(BUF, N) \
void init_##BUF(void) \
{ \
for (int i = 0; i < N; i++) { \
BUF[i] = i; \
} \
} \
INIT(bbuf, NBYTES)
INIT(hbuf, NHALFS)
INIT(wbuf, NWORDS)
INIT(dbuf, NDOBLS)
/*
* Macros for performing circular load
* RES result
* ADDR address
* START start address of buffer
* LEN length of buffer (in bytes)
* INC address increment (in bytes for IMM, elements for REG)
*/
#define CIRC_LOAD_IMM(SIZE, RES, ADDR, START, LEN, INC) \
__asm__( \
"r4 = %3\n\t" \
"m0 = r4\n\t" \
"cs0 = %2\n\t" \
"%0 = mem" #SIZE "(%1++#" #INC ":circ(M0))\n\t" \
: "=r"(RES), "+r"(ADDR) \
: "r"(START), "r"(LEN) \
: "r4", "m0", "cs0")
#define CIRC_LOAD_IMM_b(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_IMM(b, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_IMM_ub(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_IMM(ub, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_IMM_h(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_IMM(h, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_IMM_uh(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_IMM(uh, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_IMM_w(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_IMM(w, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_IMM_d(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_IMM(d, RES, ADDR, START, LEN, INC)
/*
* The mreg has the following pieces
* mreg[31:28] increment[10:7]
* mreg[27:24] K value (used Hexagon v3 and earlier)
* mreg[23:17] increment[6:0]
* mreg[16:0] circular buffer length
*/
static int32_t build_mreg(int32_t inc, int32_t K, int32_t len)
{
return ((inc & 0x780) << 21) |
((K & 0xf) << 24) |
((inc & 0x7f) << 17) |
(len & 0x1ffff);
}
#define CIRC_LOAD_REG(SIZE, RES, ADDR, START, LEN, INC) \
__asm__( \
"r4 = %2\n\t" \
"m1 = r4\n\t" \
"cs1 = %3\n\t" \
"%0 = mem" #SIZE "(%1++I:circ(M1))\n\t" \
: "=r"(RES), "+r"(ADDR) \
: "r"(build_mreg((INC), 0, (LEN))), \
"r"(START) \
: "r4", "m1", "cs1")
#define CIRC_LOAD_REG_b(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_REG(b, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_REG_ub(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_REG(ub, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_REG_h(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_REG(h, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_REG_uh(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_REG(uh, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_REG_w(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_REG(w, RES, ADDR, START, LEN, INC)
#define CIRC_LOAD_REG_d(RES, ADDR, START, LEN, INC) \
CIRC_LOAD_REG(d, RES, ADDR, START, LEN, INC)
/*
* Macros for performing circular store
* VAL value to store
* ADDR address
* START start address of buffer
* LEN length of buffer (in bytes)
* INC address increment (in bytes for IMM, elements for REG)
*/
#define CIRC_STORE_IMM(SIZE, PART, VAL, ADDR, START, LEN, INC) \
__asm__( \
"r4 = %3\n\t" \
"m0 = r4\n\t" \
"cs0 = %1\n\t" \
"mem" #SIZE "(%0++#" #INC ":circ(M0)) = %2" PART "\n\t" \
: "+r"(ADDR) \
: "r"(START), "r"(VAL), "r"(LEN) \
: "r4", "m0", "cs0", "memory")
