blob: 7bb618f18209d93bc0ddac6474e446ab8f5235f4 [file] [log] [blame]
/*
* QEMU NVM Express Virtual Namespace
*
* Copyright (c) 2019 CNEX Labs
* Copyright (c) 2020 Samsung Electronics
*
* Authors:
* Klaus Jensen <k.jensen@samsung.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See the
* COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "hw/block/block.h"
#include "hw/pci/pci.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"
#include "qapi/error.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-core.h"
#include "trace.h"
#include "nvme.h"
#include "nvme-ns.h"
#define MIN_DISCARD_GRANULARITY (4 * KiB)
void nvme_ns_init_format(NvmeNamespace *ns)
{
NvmeIdNs *id_ns = &ns->id_ns;
BlockDriverInfo bdi;
int npdg, nlbas, ret;
nlbas = nvme_ns_nlbas(ns);
id_ns->nsze = cpu_to_le64(nlbas);
/* no thin provisioning */
id_ns->ncap = id_ns->nsze;
id_ns->nuse = id_ns->ncap;
ns->mdata_offset = nvme_l2b(ns, nlbas);
npdg = ns->blkconf.discard_granularity / nvme_lsize(ns);
ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi);
if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) {
npdg = bdi.cluster_size / nvme_lsize(ns);
}
id_ns->npda = id_ns->npdg = npdg - 1;
}
static int nvme_ns_init(NvmeNamespace *ns, Error **errp)
{
NvmeIdNs *id_ns = &ns->id_ns;
uint8_t ds;
uint16_t ms;
int i;
ns->csi = NVME_CSI_NVM;
ns->status = 0x0;
ns->id_ns.dlfeat = 0x1;
/* support DULBE and I/O optimization fields */
id_ns->nsfeat |= (0x4 | 0x10);
if (ns->params.shared) {
id_ns->nmic |= NVME_NMIC_NS_SHARED;
}
/* simple copy */
id_ns->mssrl = cpu_to_le16(ns->params.mssrl);
id_ns->mcl = cpu_to_le32(ns->params.mcl);
id_ns->msrc = ns->params.msrc;
ds = 31 - clz32(ns->blkconf.logical_block_size);
ms = ns->params.ms;
if (ns->params.ms) {
id_ns->mc = 0x3;
if (ns->params.mset) {
id_ns->flbas |= 0x10;
}
id_ns->dpc = 0x1f;
id_ns->dps = ((ns->params.pil & 0x1) << 3) | ns->params.pi;
NvmeLBAF lbaf[16] = {
[0] = { .ds = 9 },
[1] = { .ds = 9, .ms = 8 },
[2] = { .ds = 9, .ms = 16 },
[3] = { .ds = 9, .ms = 64 },
[4] = { .ds = 12 },
[5] = { .ds = 12, .ms = 8 },
[6] = { .ds = 12, .ms = 16 },
[7] = { .ds = 12, .ms = 64 },
};
memcpy(&id_ns->lbaf, &lbaf, sizeof(lbaf));
id_ns->nlbaf = 7;
} else {
NvmeLBAF lbaf[16] = {
[0] = { .ds = 9 },
[1] = { .ds = 12 },
};
memcpy(&id_ns->lbaf, &lbaf, sizeof(lbaf));
id_ns->nlbaf = 1;
}
for (i = 0; i <= id_ns->nlbaf; i++) {
NvmeLBAF *lbaf = &id_ns->lbaf[i];
if (lbaf->ds == ds) {
if (lbaf->ms == ms) {
id_ns->flbas |= i;
goto lbaf_found;
}
}
}
/* add non-standard lba format */
id_ns->nlbaf++;
id_ns->lbaf[id_ns->nlbaf].ds = ds;
id_ns->lbaf[id_ns->nlbaf].ms = ms;
id_ns->flbas |= id_ns->nlbaf;
lbaf_found:
nvme_ns_init_format(ns);
return 0;
}
static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp)
{
bool read_only;
if (!blkconf_blocksizes(&ns->blkconf, errp)) {
return -1;
}
read_only = !blk_supports_write_perm(ns->blkconf.blk);
if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) {
return -1;
}
if (ns->blkconf.discard_granularity == -1) {
ns->blkconf.discard_granularity =
MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY);
}
ns->size = blk_getlength(ns->blkconf.blk);
if (ns->size < 0) {
error_setg_errno(errp, -ns->size, "could not get blockdev size");
return -1;
}
return 0;
}
static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp)
{
uint64_t zone_size, zone_cap;
uint32_t lbasz = nvme_lsize(ns);
