tests/pflash-cfi02: Refactor to support testing multiple configurations
Introduce the FlashConfig structure, to be able to run the same set
of tests on different flash models/configurations.
Signed-off-by: Stephen Checkoway <stephen.checkoway@oberlin.edu>
Message-Id: <20190426162624.55977-6-stephen.checkoway@oberlin.edu>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
[PMD: Extracted from bigger patch]
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
diff --git a/tests/pflash-cfi02-test.c b/tests/pflash-cfi02-test.c
index e090b2e..b00f5ca 100644
--- a/tests/pflash-cfi02-test.c
+++ b/tests/pflash-cfi02-test.c
@@ -17,12 +17,18 @@
*/
#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
+#define FLASH_SIZE (8 * 1024 * 1024)
#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
-#define FLASH_WIDTH 2
-#define CFI_ADDR (FLASH_WIDTH * 0x55)
-#define UNLOCK0_ADDR (FLASH_WIDTH * 0x555)
-#define UNLOCK1_ADDR (FLASH_WIDTH * 0x2AA)
+/* Use a newtype to keep flash addresses separate from byte addresses. */
+typedef struct {
+ uint64_t addr;
+} faddr;
+#define FLASH_ADDR(x) ((faddr) { .addr = (x) })
+
+#define CFI_ADDR FLASH_ADDR(0x55)
+#define UNLOCK0_ADDR FLASH_ADDR(0x555)
+#define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
#define CFI_CMD 0x98
#define UNLOCK0_CMD 0xAA
@@ -35,170 +41,313 @@
#define UNLOCK_BYPASS_CMD 0x20
#define UNLOCK_BYPASS_RESET_CMD 0x00
+typedef struct {
+ int bank_width;
+
+ QTestState *qtest;
+} FlashConfig;
+
static char image_path[] = "/tmp/qtest.XXXXXX";
-static inline void flash_write(uint64_t byte_addr, uint16_t data)
+/*
+ * The pflash implementation allows some parameters to be unspecified. We want
+ * to test those configurations but we also need to know the real values in
+ * our testing code. So after we launch qemu, we'll need a new FlashConfig
+ * with the correct values filled in.
+ */
+static FlashConfig expand_config_defaults(const FlashConfig *c)
{
- qtest_writew(global_qtest, BASE_ADDR + byte_addr, data);
+ FlashConfig ret = *c;
+
+ if (ret.bank_width == 0) {
+ ret.bank_width = 2;
+ }
+
+ /* XXX: Limitations of test harness. */
+ assert(ret.bank_width == 2);
+ return ret;
}
-static inline uint16_t flash_read(uint64_t byte_addr)
+/*
+ * Return a bit mask suitable for extracting the least significant
+ * status/query response from an interleaved response.
+ */
+static inline uint64_t device_mask(const FlashConfig *c)
{
- return qtest_readw(global_qtest, BASE_ADDR + byte_addr);
+ return (uint64_t)-1;
}
-static void unlock(void)
+/*
+ * Return a bit mask exactly as long as the bank_width.
