blob: e090b2e3a027658e6032ab8c070cdb7c2bab1dcf [file] [log] [blame]
/*
* QTest testcase for parallel flash with AMD command set
*
* Copyright (c) 2019 Stephen Checkoway
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "libqtest.h"
/*
* To test the pflash_cfi02 device, we run QEMU with the musicpal machine with
* a pflash drive. This enables us to test some flash configurations, but not
* all. In particular, we're limited to a 16-bit wide flash device.
*/
#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
#define FLASH_WIDTH 2
#define CFI_ADDR (FLASH_WIDTH * 0x55)
#define UNLOCK0_ADDR (FLASH_WIDTH * 0x555)
#define UNLOCK1_ADDR (FLASH_WIDTH * 0x2AA)
#define CFI_CMD 0x98
#define UNLOCK0_CMD 0xAA
#define UNLOCK1_CMD 0x55
#define AUTOSELECT_CMD 0x90
#define RESET_CMD 0xF0
#define PROGRAM_CMD 0xA0
#define SECTOR_ERASE_CMD 0x30
#define CHIP_ERASE_CMD 0x10
#define UNLOCK_BYPASS_CMD 0x20
#define UNLOCK_BYPASS_RESET_CMD 0x00
static char image_path[] = "/tmp/qtest.XXXXXX";
static inline void flash_write(uint64_t byte_addr, uint16_t data)
{
qtest_writew(global_qtest, BASE_ADDR + byte_addr, data);
}
static inline uint16_t flash_read(uint64_t byte_addr)
{
return qtest_readw(global_qtest, BASE_ADDR + byte_addr);
}
static void unlock(void)
{
flash_write(UNLOCK0_ADDR, UNLOCK0_CMD);
flash_write(UNLOCK1_ADDR, UNLOCK1_CMD);
}
static void reset(void)
{
flash_write(0, RESET_CMD);
}
static void sector_erase(uint64_t byte_addr)
{
unlock();
flash_write(UNLOCK0_ADDR, 0x80);
unlock();
flash_write(byte_addr, SECTOR_ERASE_CMD);
}
static void wait_for_completion(uint64_t byte_addr)
{
/* If DQ6 is toggling, step the clock and ensure the toggle stops. */
if ((flash_read(byte_addr) & 0x40) ^ (flash_read(byte_addr) & 0x40)) {
/* Wait for erase or program to finish. */
clock_step_next();
/* Ensure that DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(byte_addr), ==, flash_read(byte_addr));
}
}
static void bypass_program(uint64_t byte_addr, uint16_t data)
{
flash_write(UNLOCK0_ADDR, PROGRAM_CMD);
flash_write(byte_addr, data);
/*
* Data isn't valid until DQ6 stops toggling. We don't model this as
* writes are immediate, but if this changes in the future, we can wait
* until the program is complete.
*/
wait_for_completion(byte_addr);
}
static void program(uint64_t byte_addr, uint16_t data)
{
unlock();
bypass_program(byte_addr, data);
}
static void chip_erase(void)
{
unlock();
flash_write(UNLOCK0_ADDR, 0x80);
unlock();
flash_write(UNLOCK0_ADDR, SECTOR_ERASE_CMD);
}
static void test_flash(void)
{
global_qtest = qtest_initf("-M musicpal,accel=qtest "
"-drive if=pflash,file=%s,format=raw,copy-on-read",
image_path);
/* Check the IDs. */
unlock();
flash_write(UNLOCK0_ADDR, AUTOSELECT_CMD);
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
reset();
/* Check the erase blocks. */
flash_write(CFI_ADDR, CFI_CMD);
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x10), ==, 'Q');
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x11), ==, 'R');
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x12), ==, 'Y');
/* Num erase regions. */
g_assert_cmphex(flash_read(FLASH_WIDTH * 0x2C), >=, 1);
uint32_t nb_sectors = flash_read(FLASH_WIDTH * 0x2D) +
(flash_read(FLASH_WIDTH * 0x2E) << 8) + 1;
uint32_t sector_len = (flash_read(FLASH_WIDTH * 0x2F) << 8) +
(flash_read(FLASH_WIDTH * 0x30) << 16);
reset();
/* Erase and program sector. */
for (uint32_t i = 0; i < nb_sectors; ++i) {
uint64_t byte_addr = i * sector_len;
sector_erase(byte_addr);
/* Read toggle. */
uint16_t status0 = flash_read(byte_addr);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & 0x80, ==, 0);
uint16_t status1 = flash_read(byte_addr);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & 0x40, !=, status1 & 0x40);
/* Wait for erase to complete. */
clock_step_next();
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(byte_addr), ==, flash_read(byte_addr));
/* Now the data should be valid. */
g_assert_cmphex(flash_read(byte_addr), ==, 0xFFFF);
/* Program a bit pattern. */
program(byte_addr, 0x5555);
g_assert_cmphex(flash_read(byte_addr), ==, 0x5555);
program(byte_addr, 0xAA55);
g_assert_cmphex(flash_read(byte_addr), ==, 0x0055);
}
/* Erase the chip. */
chip_erase();
/* Read toggle. */
uint16_t status0 = flash_read(0);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & 0x80, ==, 0);
uint16_t status1 = flash_read(0);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & 0x40, !=, status1 & 0x40);
/* Wait for erase to complete. */
clock_step_next();
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(0), ==, flash_read(0));
/* Now the data should be valid. */
g_assert_cmphex(flash_read(0), ==, 0xFFFF);
/* Unlock bypass */
unlock();
flash_write(UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
bypass_program(0, 0x0123);
bypass_program(2, 0x4567);
bypass_program(4, 0x89AB);
/*
* Test that bypass programming, unlike normal programming can use any
* address for the PROGRAM_CMD.
*/
flash_write(6, PROGRAM_CMD);
flash_write(6, 0xCDEF);
wait_for_completion(6);
flash_write(0, UNLOCK_BYPASS_RESET_CMD);
bypass_program(8, 0x55AA); /* Should fail. */
g_assert_cmphex(flash_read(0), ==, 0x0123);
g_assert_cmphex(flash_read(2), ==, 0x4567);
g_assert_cmphex(flash_read(4), ==, 0x89AB);
g_assert_cmphex(flash_read(6), ==, 0xCDEF);
g_assert_cmphex(flash_read(8), ==, 0xFFFF);
/* Test ignored high order bits of address. */
flash_write(FLASH_WIDTH * 0x5555, UNLOCK0_CMD);
flash_write(FLASH_WIDTH * 0x2AAA, UNLOCK1_CMD);
flash_write(FLASH_WIDTH * 0x5555, AUTOSELECT_CMD);
g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0000), ==, 0x00BF);
g_assert_cmpint(flash_read(FLASH_WIDTH * 0x0001), ==, 0x236D);
reset();
qtest_quit(global_qtest);
}
static void cleanup(void *opaque)
{
unlink(image_path);
}
int main(int argc, char **argv)
{
int fd = mkstemp(image_path);
if (fd == -1) {
g_printerr("Failed to create temporary file %s: %s\n", image_path,
strerror(errno));
exit(EXIT_FAILURE);
}
if (ftruncate(fd, 8 * 1024 * 1024) < 0) {
int error_code = errno;
close(fd);
unlink(image_path);
g_printerr("Failed to truncate file %s to 8 MB: %s\n", image_path,
strerror(error_code));
exit(EXIT_FAILURE);
}
close(fd);
qtest_add_abrt_handler(cleanup, NULL);
g_test_init(&argc, &argv, NULL);
qtest_add_func("pflash-cfi02", test_flash);
int result = g_test_run();
cleanup(NULL);
return result;
}