/* Make sure that the values of ZNS properties are sane */
if (ns->params.zone_size_bs) {
zone_size = ns->params.zone_size_bs;
} else {
zone_size = NVME_DEFAULT_ZONE_SIZE;
}
if (ns->params.zone_cap_bs) {
zone_cap = ns->params.zone_cap_bs;
} else {
zone_cap = zone_size;
}
if (zone_cap > zone_size) {
error_setg(errp, "zone capacity %"PRIu64"B exceeds "
"zone size %"PRIu64"B", zone_cap, zone_size);
return -1;
}
if (zone_size < lbasz) {
error_setg(errp, "zone size %"PRIu64"B too small, "
"must be at least %"PRIu32"B", zone_size, lbasz);
return -1;
}
if (zone_cap < lbasz) {
error_setg(errp, "zone capacity %"PRIu64"B too small, "
"must be at least %"PRIu32"B", zone_cap, lbasz);
return -1;
}
/*
* Save the main zone geometry values to avoid
* calculating them later again.
*/
ns->zone_size = zone_size / lbasz;
ns->zone_capacity = zone_cap / lbasz;
ns->num_zones = nvme_ns_nlbas(ns) / ns->zone_size;
/* Do a few more sanity checks of ZNS properties */
if (!ns->num_zones) {
error_setg(errp,
"insufficient drive capacity, must be at least the size "
"of one zone (%"PRIu64"B)", zone_size);
return -1;
}
if (ns->params.max_open_zones > ns->num_zones) {
error_setg(errp,
"max_open_zones value %u exceeds the number of zones %u",
ns->params.max_open_zones, ns->num_zones);
return -1;
}
if (ns->params.max_active_zones > ns->num_zones) {
error_setg(errp,
"max_active_zones value %u exceeds the number of zones %u",
ns->params.max_active_zones, ns->num_zones);
return -1;
}
if (ns->params.max_active_zones) {
if (ns->params.max_open_zones > ns->params.max_active_zones) {
error_setg(errp, "max_open_zones (%u) exceeds max_active_zones (%u)",
ns->params.max_open_zones, ns->params.max_active_zones);
return -1;
}
if (!ns->params.max_open_zones) {
ns->params.max_open_zones = ns->params.max_active_zones;
}
}
if (ns->params.zd_extension_size) {
if (ns->params.zd_extension_size & 0x3f) {
error_setg(errp,
"zone descriptor extension size must be a multiple of 64B");
return -1;
}
if ((ns->params.zd_extension_size >> 6) > 0xff) {
error_setg(errp, "zone descriptor extension size is too large");
return -1;
}
}
return 0;
}
static void nvme_ns_zoned_init_state(NvmeNamespace *ns)
{
uint64_t start = 0, zone_size = ns->zone_size;
uint64_t capacity = ns->num_zones * zone_size;
NvmeZone *zone;
int i;
ns->zone_array = g_new0(NvmeZone, ns->num_zones);
if (ns->params.zd_extension_size) {
ns->zd_extensions = g_malloc0(ns->params.zd_extension_size *
ns->num_zones);
}
QTAILQ_INIT(&ns->exp_open_zones);
QTAILQ_INIT(&ns->imp_open_zones);
QTAILQ_INIT(&ns->closed_zones);
QTAILQ_INIT(&ns->full_zones);
zone = ns->zone_array;
for (i = 0; i < ns->num_zones; i++, zone++) {
if (start + zone_size > capacity) {
zone_size = capacity - start;
}
zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE;
nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
zone->d.za = 0;
zone->d.zcap = ns->zone_capacity;
zone->d.zslba = start;
zone->d.wp = start;
zone->w_ptr = start;
start += zone_size;
}
ns->zone_size_log2 = 0;
if (is_power_of_2(ns->zone_size)) {
ns->zone_size_log2 = 63 - clz64(ns->zone_size);
}
}
static void nvme_ns_init_zoned(NvmeNamespace *ns)
{
NvmeIdNsZoned *id_ns_z;
int i;
nvme_ns_zoned_init_state(ns);
id_ns_z = g_malloc0(sizeof(NvmeIdNsZoned));
/* MAR/MOR are zeroes-based, 0xffffffff means no limit */
id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1);
