| /* |
| * Helpers for loads and stores |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "tcg/tcg.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "asi.h" |
| |
| //#define DEBUG_MMU |
| //#define DEBUG_MXCC |
| //#define DEBUG_UNALIGNED |
| //#define DEBUG_UNASSIGNED |
| //#define DEBUG_ASI |
| //#define DEBUG_CACHE_CONTROL |
| |
| #ifdef DEBUG_MMU |
| #define DPRINTF_MMU(fmt, ...) \ |
| do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_MMU(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef DEBUG_MXCC |
| #define DPRINTF_MXCC(fmt, ...) \ |
| do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_MXCC(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef DEBUG_ASI |
| #define DPRINTF_ASI(fmt, ...) \ |
| do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) |
| #endif |
| |
| #ifdef DEBUG_CACHE_CONTROL |
| #define DPRINTF_CACHE_CONTROL(fmt, ...) \ |
| do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| #ifndef TARGET_ABI32 |
| #define AM_CHECK(env1) ((env1)->pstate & PS_AM) |
| #else |
| #define AM_CHECK(env1) (1) |
| #endif |
| #endif |
| |
| #define QT0 (env->qt0) |
| #define QT1 (env->qt1) |
| |
| #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) |
| /* Calculates TSB pointer value for fault page size |
| * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers |
| * UA2005 holds the page size configuration in mmu_ctx registers */ |
| static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env, |
| const SparcV9MMU *mmu, const int idx) |
| { |
| uint64_t tsb_register; |
| int page_size; |
| if (cpu_has_hypervisor(env)) { |
| int tsb_index = 0; |
| int ctx = mmu->tag_access & 0x1fffULL; |
| uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0]; |
| tsb_index = idx; |
| tsb_index |= ctx ? 2 : 0; |
| page_size = idx ? ctx_register >> 8 : ctx_register; |
| page_size &= 7; |
| tsb_register = mmu->sun4v_tsb_pointers[tsb_index]; |
| } else { |
| page_size = idx; |
| tsb_register = mmu->tsb; |
| } |
| int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; |
| int tsb_size = tsb_register & 0xf; |
| |
| uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size; |
| |
| /* move va bits to correct position, |
| * the context bits will be masked out later */ |
| uint64_t va = mmu->tag_access >> (3 * page_size + 9); |
| |
| /* calculate tsb_base mask and adjust va if split is in use */ |
| if (tsb_split) { |
| if (idx == 0) { |
| va &= ~(1ULL << (13 + tsb_size)); |
| } else { |
| va |= (1ULL << (13 + tsb_size)); |
| } |
| tsb_base_mask <<= 1; |
| } |
| |
| return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; |
| } |
| |
| /* Calculates tag target register value by reordering bits |
| in tag access register */ |
| static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) |
| { |
| return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); |
| } |
| |
| static void replace_tlb_entry(SparcTLBEntry *tlb, |
| uint64_t tlb_tag, uint64_t tlb_tte, |
| CPUSPARCState *env) |
| { |
| target_ulong mask, size, va, offset; |
| |
| /* flush page range if translation is valid */ |
| if (TTE_IS_VALID(tlb->tte)) { |
| CPUState *cs = env_cpu(env); |
| |
| size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte); |
| mask = 1ULL + ~size; |
| |
| va = tlb->tag & mask; |
| |
| for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { |
| tlb_flush_page(cs, va + offset); |
| } |
| } |
| |
| tlb->tag = tlb_tag; |
| tlb->tte = tlb_tte; |
| } |
| |
| static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, |
| const char *strmmu, CPUSPARCState *env1) |
| { |
| unsigned int i; |
| target_ulong mask; |
| uint64_t context; |
| |
| int is_demap_context = (demap_addr >> 6) & 1; |
| |
| /* demap context */ |
| switch ((demap_addr >> 4) & 3) { |
| case 0: /* primary */ |
| context = env1->dmmu.mmu_primary_context; |
| break; |
| case 1: /* secondary */ |
| context = env1->dmmu.mmu_secondary_context; |
| break; |
| case 2: /* nucleus */ |
| context = 0; |
| break; |
| case 3: /* reserved */ |
| default: |
| return; |
| } |
| |
| for (i = 0; i < 64; i++) { |
| if (TTE_IS_VALID(tlb[i].tte)) { |
| |
| if (is_demap_context) { |
| /* will remove non-global entries matching context value */ |
| if (TTE_IS_GLOBAL(tlb[i].tte) || |
| !tlb_compare_context(&tlb[i], context)) { |
| continue; |
| } |
| } else { |
| /* demap page |
| will remove any entry matching VA */ |
| mask = 0xffffffffffffe000ULL; |
| mask <<= 3 * ((tlb[i].tte >> 61) & 3); |
| |
| if (!compare_masked(demap_addr, tlb[i].tag, mask)) { |
| continue; |
| } |
| |
| /* entry should be global or matching context value */ |
| if (!TTE_IS_GLOBAL(tlb[i].tte) && |
| !tlb_compare_context(&tlb[i], context)) { |
| continue; |
| } |
| } |
| |
| replace_tlb_entry(&tlb[i], 0, 0, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); |
| dump_mmu(env1); |
| #endif |
| } |
| } |
| } |
| |
| static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag, |
| uint64_t sun4v_tte) |
| { |
| uint64_t sun4u_tte; |
| if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) { |