+ */
+static inline uint64_t bank_mask(const FlashConfig *c)
{
- flash_write(UNLOCK0_ADDR, UNLOCK0_CMD);
- flash_write(UNLOCK1_ADDR, UNLOCK1_CMD);
+ if (c->bank_width == 8) {
+ return (uint64_t)-1;
+ }
+ return (1ULL << (c->bank_width * 8)) - 1ULL;
}
-static void reset(void)
+static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
+ uint64_t data)
{
- flash_write(0, RESET_CMD);
-}
-
-static void sector_erase(uint64_t byte_addr)
-{
- unlock();
- flash_write(UNLOCK0_ADDR, 0x80);
- unlock();
- flash_write(byte_addr, SECTOR_ERASE_CMD);
-}
-
-static void wait_for_completion(uint64_t byte_addr)
-{
- /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
- if ((flash_read(byte_addr) & 0x40) ^ (flash_read(byte_addr) & 0x40)) {
- /* Wait for erase or program to finish. */
- clock_step_next();
- /* Ensure that DQ6 has stopped toggling. */
- g_assert_cmphex(flash_read(byte_addr), ==, flash_read(byte_addr));
+ /* Sanity check our tests. */
+ assert((data & ~bank_mask(c)) == 0);
+ uint64_t addr = BASE_ADDR + byte_addr;
+ switch (c->bank_width) {
+ case 1:
+ qtest_writeb(c->qtest, addr, data);
+ break;
+ case 2:
+ qtest_writew(c->qtest, addr, data);
+ break;
+ case 4:
+ qtest_writel(c->qtest, addr, data);
+ break;
+ case 8:
+ qtest_writeq(c->qtest, addr, data);
+ break;
+ default:
+ abort();
}
}
-static void bypass_program(uint64_t byte_addr, uint16_t data)
+static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
{
- flash_write(UNLOCK0_ADDR, PROGRAM_CMD);
- flash_write(byte_addr, data);
+ uint64_t addr = BASE_ADDR + byte_addr;
+ switch (c->bank_width) {
+ case 1:
+ return qtest_readb(c->qtest, addr);
+ case 2:
+ return qtest_readw(c->qtest, addr);
+ case 4:
+ return qtest_readl(c->qtest, addr);
+ case 8:
+ return qtest_readq(c->qtest, addr);
+ default:
+ abort();
+ }
+}
+
+/*
+ * Convert a flash address expressed in the maximum width of the device as a
+ * byte address.
+ */
+static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
+{
+ /*
+ * Command addresses are always given as addresses in the maximum
+ * supported bus size for the flash chip. So an x8/x16 chip in x8 mode
+ * uses addresses 0xAAA and 0x555 to unlock because the least significant
+ * bit is ignored. (0x555 rather than 0x554 is traditional.)
+ *
+ * In general we need to multiply by the maximum device width.
+ */
+ return flash_addr.addr * c->bank_width;
+}
+
+/*
+ * Return the command value or expected status replicated across all devices.
+ */
+static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
+{
+ /* Sanity check our tests. */
+ assert((data & ~device_mask(c)) == 0);
+ return data;
+}
+
+static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
+ uint8_t cmd)
+{
+ flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
+}
+
+static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
+{
+ return flash_read(c, as_byte_addr(c, query_addr));
+}
+
+static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
+{
+ return flash_query(c, query_addr) & device_mask(c);
+}
+
+static void unlock(const FlashConfig *c)
+{
+ flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
+ flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
+}
+
+static void reset(const FlashConfig *c)
+{
+ flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
+}
+
+static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
+{
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, 0x80);
+ unlock(c);
+ flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
+}
+
+static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
+{
+ /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
+ const uint64_t dq6 = replicate(c, 0x40);
+ if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
+ /* Wait for erase or program to finish. */
+ qtest_clock_step_next(c->qtest);
+ /* Ensure that DQ6 has stopped toggling. */
+ g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
+ }
+}
+
+static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
+ uint16_t data)
+{
+ flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
+ flash_write(c, byte_addr, data);
/*
* Data isn't valid until DQ6 stops toggling. We don't model this as
* writes are immediate, but if this changes in the future, we can wait
* until the program is complete.
*/
- wait_for_completion(byte_addr);
+ wait_for_completion(c, byte_addr);
}
-static void program(uint64_t byte_addr, uint16_t data)
+static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
{
- unlock();
- bypass_program(byte_addr, data);
+ unlock(c);
+ bypass_program(c, byte_addr, data);
}
-static void chip_erase(void)
+static void chip_erase(const FlashConfig *c)
{
- unlock();
- flash_write(UNLOCK0_ADDR, 0x80);
- unlock();
- flash_write(UNLOCK0_ADDR, SECTOR_ERASE_CMD);
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, 0x80);
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
}
-static void test_flash(void)
+static void test_flash(const void *opaque)
{
- global_qtest = qtest_initf("-M musicpal,accel=qtest "
- "-drive if=pflash,file=%s,format=raw,copy-on-read",
- image_path);
+ const FlashConfig *config = opaque;
+ QTestState *qtest;
+ qtest = qtest_initf("-M musicpal,accel=qtest"
+ " -drive if=pflash,file=%s,format=raw,copy-on-read",
+ image_path);
+ FlashConfig explicit_config = expand_config_defaults(config);
+ explicit_config.qtest = qtest;
+ const FlashConfig *c = &explicit_config;
+
/* Check the IDs. */
- unlock();
- flash_write(UNLOCK0_ADDR, AUTOSELECT_CMD);
- g_assert_cmphex(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
- g_assert_cmphex(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
- reset();
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
+ if (c->bank_width >= 2) {
+ /*
+ * XXX: The ID returned by the musicpal flash chip is 16 bits which
+ * wouldn't happen with an 8-bit device. It would probably be best to
+ * prohibit addresses larger than the device width in pflash_cfi02.c,
+ * but then we couldn't test smaller device widths at all.
