| /* |
| * Simple C functions to supplement the C library |
| * |
| * Copyright (c) 2006 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/cutils.h" |
| #include "qemu/bswap.h" |
| #include "host/cpuinfo.h" |
| |
| typedef bool (*biz_accel_fn)(const void *, size_t); |
| |
| static bool buffer_is_zero_int_lt256(const void *buf, size_t len) |
| { |
| uint64_t t; |
| const uint64_t *p, *e; |
| |
| /* |
| * Use unaligned memory access functions to handle |
| * the beginning and end of the buffer. |
| */ |
| if (unlikely(len <= 8)) { |
| return (ldl_he_p(buf) | ldl_he_p(buf + len - 4)) == 0; |
| } |
| |
| t = ldq_he_p(buf) | ldq_he_p(buf + len - 8); |
| p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8); |
| e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8); |
| |
| /* Read 0 to 31 aligned words from the middle. */ |
| while (p < e) { |
| t |= *p++; |
| } |
| return t == 0; |
| } |
| |
| static bool buffer_is_zero_int_ge256(const void *buf, size_t len) |
| { |
| /* |
| * Use unaligned memory access functions to handle |
| * the beginning and end of the buffer. |
| */ |
| uint64_t t = ldq_he_p(buf) | ldq_he_p(buf + len - 8); |
| const uint64_t *p = QEMU_ALIGN_PTR_DOWN(buf + 8, 8); |
| const uint64_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 8); |
| |
| /* Collect a partial block at the tail end. */ |
| t |= e[-7] | e[-6] | e[-5] | e[-4] | e[-3] | e[-2] | e[-1]; |
| |
| /* |
| * Loop over 64 byte blocks. |
| * With the head and tail removed, e - p >= 30, |
| * so the loop must iterate at least 3 times. |
| */ |
| do { |
| if (t) { |
| return false; |
| } |
| t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7]; |
| p += 8; |
| } while (p < e - 7); |
| |
| return t == 0; |
| } |
| |
| #if defined(CONFIG_AVX2_OPT) || defined(__SSE2__) |
| #include <immintrin.h> |
| |
| /* Helper for preventing the compiler from reassociating |
| chains of binary vector operations. */ |
| #define SSE_REASSOC_BARRIER(vec0, vec1) asm("" : "+x"(vec0), "+x"(vec1)) |
| |
| /* Note that these vectorized functions may assume len >= 256. */ |
| |
| static bool __attribute__((target("sse2"))) |
| buffer_zero_sse2(const void *buf, size_t len) |
| { |
| /* Unaligned loads at head/tail. */ |
| __m128i v = *(__m128i_u *)(buf); |
| __m128i w = *(__m128i_u *)(buf + len - 16); |
| /* Align head/tail to 16-byte boundaries. */ |
| const __m128i *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16); |
| const __m128i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16); |
| __m128i zero = { 0 }; |
| |
| /* Collect a partial block at tail end. */ |
| v |= e[-1]; w |= e[-2]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= e[-3]; w |= e[-4]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= e[-5]; w |= e[-6]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= e[-7]; v |= w; |
| |
| /* |
| * Loop over complete 128-byte blocks. |
| * With the head and tail removed, e - p >= 14, so the loop |
| * must iterate at least once. |
| */ |
| do { |
| v = _mm_cmpeq_epi8(v, zero); |
| if (unlikely(_mm_movemask_epi8(v) != 0xFFFF)) { |
| return false; |
| } |
| v = p[0]; w = p[1]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= p[2]; w |= p[3]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= p[4]; w |= p[5]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= p[6]; w |= p[7]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= w; |
| p += 8; |
| } while (p < e - 7); |
| |
| return _mm_movemask_epi8(_mm_cmpeq_epi8(v, zero)) == 0xFFFF; |
| } |
| |
| #ifdef CONFIG_AVX2_OPT |
| static bool __attribute__((target("avx2"))) |
| buffer_zero_avx2(const void *buf, size_t len) |
| { |
| /* Unaligned loads at head/tail. */ |
| __m256i v = *(__m256i_u *)(buf); |
| __m256i w = *(__m256i_u *)(buf + len - 32); |
| /* Align head/tail to 32-byte boundaries. */ |
| const __m256i *p = QEMU_ALIGN_PTR_DOWN(buf + 32, 32); |
| const __m256i *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 32); |
| __m256i zero = { 0 }; |
| |
| /* Collect a partial block at tail end. */ |