| /* is already in the sun4u format */ |
| return sun4v_tte; |
| } |
| sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT); |
| sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */ |
| sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT); |
| sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT); |
| sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT); |
| sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005, |
| TTE_SIDEEFFECT_BIT); |
| sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT); |
| sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT); |
| return sun4u_tte; |
| } |
| |
| static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, |
| uint64_t tlb_tag, uint64_t tlb_tte, |
| const char *strmmu, CPUSPARCState *env1, |
| uint64_t addr) |
| { |
| unsigned int i, replace_used; |
| |
| tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte); |
| if (cpu_has_hypervisor(env1)) { |
| uint64_t new_vaddr = tlb_tag & ~0x1fffULL; |
| uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte); |
| uint32_t new_ctx = tlb_tag & 0x1fffU; |
| for (i = 0; i < 64; i++) { |
| uint32_t ctx = tlb[i].tag & 0x1fffU; |
| /* check if new mapping overlaps an existing one */ |
| if (new_ctx == ctx) { |
| uint64_t vaddr = tlb[i].tag & ~0x1fffULL; |
| uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte); |
| if (new_vaddr == vaddr |
| || (new_vaddr < vaddr + size |
| && vaddr < new_vaddr + new_size)) { |
| DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr, |
| new_vaddr); |
| replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); |
| return; |
| } |
| } |
| |
| } |
| } |
| /* Try replacing invalid entry */ |
| for (i = 0; i < 64; i++) { |
| if (!TTE_IS_VALID(tlb[i].tte)) { |
| replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); |
| dump_mmu(env1); |
| #endif |
| return; |
| } |
| } |
| |
| /* All entries are valid, try replacing unlocked entry */ |
| |
| for (replace_used = 0; replace_used < 2; ++replace_used) { |
| |
| /* Used entries are not replaced on first pass */ |
| |
| for (i = 0; i < 64; i++) { |
| if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { |
| |
| replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", |
| strmmu, (replace_used ? "used" : "unused"), i); |
| dump_mmu(env1); |
| #endif |
| return; |
| } |
| } |
| |
| /* Now reset used bit and search for unused entries again */ |
| |
| for (i = 0; i < 64; i++) { |
| TTE_SET_UNUSED(tlb[i].tte); |
| } |
| } |
| |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replacement: no free entries available, " |
| "replacing the last one\n", strmmu); |
| #endif |
| /* corner case: the last entry is replaced anyway */ |
| replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1); |
| } |
| |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| /* returns true if access using this ASI is to have address translated by MMU |
| otherwise access is to raw physical address */ |
| /* TODO: check sparc32 bits */ |
| static inline int is_translating_asi(int asi) |
| { |
| /* Ultrasparc IIi translating asi |
| - note this list is defined by cpu implementation |
| */ |
| switch (asi) { |
| case 0x04 ... 0x11: |
| case 0x16 ... 0x19: |
| case 0x1E ... 0x1F: |
| case 0x24 ... 0x2C: |
| case 0x70 ... 0x73: |
| case 0x78 ... 0x79: |
| case 0x80 ... 0xFF: |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr) |
| { |
| if (AM_CHECK(env1)) { |
| addr &= 0xffffffffULL; |
| } |
| return addr; |
| } |
| |
| static inline target_ulong asi_address_mask(CPUSPARCState *env, |
| int asi, target_ulong addr) |
| { |
| if (is_translating_asi(asi)) { |
| addr = address_mask(env, addr); |
| } |
| return addr; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra) |
| { |
| /* ASIs >= 0x80 are user mode. |
| * ASIs >= 0x30 are hyper mode (or super if hyper is not available). |
| * ASIs <= 0x2f are super mode. |
| */ |
| if (asi < 0x80 |
| && !cpu_hypervisor_mode(env) |
| && (!cpu_supervisor_mode(env) |
| || (asi >= 0x30 && cpu_has_hypervisor(env)))) { |
| cpu_raise_exception_ra(env, TT_PRIV_ACT, ra); |
| } |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| #endif |
| |
| static void do_check_align(CPUSPARCState *env, target_ulong addr, |
| uint32_t align, uintptr_t ra) |
| { |
| if (addr & align) { |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| cpu_raise_exception_ra(env, TT_UNALIGNED, ra); |
| } |
| } |
| |
| void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align) |
| { |
| do_check_align(env, addr, align, GETPC()); |
| } |
| |
| #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ |
| defined(DEBUG_MXCC) |
| static void dump_mxcc(CPUSPARCState *env) |
| { |
| printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n", |
| env->mxccdata[0], env->mxccdata[1], |
| env->mxccdata[2], env->mxccdata[3]); |
| printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n" |
| " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n", |
| env->mxccregs[0], env->mxccregs[1], |