id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1);
id_ns_z->zoc = 0;
id_ns_z->ozcs = ns->params.cross_zone_read ? 0x01 : 0x00;
for (i = 0; i <= ns->id_ns.nlbaf; i++) {
id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size);
id_ns_z->lbafe[i].zdes =
ns->params.zd_extension_size >> 6; /* Units of 64B */
}
ns->csi = NVME_CSI_ZONED;
ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size);
ns->id_ns.ncap = ns->id_ns.nsze;
ns->id_ns.nuse = ns->id_ns.ncap;
/*
* The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated"
* status of logical blocks. Since the spec defines that logical blocks
* SHALL be deallocated when then zone is in the Empty or Offline states,
* we can only support DULBE if the zone size is a multiple of the
* calculated NPDG.
*/
if (ns->zone_size % (ns->id_ns.npdg + 1)) {
warn_report("the zone size (%"PRIu64" blocks) is not a multiple of "
"the calculated deallocation granularity (%d blocks); "
"DULBE support disabled",
ns->zone_size, ns->id_ns.npdg + 1);
ns->id_ns.nsfeat &= ~0x4;
}
ns->id_ns_zoned = id_ns_z;
}
static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone)
{
uint8_t state;
zone->w_ptr = zone->d.wp;
state = nvme_get_zone_state(zone);
if (zone->d.wp != zone->d.zslba ||
(zone->d.za & NVME_ZA_ZD_EXT_VALID)) {
if (state != NVME_ZONE_STATE_CLOSED) {
trace_pci_nvme_clear_ns_close(state, zone->d.zslba);
nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED);
}
nvme_aor_inc_active(ns);
QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry);
} else {
trace_pci_nvme_clear_ns_reset(state, zone->d.zslba);
nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
}
}
/*
* Close all the zones that are currently open.
*/
static void nvme_zoned_ns_shutdown(NvmeNamespace *ns)
{
NvmeZone *zone, *next;
QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
nvme_aor_dec_active(ns);
nvme_clear_zone(ns, zone);
}
QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
nvme_aor_dec_open(ns);
nvme_aor_dec_active(ns);
nvme_clear_zone(ns, zone);
}
QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
nvme_aor_dec_open(ns);
nvme_aor_dec_active(ns);
nvme_clear_zone(ns, zone);
}
assert(ns->nr_open_zones == 0);
}
static int nvme_ns_check_constraints(NvmeCtrl *n, NvmeNamespace *ns,
Error **errp)
{
if (!ns->blkconf.blk) {
error_setg(errp, "block backend not configured");
return -1;
}
if (ns->params.pi && ns->params.ms < 8) {
error_setg(errp, "at least 8 bytes of metadata required to enable "
"protection information");
return -1;
}
if (ns->params.nsid > NVME_MAX_NAMESPACES) {
error_setg(errp, "invalid namespace id (must be between 0 and %d)",
NVME_MAX_NAMESPACES);
return -1;
}
if (!n->subsys) {
if (ns->params.detached) {
error_setg(errp, "detached requires that the nvme device is "
"linked to an nvme-subsys device");
return -1;
}
if (ns->params.shared) {
error_setg(errp, "shared requires that the nvme device is "
"linked to an nvme-subsys device");
return -1;
}
}
return 0;
}
int nvme_ns_setup(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
{
if (nvme_ns_check_constraints(n, ns, errp)) {
return -1;
}
if (nvme_ns_init_blk(ns, errp)) {
return -1;
}
if (nvme_ns_init(ns, errp)) {
return -1;
}
if (ns->params.zoned) {
if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) {
return -1;
}
nvme_ns_init_zoned(ns);
}
return 0;
}
void nvme_ns_drain(NvmeNamespace *ns)
{