#define CIRC_STORE_IMM_b(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_IMM(b, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_IMM_h(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_IMM(h, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_IMM_f(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_IMM(h, ".H", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_IMM_w(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_IMM(w, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_IMM_d(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_IMM(d, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_NEW_IMM(SIZE, VAL, ADDR, START, LEN, INC) \
__asm__( \
"r4 = %3\n\t" \
"m0 = r4\n\t" \
"cs0 = %1\n\t" \
"{\n\t" \
" r5 = %2\n\t" \
" mem" #SIZE "(%0++#" #INC ":circ(M0)) = r5.new\n\t" \
"}\n\t" \
: "+r"(ADDR) \
: "r"(START), "r"(VAL), "r"(LEN) \
: "r4", "r5", "m0", "cs0", "memory")
#define CIRC_STORE_IMM_bnew(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_NEW_IMM(b, VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_IMM_hnew(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_NEW_IMM(h, VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_IMM_wnew(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_NEW_IMM(w, VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_REG(SIZE, PART, VAL, ADDR, START, LEN, INC) \
__asm__( \
"r4 = %1\n\t" \
"m1 = r4\n\t" \
"cs1 = %2\n\t" \
"mem" #SIZE "(%0++I:circ(M1)) = %3" PART "\n\t" \
: "+r"(ADDR) \
: "r"(build_mreg((INC), 0, (LEN))), \
"r"(START), \
"r"(VAL) \
: "r4", "m1", "cs1", "memory")
#define CIRC_STORE_REG_b(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_REG(b, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_REG_h(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_REG(h, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_REG_f(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_REG(h, ".H", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_REG_w(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_REG(w, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_REG_d(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_REG(d, "", VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_NEW_REG(SIZE, VAL, ADDR, START, LEN, INC) \
__asm__( \
"r4 = %1\n\t" \
"m1 = r4\n\t" \
"cs1 = %2\n\t" \
"{\n\t" \
" r5 = %3\n\t" \
" mem" #SIZE "(%0++I:circ(M1)) = r5.new\n\t" \
"}\n\t" \
: "+r"(ADDR) \
: "r"(build_mreg((INC), 0, (LEN))), \
"r"(START), \
"r"(VAL) \
: "r4", "r5", "m1", "cs1", "memory")
#define CIRC_STORE_REG_bnew(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_NEW_REG(b, VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_REG_hnew(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_NEW_REG(h, VAL, ADDR, START, LEN, INC)
#define CIRC_STORE_REG_wnew(VAL, ADDR, START, LEN, INC) \
CIRC_STORE_NEW_REG(w, VAL, ADDR, START, LEN, INC)
/* We'll test increments +1 and -1 */
void __check_load(int line, int32_t i, int64_t res, int32_t inc, int32_t size)
{
int32_t expect = (i * inc);
while (expect >= size) {
expect -= size;
}
while (expect < 0) {
expect += size;
}
__check32(line, res, expect);
}
#define check_load(I, RES, INC, SZ) __check_load(__LINE__, I, RES, INC, SZ)
#define TEST_LOAD_IMM(SZ, TYPE, BUF, BUFSIZE, INC, FMT) \
void circ_test_load_imm_##SZ(void) \
{ \
TYPE *p = (TYPE *)BUF; \
int32_t size = 10; \
for (int i = 0; i < BUFSIZE; i++) { \