| env->mxccregs[2], env->mxccregs[3], |
| env->mxccregs[4], env->mxccregs[5], |
| env->mxccregs[6], env->mxccregs[7]); |
| } |
| #endif |
| |
| #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ |
| && defined(DEBUG_ASI) |
| static void dump_asi(const char *txt, target_ulong addr, int asi, int size, |
| uint64_t r1) |
| { |
| switch (size) { |
| case 1: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xff); |
| break; |
| case 2: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffff); |
| break; |
| case 4: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffffffff); |
| break; |
| case 8: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, |
| addr, asi, r1); |
| break; |
| } |
| } |
| #endif |
| |
| #ifndef CONFIG_USER_ONLY |
| #ifndef TARGET_SPARC64 |
| static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr, |
| bool is_write, bool is_exec, int is_asi, |
| unsigned size, uintptr_t retaddr) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| int fault_type; |
| |
| #ifdef DEBUG_UNASSIGNED |
| if (is_asi) { |
| printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx |
| " asi 0x%02x from " TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", size, |
| size == 1 ? "" : "s", addr, is_asi, env->pc); |
| } else { |
| printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx |
| " from " TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", size, |
| size == 1 ? "" : "s", addr, env->pc); |
| } |
| #endif |
| /* Don't overwrite translation and access faults */ |
| fault_type = (env->mmuregs[3] & 0x1c) >> 2; |
| if ((fault_type > 4) || (fault_type == 0)) { |
| env->mmuregs[3] = 0; /* Fault status register */ |
| if (is_asi) { |
| env->mmuregs[3] |= 1 << 16; |
| } |
| if (env->psrs) { |
| env->mmuregs[3] |= 1 << 5; |
| } |
| if (is_exec) { |
| env->mmuregs[3] |= 1 << 6; |
| } |
| if (is_write) { |
| env->mmuregs[3] |= 1 << 7; |
| } |
| env->mmuregs[3] |= (5 << 2) | 2; |
| /* SuperSPARC will never place instruction fault addresses in the FAR */ |
| if (!is_exec) { |
| env->mmuregs[4] = addr; /* Fault address register */ |
| } |
| } |
| /* overflow (same type fault was not read before another fault) */ |
| if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { |
| env->mmuregs[3] |= 1; |
| } |
| |
| if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { |
| int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS; |
| cpu_raise_exception_ra(env, tt, retaddr); |
| } |
| |
| /* |
| * flush neverland mappings created during no-fault mode, |
| * so the sequential MMU faults report proper fault types |
| */ |
| if (env->mmuregs[0] & MMU_NF) { |
| tlb_flush(cs); |
| } |
| } |
| #else |
| static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr, |
| bool is_write, bool is_exec, int is_asi, |
| unsigned size, uintptr_t retaddr) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| |
| if (is_exec) { /* XXX has_hypervisor */ |
| if (env->lsu & (IMMU_E)) { |
| cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr); |
| } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { |
| cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr); |
| } |
| } else { |
| if (env->lsu & (DMMU_E)) { |
| cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr); |
| } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) { |
| cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr); |
| } |
| } |
| } |
| #endif |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| #ifndef CONFIG_USER_ONLY |
| |
| |
| /* Leon3 cache control */ |
| |
| static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr, |
| uint64_t val, int size) |
| { |
| DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", |
| addr, val, size); |
| |
| if (size != 4) { |
| DPRINTF_CACHE_CONTROL("32bits only\n"); |
| return; |
| } |
| |
| switch (addr) { |
| case 0x00: /* Cache control */ |
| |
| /* These values must always be read as zeros */ |
| val &= ~CACHE_CTRL_FD; |
| val &= ~CACHE_CTRL_FI; |
| val &= ~CACHE_CTRL_IB; |
| val &= ~CACHE_CTRL_IP; |
| val &= ~CACHE_CTRL_DP; |
| |
| env->cache_control = val; |
| break; |
| case 0x04: /* Instruction cache configuration */ |
| case 0x08: /* Data cache configuration */ |
| /* Read Only */ |
| break; |
| default: |
| DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); |
| break; |
| }; |
| } |
| |
| static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr, |
| int size) |
| { |
| uint64_t ret = 0; |
| |
| if (size != 4) { |
| DPRINTF_CACHE_CONTROL("32bits only\n"); |
| return 0; |
| } |
| |
| switch (addr) { |
| case 0x00: /* Cache control */ |
| ret = env->cache_control; |
| break; |
| |
| /* Configuration registers are read and only always keep those |
| predefined values */ |
| |
| case 0x04: /* Instruction cache configuration */ |
| ret = 0x10220000; |
| break; |
| case 0x08: /* Data cache configuration */ |
| ret = 0x18220000; |
| break; |
| default: |
| DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); |
| break; |
| }; |
| DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", |