blk_drain(ns->blkconf.blk);
}
void nvme_ns_shutdown(NvmeNamespace *ns)
{
blk_flush(ns->blkconf.blk);
if (ns->params.zoned) {
nvme_zoned_ns_shutdown(ns);
}
}
void nvme_ns_cleanup(NvmeNamespace *ns)
{
if (ns->params.zoned) {
g_free(ns->id_ns_zoned);
g_free(ns->zone_array);
g_free(ns->zd_extensions);
}
}
static void nvme_ns_realize(DeviceState *dev, Error **errp)
{
NvmeNamespace *ns = NVME_NS(dev);
BusState *s = qdev_get_parent_bus(dev);
NvmeCtrl *n = NVME(s->parent);
NvmeSubsystem *subsys = n->subsys;
uint32_t nsid = ns->params.nsid;
int i;
if (nvme_ns_setup(n, ns, errp)) {
return;
}
if (!nsid) {
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
if (nvme_ns(n, i) || nvme_subsys_ns(subsys, i)) {
continue;
}
nsid = ns->params.nsid = i;
break;
}
if (!nsid) {
error_setg(errp, "no free namespace id");
return;
}
} else {
if (nvme_ns(n, nsid) || nvme_subsys_ns(subsys, nsid)) {
error_setg(errp, "namespace id '%d' already allocated", nsid);
return;
}
}
if (subsys) {
subsys->namespaces[nsid] = ns;
if (ns->params.detached) {
return;
}
if (ns->params.shared) {
for (i = 0; i < ARRAY_SIZE(subsys->ctrls); i++) {
NvmeCtrl *ctrl = subsys->ctrls[i];
if (ctrl) {
nvme_attach_ns(ctrl, ns);
}
}
return;
}
}
nvme_attach_ns(n, ns);
}
static Property nvme_ns_props[] = {
DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf),
DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false),
DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, false),
DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0),
DEFINE_PROP_UUID("uuid", NvmeNamespace, params.uuid),
DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0),
DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0),
DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0),
DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0),
DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128),
DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128),
DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127),
DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false),
DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs,
NVME_DEFAULT_ZONE_SIZE),
DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs,
0),
DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace,
params.cross_zone_read, false),
DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace,
params.max_active_zones, 0),
DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace,
params.max_open_zones, 0),
DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace,
params.zd_extension_size, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void nvme_ns_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->bus_type = TYPE_NVME_BUS;
dc->realize = nvme_ns_realize;
device_class_set_props(dc, nvme_ns_props);
dc->desc = "Virtual NVMe namespace";
}
static void nvme_ns_instance_init(Object *obj)
{
NvmeNamespace *ns = NVME_NS(obj);
char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid);
device_add_bootindex_property(obj, &ns->bootindex, "bootindex",
bootindex, DEVICE(obj));
g_free(bootindex);
}
static const TypeInfo nvme_ns_info = {
.name = TYPE_NVME_NS,
.parent = TYPE_DEVICE,
.class_init = nvme_ns_class_init,
.instance_size = sizeof(NvmeNamespace),
.instance_init = nvme_ns_instance_init,
};
static void nvme_ns_register_types(void)
{
type_register_static(&nvme_ns_info);
}
type_init(nvme_ns_register_types)