TYPE element; \
CIRC_LOAD_IMM_##SZ(element, p, BUF, size * sizeof(TYPE), (INC)); \
DEBUG_PRINTF("i = %2d, p = 0x%p, element = %2" #FMT "\n", \
i, p, element); \
check_load(i, element, ((INC) / (int)sizeof(TYPE)), size); \
} \
p = (TYPE *)BUF; \
for (int i = 0; i < BUFSIZE; i++) { \
TYPE element; \
CIRC_LOAD_IMM_##SZ(element, p, BUF, size * sizeof(TYPE), -(INC)); \
DEBUG_PRINTF("i = %2d, p = 0x%p, element = %2" #FMT "\n", \
i, p, element); \
check_load(i, element, (-(INC) / (int)sizeof(TYPE)), size); \
} \
}
TEST_LOAD_IMM(b, int8_t, bbuf, NBYTES, 1, d)
TEST_LOAD_IMM(ub, uint8_t, bbuf, NBYTES, 1, d)
TEST_LOAD_IMM(h, int16_t, hbuf, NHALFS, 2, d)
TEST_LOAD_IMM(uh, uint16_t, hbuf, NHALFS, 2, d)
TEST_LOAD_IMM(w, int32_t, wbuf, NWORDS, 4, d)
TEST_LOAD_IMM(d, int64_t, dbuf, NDOBLS, 8, lld)
#define TEST_LOAD_REG(SZ, TYPE, BUF, BUFSIZE, FMT) \
void circ_test_load_reg_##SZ(void) \
{ \
TYPE *p = (TYPE *)BUF; \
int32_t size = 13; \
for (int i = 0; i < BUFSIZE; i++) { \
TYPE element; \
CIRC_LOAD_REG_##SZ(element, p, BUF, size * sizeof(TYPE), 1); \
DEBUG_PRINTF("i = %2d, p = 0x%p, element = %2" #FMT "\n", \
i, p, element); \
check_load(i, element, 1, size); \
} \
p = (TYPE *)BUF; \
for (int i = 0; i < BUFSIZE; i++) { \
TYPE element; \
CIRC_LOAD_REG_##SZ(element, p, BUF, size * sizeof(TYPE), -1); \
DEBUG_PRINTF("i = %2d, p = 0x%p, element = %2" #FMT "\n", \
i, p, element); \
check_load(i, element, -1, size); \
} \
}
TEST_LOAD_REG(b, int8_t, bbuf, NBYTES, d)
TEST_LOAD_REG(ub, uint8_t, bbuf, NBYTES, d)
TEST_LOAD_REG(h, int16_t, hbuf, NHALFS, d)
TEST_LOAD_REG(uh, uint16_t, hbuf, NHALFS, d)
TEST_LOAD_REG(w, int32_t, wbuf, NWORDS, d)
TEST_LOAD_REG(d, int64_t, dbuf, NDOBLS, lld)
/* The circular stores will wrap around somewhere inside the buffer */
#define CIRC_VAL(SZ, TYPE, BUFSIZE) \
TYPE circ_val_##SZ(int i, int32_t inc, int32_t size) \
{ \
int mod = BUFSIZE % size; \
int elem = i * inc; \
if (elem < 0) { \
if (-elem <= size - mod) { \
return (elem + BUFSIZE - mod); \
} else { \
return (elem + BUFSIZE + size - mod); \
} \
} else if (elem < mod) {\
return (elem + BUFSIZE - mod); \
} else { \
return (elem + BUFSIZE - size - mod); \
} \
}
CIRC_VAL(b, uint8_t, NBYTES)
CIRC_VAL(h, int16_t, NHALFS)
CIRC_VAL(w, int32_t, NWORDS)
CIRC_VAL(d, int64_t, NDOBLS)
/*
* Circular stores should only write to the first "size" elements of the buffer
* the remainder of the elements should have BUF[i] == i
*/
#define CHECK_STORE(SZ, BUF, BUFSIZE, FMT) \
void check_store_##SZ(int32_t inc, int32_t size) \
{ \
for (int i = 0; i < size; i++) { \
DEBUG_PRINTF(#BUF "[%3d] = 0x%02" #FMT ", guess = 0x%02" #FMT "\n", \
i, BUF[i], circ_val_##SZ(i, inc, size)); \
check64(BUF[i], circ_val_##SZ(i, inc, size)); \
} \
for (int i = size; i < BUFSIZE; i++) { \
check64(BUF[i], i); \
} \
}
CHECK_STORE(b, bbuf, NBYTES, x)
CHECK_STORE(h, hbuf, NHALFS, x)
CHECK_STORE(w, wbuf, NWORDS, x)
CHECK_STORE(d, dbuf, NDOBLS, llx)
#define CIRC_TEST_STORE_IMM(SZ, CHK, TYPE, BUF, BUFSIZE, SHIFT, INC) \
void circ_test_store_imm_##SZ(void) \
{ \
uint32_t size = 27; \
TYPE *p = BUF; \
TYPE val = 0; \
init_##BUF(); \
for (int i = 0; i < BUFSIZE; i++) { \
CIRC_STORE_IMM_##SZ(val << SHIFT, p, BUF, size * sizeof(TYPE), INC); \
val++; \
} \
check_store_##CHK(((INC) / (int)sizeof(TYPE)), size); \