| addr, ret, size); |
| return ret; |
| } |
| |
| uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, |
| int asi, uint32_t memop) |
| { |
| int size = 1 << (memop & MO_SIZE); |
| int sign = memop & MO_SIGN; |
| CPUState *cs = env_cpu(env); |
| uint64_t ret = 0; |
| #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) |
| uint32_t last_addr = addr; |
| #endif |
| |
| do_check_align(env, addr, size - 1, GETPC()); |
| switch (asi) { |
| case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ |
| /* case ASI_LEON_CACHEREGS: Leon3 cache control */ |
| switch (addr) { |
| case 0x00: /* Leon3 Cache Control */ |
| case 0x08: /* Leon3 Instruction Cache config */ |
| case 0x0C: /* Leon3 Date Cache config */ |
| if (env->def.features & CPU_FEATURE_CACHE_CTRL) { |
| ret = leon3_cache_control_ld(env, addr, size); |
| } |
| break; |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) { |
| ret = env->mxccregs[3]; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) { |
| ret = env->mxccregs[3]; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00c00: /* Module reset register */ |
| if (size == 8) { |
| ret = env->mxccregs[5]; |
| /* should we do something here? */ |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) { |
| ret = env->mxccregs[7]; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented address, size: %d\n", addr, |
| size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " |
| "addr = %08x -> ret = %" PRIx64 "," |
| "addr = %08x\n", asi, size, sign, last_addr, ret, addr); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */ |
| case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| if (mmulev > 4) { |
| ret = 0; |
| } else { |
| ret = mmu_probe(env, addr, mmulev); |
| } |
| DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", |
| addr, mmulev, ret); |
| } |
| break; |
| case ASI_M_MMUREGS: /* SuperSparc MMU regs */ |
| case ASI_LEON_MMUREGS: /* LEON3 MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| |
| ret = env->mmuregs[reg]; |
| if (reg == 3) { /* Fault status cleared on read */ |
| env->mmuregs[3] = 0; |
| } else if (reg == 0x13) { /* Fault status read */ |
| ret = env->mmuregs[3]; |
| } else if (reg == 0x14) { /* Fault address read */ |
| ret = env->mmuregs[4]; |
| } |
| DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); |
| } |
| break; |
| case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ |
| case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ |
| case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ |
| break; |
| case ASI_KERNELTXT: /* Supervisor code access */ |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_code(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_code(env, addr); |
| break; |
| default: |
| case 4: |
| ret = cpu_ldl_code(env, addr); |
| break; |
| case 8: |
| ret = cpu_ldq_code(env, addr); |
| break; |
| } |
| break; |
| case ASI_M_TXTC_TAG: /* SparcStation 5 I-cache tag */ |
| case ASI_M_TXTC_DATA: /* SparcStation 5 I-cache data */ |
| case ASI_M_DATAC_TAG: /* SparcStation 5 D-cache tag */ |
| case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */ |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| { |
| MemTxResult result; |
| hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32); |
| |
| switch (size) { |
| case 1: |
| ret = address_space_ldub(cs->as, access_addr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| case 2: |
| ret = address_space_lduw(cs->as, access_addr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| default: |
| case 4: |
| ret = address_space_ldl(cs->as, access_addr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| case 8: |
| ret = address_space_ldq(cs->as, access_addr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| } |
| |
| if (result != MEMTX_OK) { |
| sparc_raise_mmu_fault(cs, access_addr, false, false, false, |
| size, GETPC()); |
| } |
| break; |
| } |
| case 0x30: /* Turbosparc secondary cache diagnostic */ |
| case 0x31: /* Turbosparc RAM snoop */ |
| case 0x32: /* Turbosparc page table descriptor diagnostic */ |
| case 0x39: /* data cache diagnostic register */ |
| ret = 0; |
| break; |
| case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ |
| { |
| int reg = (addr >> 8) & 3; |
| |
| switch (reg) { |
| case 0: /* Breakpoint Value (Addr) */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 1: /* Breakpoint Mask */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 2: /* Breakpoint Control */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 3: /* Breakpoint Status */ |
| ret = env->mmubpregs[reg]; |
| env->mmubpregs[reg] = 0ULL; |
| break; |
| } |
| DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, |
| ret); |
| } |
| break; |
| case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ |
| ret = env->mmubpctrv; |
| break; |
| case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ |
| ret = env->mmubpctrc; |
| break; |
| case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ |
| ret = env->mmubpctrs; |