+ */
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
+ replicate(c, 0x236D));
+ }
+ reset(c);
/* Check the erase blocks. */
- flash_write(CFI_ADDR, CFI_CMD);
- g_assert_cmphex(flash_read(FLASH_WIDTH * 0x10), ==, 'Q');
- g_assert_cmphex(flash_read(FLASH_WIDTH * 0x11), ==, 'R');
- g_assert_cmphex(flash_read(FLASH_WIDTH * 0x12), ==, 'Y');
- /* Num erase regions. */
- g_assert_cmphex(flash_read(FLASH_WIDTH * 0x2C), >=, 1);
- uint32_t nb_sectors = flash_read(FLASH_WIDTH * 0x2D) +
- (flash_read(FLASH_WIDTH * 0x2E) << 8) + 1;
- uint32_t sector_len = (flash_read(FLASH_WIDTH * 0x2F) << 8) +
- (flash_read(FLASH_WIDTH * 0x30) << 16);
- reset();
+ flash_cmd(c, CFI_ADDR, CFI_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
+ /* Num erase regions. */
+ g_assert_cmphex(flash_query_1(c, FLASH_ADDR(0x2C)), >=, 1);
+
+ uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(0x2D)) +
+ (flash_query_1(c, FLASH_ADDR(0x2E)) << 8) + 1;
+ uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(0x2F)) << 8) +
+ (flash_query_1(c, FLASH_ADDR(0x30)) << 16);
+ reset(c);
+
+ const uint64_t dq7 = replicate(c, 0x80);
+ const uint64_t dq6 = replicate(c, 0x40);
/* Erase and program sector. */
for (uint32_t i = 0; i < nb_sectors; ++i) {
uint64_t byte_addr = i * sector_len;
- sector_erase(byte_addr);
+ sector_erase(c, byte_addr);
/* Read toggle. */
- uint16_t status0 = flash_read(byte_addr);
+ uint64_t status0 = flash_read(c, byte_addr);
/* DQ7 is 0 during an erase. */
- g_assert_cmphex(status0 & 0x80, ==, 0);
- uint16_t status1 = flash_read(byte_addr);
+ g_assert_cmphex(status0 & dq7, ==, 0);
+ uint64_t status1 = flash_read(c, byte_addr);
/* DQ6 toggles during an erase. */
- g_assert_cmphex(status0 & 0x40, !=, status1 & 0x40);
+ g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
- clock_step_next();
+ qtest_clock_step_next(c->qtest);
/* Ensure DQ6 has stopped toggling. */
- g_assert_cmphex(flash_read(byte_addr), ==, flash_read(byte_addr));
+ g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
/* Now the data should be valid. */
- g_assert_cmphex(flash_read(byte_addr), ==, 0xFFFF);
+ g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
/* Program a bit pattern. */
- program(byte_addr, 0x5555);
- g_assert_cmphex(flash_read(byte_addr), ==, 0x5555);
- program(byte_addr, 0xAA55);
- g_assert_cmphex(flash_read(byte_addr), ==, 0x0055);
+ program(c, byte_addr, 0x55);
+ g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
+ program(c, byte_addr, 0xA5);
+ g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
}
/* Erase the chip. */
- chip_erase();
+ chip_erase(c);
/* Read toggle. */
- uint16_t status0 = flash_read(0);
+ uint64_t status0 = flash_read(c, 0);
/* DQ7 is 0 during an erase. */
- g_assert_cmphex(status0 & 0x80, ==, 0);
- uint16_t status1 = flash_read(0);
+ g_assert_cmphex(status0 & dq7, ==, 0);
+ uint64_t status1 = flash_read(c, 0);
/* DQ6 toggles during an erase. */
- g_assert_cmphex(status0 & 0x40, !=, status1 & 0x40);
+ g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
- clock_step_next();
+ qtest_clock_step_next(c->qtest);
/* Ensure DQ6 has stopped toggling. */
- g_assert_cmphex(flash_read(0), ==, flash_read(0));
+ g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
/* Now the data should be valid. */
- g_assert_cmphex(flash_read(0), ==, 0xFFFF);
+
+ for (uint32_t i = 0; i < nb_sectors; ++i) {
+ uint64_t byte_addr = i * sector_len;
+ g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
+ }
/* Unlock bypass */
- unlock();
- flash_write(UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
- bypass_program(0, 0x0123);
- bypass_program(2, 0x4567);
- bypass_program(4, 0x89AB);
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
+ bypass_program(c, 0 * c->bank_width, 0x01);
+ bypass_program(c, 1 * c->bank_width, 0x23);
+ bypass_program(c, 2 * c->bank_width, 0x45);
/*
* Test that bypass programming, unlike normal programming can use any
* address for the PROGRAM_CMD.