p = BUF; \
val = 0; \
init_##BUF(); \
for (int i = 0; i < BUFSIZE; i++) { \
CIRC_STORE_IMM_##SZ(val << SHIFT, p, BUF, size * sizeof(TYPE), \
-(INC)); \
val++; \
} \
check_store_##CHK((-(INC) / (int)sizeof(TYPE)), size); \
}
CIRC_TEST_STORE_IMM(b, b, uint8_t, bbuf, NBYTES, 0, 1)
CIRC_TEST_STORE_IMM(h, h, int16_t, hbuf, NHALFS, 0, 2)
CIRC_TEST_STORE_IMM(f, h, int16_t, hbuf, NHALFS, 16, 2)
CIRC_TEST_STORE_IMM(w, w, int32_t, wbuf, NWORDS, 0, 4)
CIRC_TEST_STORE_IMM(d, d, int64_t, dbuf, NDOBLS, 0, 8)
CIRC_TEST_STORE_IMM(bnew, b, uint8_t, bbuf, NBYTES, 0, 1)
CIRC_TEST_STORE_IMM(hnew, h, int16_t, hbuf, NHALFS, 0, 2)
CIRC_TEST_STORE_IMM(wnew, w, int32_t, wbuf, NWORDS, 0, 4)
#define CIRC_TEST_STORE_REG(SZ, CHK, TYPE, BUF, BUFSIZE, SHIFT) \
void circ_test_store_reg_##SZ(void) \
{ \
TYPE *p = BUF; \
uint32_t size = 19; \
TYPE val = 0; \
init_##BUF(); \
for (int i = 0; i < BUFSIZE; i++) { \
CIRC_STORE_REG_##SZ(val << SHIFT, p, BUF, size * sizeof(TYPE), 1); \
val++; \
} \
check_store_##CHK(1, size); \
p = BUF; \
val = 0; \
init_##BUF(); \
for (int i = 0; i < BUFSIZE; i++) { \
CIRC_STORE_REG_##SZ(val << SHIFT, p, BUF, size * sizeof(TYPE), -1); \
val++; \
} \
check_store_##CHK(-1, size); \
}
CIRC_TEST_STORE_REG(b, b, uint8_t, bbuf, NBYTES, 0)
CIRC_TEST_STORE_REG(h, h, int16_t, hbuf, NHALFS, 0)
CIRC_TEST_STORE_REG(f, h, int16_t, hbuf, NHALFS, 16)
CIRC_TEST_STORE_REG(w, w, int32_t, wbuf, NWORDS, 0)
CIRC_TEST_STORE_REG(d, d, int64_t, dbuf, NDOBLS, 0)
CIRC_TEST_STORE_REG(bnew, b, uint8_t, bbuf, NBYTES, 0)
CIRC_TEST_STORE_REG(hnew, h, int16_t, hbuf, NHALFS, 0)
CIRC_TEST_STORE_REG(wnew, w, int32_t, wbuf, NWORDS, 0)
/* Test the old scheme used in Hexagon V3 */
static void circ_test_v3(void)
{
int *p = wbuf;
int32_t size = 15;
/* set high bit in K to test unsigned extract in fcirc */
int32_t K = 8; /* 1024 bytes */
int32_t element;
init_wbuf();
for (int i = 0; i < NWORDS; i++) {
__asm__(
"r4 = %2\n\t"
"m1 = r4\n\t"
"%0 = memw(%1++I:circ(M1))\n\t"
: "=r"(element), "+r"(p)
: "r"(build_mreg(1, K, size * sizeof(int)))
: "r4", "m1");
DEBUG_PRINTF("i = %2d, p = 0x%p, element = %2d\n", i, p, element);
check_load(i, element, 1, size);
}
}
int main()
{
init_bbuf();
init_hbuf();
init_wbuf();
init_dbuf();
DEBUG_PRINTF("NBYTES = %d\n", NBYTES);
DEBUG_PRINTF("Address of dbuf = 0x%p\n", dbuf);
DEBUG_PRINTF("Address of wbuf = 0x%p\n", wbuf);
DEBUG_PRINTF("Address of hbuf = 0x%p\n", hbuf);
DEBUG_PRINTF("Address of bbuf = 0x%p\n", bbuf);
circ_test_load_imm_b();
circ_test_load_imm_ub();
circ_test_load_imm_h();
circ_test_load_imm_uh();
circ_test_load_imm_w();
circ_test_load_imm_d();
circ_test_load_reg_b();
circ_test_load_reg_ub();
circ_test_load_reg_h();
circ_test_load_reg_uh();
circ_test_load_reg_w();
circ_test_load_reg_d();
circ_test_store_imm_b();
circ_test_store_imm_h();
circ_test_store_imm_f();
circ_test_store_imm_w();
circ_test_store_imm_d();
circ_test_store_imm_bnew();
circ_test_store_imm_hnew();
circ_test_store_imm_wnew();
circ_test_store_reg_b();
circ_test_store_reg_h();
circ_test_store_reg_f();
circ_test_store_reg_w();
circ_test_store_reg_d();
circ_test_store_reg_bnew();
circ_test_store_reg_hnew();
circ_test_store_reg_wnew();
circ_test_v3();
puts(err ? "FAIL" : "PASS");
return err ? 1 : 0;
}