| break; |
| case 0x4c: /* SuperSPARC MMU Breakpoint Action */ |
| ret = env->mmubpaction; |
| break; |
| case ASI_USERTXT: /* User code access, XXX */ |
| default: |
| sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC()); |
| ret = 0; |
| break; |
| |
| case ASI_USERDATA: /* User data access */ |
| case ASI_KERNELDATA: /* Supervisor data access */ |
| case ASI_P: /* Implicit primary context data access (v9 only?) */ |
| case ASI_M_BYPASS: /* MMU passthrough */ |
| case ASI_LEON_BYPASS: /* LEON MMU passthrough */ |
| /* These are always handled inline. */ |
| g_assert_not_reached(); |
| } |
| if (sign) { |
| switch (size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, |
| int asi, uint32_t memop) |
| { |
| int size = 1 << (memop & MO_SIZE); |
| CPUState *cs = env_cpu(env); |
| |
| do_check_align(env, addr, size - 1, GETPC()); |
| switch (asi) { |
| case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */ |
| /* case ASI_LEON_CACHEREGS: Leon3 cache control */ |
| switch (addr) { |
| case 0x00: /* Leon3 Cache Control */ |
| case 0x08: /* Leon3 Instruction Cache config */ |
| case 0x0C: /* Leon3 Date Cache config */ |
| if (env->def.features & CPU_FEATURE_CACHE_CTRL) { |
| leon3_cache_control_st(env, addr, val, size); |
| } |
| break; |
| |
| case 0x01c00000: /* MXCC stream data register 0 */ |
| if (size == 8) { |
| env->mxccdata[0] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00008: /* MXCC stream data register 1 */ |
| if (size == 8) { |
| env->mxccdata[1] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00010: /* MXCC stream data register 2 */ |
| if (size == 8) { |
| env->mxccdata[2] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00018: /* MXCC stream data register 3 */ |
| if (size == 8) { |
| env->mxccdata[3] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00100: /* MXCC stream source */ |
| { |
| int i; |
| |
| if (size == 8) { |
| env->mxccregs[0] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| MemTxResult result; |
| hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i; |
| |
| env->mxccdata[i] = address_space_ldq(cs->as, |
| access_addr, |
| MEMTXATTRS_UNSPECIFIED, |
| &result); |
| if (result != MEMTX_OK) { |
| /* TODO: investigate whether this is the right behaviour */ |
| sparc_raise_mmu_fault(cs, access_addr, false, false, |
| false, size, GETPC()); |
| } |
| } |
| break; |
| } |
| case 0x01c00200: /* MXCC stream destination */ |
| { |
| int i; |
| |
| if (size == 8) { |
| env->mxccregs[1] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| MemTxResult result; |
| hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i; |
| |
| address_space_stq(cs->as, access_addr, env->mxccdata[i], |
| MEMTXATTRS_UNSPECIFIED, &result); |
| |
| if (result != MEMTX_OK) { |
| /* TODO: investigate whether this is the right behaviour */ |
| sparc_raise_mmu_fault(cs, access_addr, true, false, |
| false, size, GETPC()); |
| } |
| } |
| break; |
| } |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) { |
| env->mxccregs[3] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) { |
| env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) |
| | val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00e00: /* MXCC error register */ |
| /* writing a 1 bit clears the error */ |
| if (size == 8) { |
| env->mxccregs[6] &= ~val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) { |
| env->mxccregs[7] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented address, size: %d\n", addr, |
| size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", |
| asi, size, addr, val); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */ |
| case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| DPRINTF_MMU("mmu flush level %d\n", mmulev); |
| switch (mmulev) { |
| case 0: /* flush page */ |
| tlb_flush_page(cs, addr & 0xfffff000); |
| break; |
| case 1: /* flush segment (256k) */ |
| case 2: /* flush region (16M) */ |
| case 3: /* flush context (4G) */ |
| case 4: /* flush entire */ |
| tlb_flush(cs); |
| break; |
| default: |
| break; |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| } |
| break; |
| case ASI_M_MMUREGS: /* write MMU regs */ |
| case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| uint32_t oldreg; |
| |
| oldreg = env->mmuregs[reg]; |
| switch (reg) { |
| case 0: /* Control Register */ |
| env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | |
| (val & 0x00ffffff); |
| /* Mappings generated during no-fault mode |
| are invalid in normal mode. */ |
| if ((oldreg ^ env->mmuregs[reg]) |
| & (MMU_NF | env->def.mmu_bm)) { |
| tlb_flush(cs); |
| } |
| break; |
| case 1: /* Context Table Pointer Register */ |
| env->mmuregs[reg] = val & env->def.mmu_ctpr_mask; |
| break; |
| case 2: /* Context Register */ |
| env->mmuregs[reg] = val & env->def.mmu_cxr_mask; |
| if (oldreg != env->mmuregs[reg]) { |
| /* we flush when the MMU context changes because |
| QEMU has no MMU context support */ |
| tlb_flush(cs); |
| } |
| break; |