*/
- flash_write(6, PROGRAM_CMD);
- flash_write(6, 0xCDEF);
- wait_for_completion(6);
- flash_write(0, UNLOCK_BYPASS_RESET_CMD);
- bypass_program(8, 0x55AA); /* Should fail. */
- g_assert_cmphex(flash_read(0), ==, 0x0123);
- g_assert_cmphex(flash_read(2), ==, 0x4567);
- g_assert_cmphex(flash_read(4), ==, 0x89AB);
- g_assert_cmphex(flash_read(6), ==, 0xCDEF);
- g_assert_cmphex(flash_read(8), ==, 0xFFFF);
+ flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
+ flash_write(c, 3 * c->bank_width, 0x67);
+ wait_for_completion(c, 3 * c->bank_width);
+ flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
+ bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
+ g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
+ g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
+ g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
+ g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
+ g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
/* Test ignored high order bits of address. */
- flash_write(FLASH_WIDTH * 0x5555, UNLOCK0_CMD);
- flash_write(FLASH_WIDTH * 0x2AAA, UNLOCK1_CMD);
- flash_write(FLASH_WIDTH * 0x5555, AUTOSELECT_CMD);
- g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
- g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
- reset();
+ flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
+ flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
+ flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
+ reset(c);
- qtest_quit(global_qtest);
+ qtest_quit(qtest);
}
static void cleanup(void *opaque)
@@ -206,6 +355,17 @@
unlink(image_path);
}
+/*
+ * XXX: Tests are limited to bank_width = 2 for now because that's what
+ * hw/arm/musicpal.c has.
+ */
+static const FlashConfig configuration[] = {
+ /* One x16 device. */
+ {
+ .bank_width = 2,
+ },
+};
+
int main(int argc, char **argv)
{
int fd = mkstemp(image_path);
@@ -214,19 +374,27 @@
strerror(errno));
exit(EXIT_FAILURE);
}
- if (ftruncate(fd, 8 * 1024 * 1024) < 0) {
+ if (ftruncate(fd, FLASH_SIZE) < 0) {
int error_code = errno;
close(fd);
unlink(image_path);
- g_printerr("Failed to truncate file %s to 8 MB: %s\n", image_path,
- strerror(error_code));
+ g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
+ FLASH_SIZE, strerror(error_code));
exit(EXIT_FAILURE);
}
close(fd);
qtest_add_abrt_handler(cleanup, NULL);
g_test_init(&argc, &argv, NULL);
- qtest_add_func("pflash-cfi02", test_flash);
+
+ size_t nb_configurations = sizeof configuration / sizeof configuration[0];
+ for (size_t i = 0; i < nb_configurations; ++i) {
+ const FlashConfig *config = &configuration[i];
+ char *path = g_strdup_printf("pflash-cfi02/%d",
+ config->bank_width);
+ qtest_add_data_func(path, config, test_flash);
+ g_free(path);
+ }
int result = g_test_run();
cleanup(NULL);
return result;