blob: f67264374ec75d7c0f3120039925e1e8ec46d9f6 [file] [log] [blame]
/*
* QEMU RISC-V Boot Helper
*
* Copyright (c) 2017 SiFive, Inc.
* Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "exec/cpu-defs.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/boot_opensbi.h"
#include "elf.h"
#include "sysemu/device_tree.h"
#include "sysemu/qtest.h"
#include <libfdt.h>
bool riscv_is_32bit(RISCVHartArrayState *harts)
{
return harts->harts[0].env.misa_mxl_max == MXL_RV32;
}
/*
* Return the per-socket PLIC hart topology configuration string
* (caller must free with g_free())
*/
char *riscv_plic_hart_config_string(int hart_count)
{
g_autofree const char **vals = g_new(const char *, hart_count + 1);
int i;
for (i = 0; i < hart_count; i++) {
CPUState *cs = qemu_get_cpu(i);
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (riscv_has_ext(env, RVS)) {
vals[i] = "MS";
} else {
vals[i] = "M";
}
}
vals[i] = NULL;
/* g_strjoinv() obliges us to cast away const here */
return g_strjoinv(",", (char **)vals);
}
target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
target_ulong firmware_end_addr) {
if (riscv_is_32bit(harts)) {
return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
} else {
return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
}
}
target_ulong riscv_find_and_load_firmware(MachineState *machine,
const char *default_machine_firmware,
hwaddr firmware_load_addr,
symbol_fn_t sym_cb)
{
char *firmware_filename = NULL;
target_ulong firmware_end_addr = firmware_load_addr;
if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
/*
* The user didn't specify -bios, or has specified "-bios default".
* That means we are going to load the OpenSBI binary included in
* the QEMU source.
*/
firmware_filename = riscv_find_firmware(default_machine_firmware);
} else if (strcmp(machine->firmware, "none")) {
firmware_filename = riscv_find_firmware(machine->firmware);
}
if (firmware_filename) {
/* If not "none" load the firmware */
firmware_end_addr = riscv_load_firmware(firmware_filename,
firmware_load_addr, sym_cb);
g_free(firmware_filename);
}
return firmware_end_addr;
}
char *riscv_find_firmware(const char *firmware_filename)
{
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
if (filename == NULL) {
if (!qtest_enabled()) {
/*
* We only ship plain binary bios images in the QEMU source.
* With Spike machine that uses ELF images as the default bios,
* running QEMU test will complain hence let's suppress the error
* report for QEMU testing.
*/
error_report("Unable to load the RISC-V firmware \"%s\"",
firmware_filename);
exit(1);
}
}
return filename;
}
target_ulong riscv_load_firmware(const char *firmware_filename,
hwaddr firmware_load_addr,
symbol_fn_t sym_cb)
{
uint64_t firmware_entry, firmware_size, firmware_end;
if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
&firmware_entry, NULL, &firmware_end, NULL,
0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
return firmware_end;
}
firmware_size = load_image_targphys_as(firmware_filename,
firmware_load_addr,
current_machine->ram_size, NULL);
if (firmware_size > 0) {
return firmware_load_addr + firmware_size;
}
error_report("could not load firmware '%s'", firmware_filename);
exit(1);
}
target_ulong riscv_load_kernel(const char *kernel_filename,
target_ulong kernel_start_addr,
symbol_fn_t sym_cb)
{
uint64_t kernel_load_base, kernel_entry;
/*
* NB: Use low address not ELF entry point to ensure that the fw_dynamic
* behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
* behaviour, as well as fw_dynamic with a raw binary, all of which jump to
* the (expected) load address load address. This allows kernels to have
* separate SBI and ELF entry points (used by FreeBSD, for example).
*/
if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
NULL, &kernel_load_base, NULL, NULL, 0,
EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
return kernel_load_base;
}
if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
NULL, NULL, NULL) > 0) {
return kernel_entry;
}
if (load_image_targphys_as(kernel_filename, kernel_start_addr,
current_machine->ram_size, NULL) > 0) {
return kernel_start_addr;
}
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
uint64_t kernel_entry, hwaddr *start)
{
int size;
/*
* We want to put the initrd far enough into RAM that when the
* kernel is uncompressed it will not clobber the initrd. However
* on boards without much RAM we must ensure that we still leave
* enough room for a decent sized initrd, and on boards with large
* amounts of RAM we must avoid the initrd being so far up in RAM
* that it is outside lowmem and inaccessible to the kernel.
* So for boards with less than 256MB of RAM we put the initrd
* halfway into RAM, and for boards with 256MB of RAM or more we put
* the initrd at 128MB.
*/
*start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
size = load_ramdisk(filename, *start, mem_size - *start);
if (size == -1) {
size = load_image_targphys(filename, *start, mem_size - *start);
if (size == -1) {
error_report("could not load ramdisk '%s'", filename);
exit(1);
}
}
return *start + size;
}
uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
{
uint32_t temp, fdt_addr;
hwaddr dram_end = dram_base + mem_size;
int ret, fdtsize = fdt_totalsize(fdt);
if (fdtsize <= 0) {
error_report("invalid device-tree");
exit(1);
}
/*
* We should put fdt as far as possible to avoid kernel/initrd overwriting
* its content. But it should be addressable by 32 bit system as well.
* Thus, put it at an 16MB aligned address that less than fdt size from the
* end of dram or 3GB whichever is lesser.
*/
temp = MIN(dram_end, 3072 * MiB);
fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 16 * MiB);
ret = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
g_assert(ret == 0);
/* copy in the device tree */
qemu_fdt_dumpdtb(fdt, fdtsize);
rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
&address_space_memory);
return fdt_addr;
}
void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
hwaddr rom_size, uint32_t reset_vec_size,
uint64_t kernel_entry)
{
struct fw_dynamic_info dinfo;
size_t dinfo_len;
if (sizeof(dinfo.magic) == 4) {
dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
dinfo.next_addr = cpu_to_le32(kernel_entry);
} else {
dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
dinfo.next_addr = cpu_to_le64(kernel_entry);
}
dinfo.options = 0;
dinfo.boot_hart = 0;
dinfo_len = sizeof(dinfo);
/**
* copy the dynamic firmware info. This information is specific to
* OpenSBI but doesn't break any other firmware as long as they don't
* expect any certain value in "a2" register.
*/
if (dinfo_len > (rom_size - reset_vec_size)) {
error_report("not enough space to store dynamic firmware info");
exit(1);
}
rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
rom_base + reset_vec_size,
&address_space_memory);
}
void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
hwaddr start_addr,
hwaddr rom_base, hwaddr rom_size,
uint64_t kernel_entry,
uint32_t fdt_load_addr, void *fdt)
{
int i;
uint32_t start_addr_hi32 = 0x00000000;
if (!riscv_is_32bit(harts)) {
start_addr_hi32 = start_addr >> 32;
}
/* reset vector */
uint32_t reset_vec[10] = {
0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
0xf1402573, /* csrr a0, mhartid */
0,
0,
0x00028067, /* jr t0 */
start_addr, /* start: .dword */
start_addr_hi32,
fdt_load_addr, /* fdt_laddr: .dword */
0x00000000,
/* fw_dyn: */
};
if (riscv_is_32bit(harts)) {
reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
} else {
reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
}
/* copy in the reset vector in little_endian byte order */
for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
reset_vec[i] = cpu_to_le32(reset_vec[i]);
}
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
rom_base, &address_space_memory);
riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
kernel_entry);
return;
}