| case 3: /* Synchronous Fault Status Register with Clear */ |
| case 4: /* Synchronous Fault Address Register */ |
| break; |
| case 0x10: /* TLB Replacement Control Register */ |
| env->mmuregs[reg] = val & env->def.mmu_trcr_mask; |
| break; |
| case 0x13: /* Synchronous Fault Status Register with Read |
| and Clear */ |
| env->mmuregs[3] = val & env->def.mmu_sfsr_mask; |
| break; |
| case 0x14: /* Synchronous Fault Address Register */ |
| env->mmuregs[4] = val; |
| break; |
| default: |
| env->mmuregs[reg] = val; |
| break; |
| } |
| if (oldreg != env->mmuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", |
| reg, oldreg, env->mmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| } |
| break; |
| case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */ |
| case ASI_M_DIAGS: /* Turbosparc DTLB Diagnostic */ |
| case ASI_M_IODIAG: /* Turbosparc IOTLB Diagnostic */ |
| break; |
| case ASI_M_TXTC_TAG: /* I-cache tag */ |
| case ASI_M_TXTC_DATA: /* I-cache data */ |
| case ASI_M_DATAC_TAG: /* D-cache tag */ |
| case ASI_M_DATAC_DATA: /* D-cache data */ |
| case ASI_M_FLUSH_PAGE: /* I/D-cache flush page */ |
| case ASI_M_FLUSH_SEG: /* I/D-cache flush segment */ |
| case ASI_M_FLUSH_REGION: /* I/D-cache flush region */ |
| case ASI_M_FLUSH_CTX: /* I/D-cache flush context */ |
| case ASI_M_FLUSH_USER: /* I/D-cache flush user */ |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| { |
| MemTxResult result; |
| hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32); |
| |
| switch (size) { |
| case 1: |
| address_space_stb(cs->as, access_addr, val, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| case 2: |
| address_space_stw(cs->as, access_addr, val, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| case 4: |
| default: |
| address_space_stl(cs->as, access_addr, val, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| case 8: |
| address_space_stq(cs->as, access_addr, val, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| break; |
| } |
| if (result != MEMTX_OK) { |
| sparc_raise_mmu_fault(cs, access_addr, true, false, false, |
| size, GETPC()); |
| } |
| } |
| break; |
| case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */ |
| case 0x31: /* store buffer data, Ross RT620 I-cache flush or |
| Turbosparc snoop RAM */ |
| case 0x32: /* store buffer control or Turbosparc page table |
| descriptor diagnostic */ |
| case 0x36: /* I-cache flash clear */ |
| case 0x37: /* D-cache flash clear */ |
| break; |
| case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ |
| { |
| int reg = (addr >> 8) & 3; |
| |
| switch (reg) { |
| case 0: /* Breakpoint Value (Addr) */ |
| env->mmubpregs[reg] = (val & 0xfffffffffULL); |
| break; |
| case 1: /* Breakpoint Mask */ |
| env->mmubpregs[reg] = (val & 0xfffffffffULL); |
| break; |
| case 2: /* Breakpoint Control */ |
| env->mmubpregs[reg] = (val & 0x7fULL); |
| break; |
| case 3: /* Breakpoint Status */ |
| env->mmubpregs[reg] = (val & 0xfULL); |
| break; |
| } |
| DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, |
| env->mmuregs[reg]); |
| } |
| break; |
| case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ |
| env->mmubpctrv = val & 0xffffffff; |
| break; |
| case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ |
| env->mmubpctrc = val & 0x3; |
| break; |
| case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ |
| env->mmubpctrs = val & 0x3; |
| break; |
| case 0x4c: /* SuperSPARC MMU Breakpoint Action */ |
| env->mmubpaction = val & 0x1fff; |
| break; |
| case ASI_USERTXT: /* User code access, XXX */ |
| case ASI_KERNELTXT: /* Supervisor code access, XXX */ |
| default: |
| sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC()); |
| break; |
| |
| case ASI_USERDATA: /* User data access */ |
| case ASI_KERNELDATA: /* Supervisor data access */ |
| case ASI_P: |
| case ASI_M_BYPASS: /* MMU passthrough */ |
| case ASI_LEON_BYPASS: /* LEON MMU passthrough */ |
| case ASI_M_BCOPY: /* Block copy, sta access */ |
| case ASI_M_BFILL: /* Block fill, stda access */ |
| /* These are always handled inline. */ |
| g_assert_not_reached(); |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| } |
| |
| #endif /* CONFIG_USER_ONLY */ |
| #else /* TARGET_SPARC64 */ |
| |
| #ifdef CONFIG_USER_ONLY |
| uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, |
| int asi, uint32_t memop) |
| { |
| int size = 1 << (memop & MO_SIZE); |
| int sign = memop & MO_SIGN; |
| uint64_t ret = 0; |
| |
| if (asi < 0x80) { |
| cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); |
| } |
| do_check_align(env, addr, size - 1, GETPC()); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case ASI_PNF: /* Primary no-fault */ |
| case ASI_PNFL: /* Primary no-fault LE */ |
| case ASI_SNF: /* Secondary no-fault */ |
| case ASI_SNFL: /* Secondary no-fault LE */ |
| if (page_check_range(addr, size, PAGE_READ) == -1) { |
| ret = 0; |
| break; |
| } |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_data(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_data(env, addr); |