| v |= e[-1]; w |= e[-2]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= e[-3]; w |= e[-4]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= e[-5]; w |= e[-6]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= e[-7]; v |= w; |
| |
| /* Loop over complete 256-byte blocks. */ |
| for (; p < e - 7; p += 8) { |
| /* PTEST is not profitable here. */ |
| v = _mm256_cmpeq_epi8(v, zero); |
| if (unlikely(_mm256_movemask_epi8(v) != 0xFFFFFFFF)) { |
| return false; |
| } |
| v = p[0]; w = p[1]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= p[2]; w |= p[3]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= p[4]; w |= p[5]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= p[6]; w |= p[7]; |
| SSE_REASSOC_BARRIER(v, w); |
| v |= w; |
| } |
| |
| return _mm256_movemask_epi8(_mm256_cmpeq_epi8(v, zero)) == 0xFFFFFFFF; |
| } |
| #endif /* CONFIG_AVX2_OPT */ |
| |
| static biz_accel_fn const accel_table[] = { |
| buffer_is_zero_int_ge256, |
| buffer_zero_sse2, |
| #ifdef CONFIG_AVX2_OPT |
| buffer_zero_avx2, |
| #endif |
| }; |
| |
| static unsigned best_accel(void) |
| { |
| #ifdef CONFIG_AVX2_OPT |
| unsigned info = cpuinfo_init(); |
| |
| if (info & CPUINFO_AVX2) { |
| return 2; |
| } |
| #endif |
| return 1; |
| } |
| |
| #elif defined(__aarch64__) && defined(__ARM_NEON) |
| #include <arm_neon.h> |
| |
| /* |
| * Helper for preventing the compiler from reassociating |
| * chains of binary vector operations. |
| */ |
| #define REASSOC_BARRIER(vec0, vec1) asm("" : "+w"(vec0), "+w"(vec1)) |
| |
| static bool buffer_is_zero_simd(const void *buf, size_t len) |
| { |
| uint32x4_t t0, t1, t2, t3; |
| |
| /* Align head/tail to 16-byte boundaries. */ |
| const uint32x4_t *p = QEMU_ALIGN_PTR_DOWN(buf + 16, 16); |
| const uint32x4_t *e = QEMU_ALIGN_PTR_DOWN(buf + len - 1, 16); |
| |
| /* Unaligned loads at head/tail. */ |
| t0 = vld1q_u32(buf) | vld1q_u32(buf + len - 16); |
| |
| /* Collect a partial block at tail end. */ |
| t1 = e[-7] | e[-6]; |
| t2 = e[-5] | e[-4]; |
| t3 = e[-3] | e[-2]; |
| t0 |= e[-1]; |
| REASSOC_BARRIER(t0, t1); |
| REASSOC_BARRIER(t2, t3); |
| t0 |= t1; |
| t2 |= t3; |
| REASSOC_BARRIER(t0, t2); |
| t0 |= t2; |
| |
| /* |
| * Loop over complete 128-byte blocks. |
| * With the head and tail removed, e - p >= 14, so the loop |
| * must iterate at least once. |
| */ |
| do { |
| /* |
| * Reduce via UMAXV. Whatever the actual result, |
| * it will only be zero if all input bytes are zero. |
| */ |
| if (unlikely(vmaxvq_u32(t0) != 0)) { |
| return false; |
| } |
| |
| t0 = p[0] | p[1]; |
| t1 = p[2] | p[3]; |
| t2 = p[4] | p[5]; |
| t3 = p[6] | p[7]; |
| REASSOC_BARRIER(t0, t1); |
| REASSOC_BARRIER(t2, t3); |
| t0 |= t1; |
| t2 |= t3; |
| REASSOC_BARRIER(t0, t2); |
| t0 |= t2; |
| p += 8; |
| } while (p < e - 7); |
| |
| return vmaxvq_u32(t0) == 0; |
| } |
| |
| #define best_accel() 1 |
| static biz_accel_fn const accel_table[] = { |
| buffer_is_zero_int_ge256, |
| buffer_is_zero_simd, |
| }; |
| #else |
| #define best_accel() 0 |
| static biz_accel_fn const accel_table[1] = { |
| buffer_is_zero_int_ge256 |
| }; |
| #endif |
| |
| static biz_accel_fn buffer_is_zero_accel; |
| static unsigned accel_index; |
| |
| bool buffer_is_zero_ool(const void *buf, size_t len) |
| { |
| if (unlikely(len == 0)) { |
| return true; |
| } |
| if (!buffer_is_zero_sample3(buf, len)) { |
| return false; |
| } |
| /* All bytes are covered for any len <= 3. */ |
| if (unlikely(len <= 3)) { |
| return true; |
| } |
| |
| if (likely(len >= 256)) { |
| return buffer_is_zero_accel(buf, len); |
| } |
| return buffer_is_zero_int_lt256(buf, len); |
| } |
| |
| bool buffer_is_zero_ge256(const void *buf, size_t len) |
| { |
| return buffer_is_zero_accel(buf, len); |
| } |
| |
| bool test_buffer_is_zero_next_accel(void) |
| { |
| if (accel_index != 0) { |
| buffer_is_zero_accel = accel_table[--accel_index]; |
| return true; |
| } |
| return false; |
| } |
| |
| static void __attribute__((constructor)) init_accel(void) |
| { |
| accel_index = best_accel(); |
| buffer_is_zero_accel = accel_table[accel_index]; |
| } |