| break; |
| case 4: |
| ret = cpu_ldl_data(env, addr); |
| break; |
| case 8: |
| ret = cpu_ldq_data(env, addr); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| break; |
| |
| case ASI_P: /* Primary */ |
| case ASI_PL: /* Primary LE */ |
| case ASI_S: /* Secondary */ |
| case ASI_SL: /* Secondary LE */ |
| /* These are always handled inline. */ |
| g_assert_not_reached(); |
| |
| default: |
| cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case ASI_PNFL: /* Primary no-fault LE */ |
| case ASI_SNFL: /* Secondary no-fault LE */ |
| switch (size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| } |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch (size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read", addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, |
| int asi, uint32_t memop) |
| { |
| int size = 1 << (memop & MO_SIZE); |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| if (asi < 0x80) { |
| cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC()); |
| } |
| do_check_align(env, addr, size - 1, GETPC()); |
| |
| switch (asi) { |
| case ASI_P: /* Primary */ |
| case ASI_PL: /* Primary LE */ |
| case ASI_S: /* Secondary */ |
| case ASI_SL: /* Secondary LE */ |
| /* These are always handled inline. */ |
| g_assert_not_reached(); |
| |
| case ASI_PNF: /* Primary no-fault, RO */ |
| case ASI_SNF: /* Secondary no-fault, RO */ |
| case ASI_PNFL: /* Primary no-fault LE, RO */ |
| case ASI_SNFL: /* Secondary no-fault LE, RO */ |
| default: |
| cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC()); |
| } |
| } |
| |
| #else /* CONFIG_USER_ONLY */ |
| |
| uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, |
| int asi, uint32_t memop) |
| { |
| int size = 1 << (memop & MO_SIZE); |
| int sign = memop & MO_SIGN; |
| CPUState *cs = env_cpu(env); |
| uint64_t ret = 0; |
| #if defined(DEBUG_ASI) |
| target_ulong last_addr = addr; |
| #endif |
| |
| asi &= 0xff; |
| |
| do_check_asi(env, asi, GETPC()); |
| do_check_align(env, addr, size - 1, GETPC()); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case ASI_PNF: |
| case ASI_PNFL: |
| case ASI_SNF: |
| case ASI_SNFL: |
| { |
| MemOpIdx oi; |
| int idx = (env->pstate & PS_PRIV |
| ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX) |
| : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX)); |
| |
| if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) { |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| /* exception_index is set in get_physical_address_data. */ |
| cpu_raise_exception_ra(env, cs->exception_index, GETPC()); |
| } |
| oi = make_memop_idx(memop, idx); |
| switch (size) { |
| case 1: |
| ret = cpu_ldb_mmu(env, addr, oi, GETPC()); |
| break; |
| case 2: |
| if (asi & 8) { |
| ret = cpu_ldw_le_mmu(env, addr, oi, GETPC()); |
| } else { |
| ret = cpu_ldw_be_mmu(env, addr, oi, GETPC()); |
| } |
| break; |
| case 4: |
| if (asi & 8) { |
| ret = cpu_ldl_le_mmu(env, addr, oi, GETPC()); |
| } else { |
| ret = cpu_ldl_be_mmu(env, addr, oi, GETPC()); |
| } |
| break; |
| case 8: |
| if (asi & 8) { |
| ret = cpu_ldq_le_mmu(env, addr, oi, GETPC()); |
| } else { |
| ret = cpu_ldq_be_mmu(env, addr, oi, GETPC()); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| break; |
| |
| case ASI_AIUP: /* As if user primary */ |
| case ASI_AIUS: /* As if user secondary */ |
| case ASI_AIUPL: /* As if user primary LE */ |
| case ASI_AIUSL: /* As if user secondary LE */ |
| case ASI_P: /* Primary */ |
| case ASI_S: /* Secondary */ |
| case ASI_PL: /* Primary LE */ |
| case ASI_SL: /* Secondary LE */ |
| case ASI_REAL: /* Bypass */ |
| case ASI_REAL_IO: /* Bypass, non-cacheable */ |
| case ASI_REAL_L: /* Bypass LE */ |
| case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ |
| case ASI_N: /* Nucleus */ |
| case ASI_NL: /* Nucleus Little Endian (LE) */ |
| case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ |
| case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ |
| case ASI_TWINX_AIUP: /* As if user primary, twinx */ |
| case ASI_TWINX_AIUS: /* As if user secondary, twinx */ |
| case ASI_TWINX_REAL: /* Real address, twinx */ |
| case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ |
| case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ |
| case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ |
| case ASI_TWINX_N: /* Nucleus, twinx */ |
| case ASI_TWINX_NL: /* Nucleus, twinx, LE */ |
| /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ |
| case ASI_TWINX_P: /* Primary, twinx */ |
| case ASI_TWINX_PL: /* Primary, twinx, LE */ |
| case ASI_TWINX_S: /* Secondary, twinx */ |
| case ASI_TWINX_SL: /* Secondary, twinx, LE */ |
| /* These are always handled inline. */ |
| g_assert_not_reached(); |
| |
| case ASI_UPA_CONFIG: /* UPA config */ |
| /* XXX */ |
| break; |
| case ASI_LSU_CONTROL: /* LSU */ |
| ret = env->lsu; |
| break; |
| case ASI_IMMU: /* I-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| switch (reg) { |
| case 0: |
| /* 0x00 I-TSB Tag Target register */ |
| ret = ultrasparc_tag_target(env->immu.tag_access); |
| break; |
| case 3: /* SFSR */ |
| ret = env->immu.sfsr; |
| break; |
| case 5: /* TSB access */ |
| ret = env->immu.tsb; |
| break; |
| case 6: |
| /* 0x30 I-TSB Tag Access register */ |
| ret = env->immu.tag_access; |
| break; |
| default: |
| sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); |
| ret = 0; |
| } |
| break; |
| } |
| case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */ |
| { |
| /* env->immuregs[5] holds I-MMU TSB register value |
| env->immuregs[6] holds I-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env, &env->immu, 0); |
| break; |
| } |
| case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */ |
| { |
| /* env->immuregs[5] holds I-MMU TSB register value |
| env->immuregs[6] holds I-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env, &env->immu, 1); |
| break; |
| } |
| case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->itlb[reg].tte; |
| break; |
| } |
| case ASI_ITLB_TAG_READ: /* I-MMU tag read */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->itlb[reg].tag; |
| break; |
| } |
| case ASI_DMMU: /* D-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| switch (reg) { |
| case 0: |
| /* 0x00 D-TSB Tag Target register */ |
| ret = ultrasparc_tag_target(env->dmmu.tag_access); |
| break; |
| case 1: /* 0x08 Primary Context */ |
| ret = env->dmmu.mmu_primary_context; |
| break; |
| case 2: /* 0x10 Secondary Context */ |
| ret = env->dmmu.mmu_secondary_context; |
| break; |
| case 3: /* SFSR */ |
| ret = env->dmmu.sfsr; |
| break; |
| case 4: /* 0x20 SFAR */ |
| ret = env->dmmu.sfar; |
| break; |
| case 5: /* 0x28 TSB access */ |
| ret = env->dmmu.tsb; |
| break; |
| case 6: /* 0x30 D-TSB Tag Access register */ |
| ret = env->dmmu.tag_access; |
| break; |
| case 7: |
| ret = env->dmmu.virtual_watchpoint; |
| break; |
| case 8: |
| ret = env->dmmu.physical_watchpoint; |
| break; |
| default: |
| sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); |
| ret = 0; |
| } |
| break; |
| } |
| case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */ |
| { |
| /* env->dmmuregs[5] holds D-MMU TSB register value |
| env->dmmuregs[6] holds D-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0); |
| break; |
| } |
| case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */ |
| { |
| /* env->dmmuregs[5] holds D-MMU TSB register value |
| env->dmmuregs[6] holds D-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1); |
| break; |
| } |
| case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->dtlb[reg].tte; |
| break; |
| } |
| case ASI_DTLB_TAG_READ: /* D-MMU tag read */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->dtlb[reg].tag; |
| break; |
| } |
| case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ |
| break; |
| case ASI_INTR_RECEIVE: /* Interrupt data receive */ |
| ret = env->ivec_status; |
| break; |
| case ASI_INTR_R: /* Incoming interrupt vector, RO */ |
| { |
| int reg = (addr >> 4) & 0x3; |
| if (reg < 3) { |
| ret = env->ivec_data[reg]; |
| } |
| break; |
| } |
| case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ |
| if (unlikely((addr >= 0x20) && (addr < 0x30))) { |
| /* Hyperprivileged access only */ |
| sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); |
| } |
| /* fall through */ |
| case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ |
| { |
| unsigned int i = (addr >> 3) & 0x7; |
| ret = env->scratch[i]; |
| break; |
| } |
| case ASI_MMU: /* UA2005 Context ID registers */ |
| switch ((addr >> 3) & 0x3) { |
| case 1: |
| ret = env->dmmu.mmu_primary_context; |
| break; |
| case 2: |
| ret = env->dmmu.mmu_secondary_context; |
| break; |
| default: |
| sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); |
| } |
| break; |
| case ASI_DCACHE_DATA: /* D-cache data */ |
| case ASI_DCACHE_TAG: /* D-cache tag access */ |
| case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ |
| case ASI_AFSR: /* E-cache asynchronous fault status */ |
| case ASI_AFAR: /* E-cache asynchronous fault address */ |
| case ASI_EC_TAG_DATA: /* E-cache tag data */ |
| case ASI_IC_INSTR: /* I-cache instruction access */ |
| case ASI_IC_TAG: /* I-cache tag access */ |
| case ASI_IC_PRE_DECODE: /* I-cache predecode */ |
| case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ |
| case ASI_EC_W: /* E-cache tag */ |
| case ASI_EC_R: /* E-cache tag */ |
| break; |
| case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */ |
| case ASI_ITLB_DATA_IN: /* I-MMU data in, WO */ |
| case ASI_IMMU_DEMAP: /* I-MMU demap, WO */ |
| case ASI_DTLB_DATA_IN: /* D-MMU data in, WO */ |
| case ASI_DMMU_DEMAP: /* D-MMU demap, WO */ |
| case ASI_INTR_W: /* Interrupt vector, WO */ |
| default: |
| sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC()); |
| ret = 0; |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch (size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, |
| int asi, uint32_t memop) |
| { |
| int size = 1 << (memop & MO_SIZE); |
| CPUState *cs = env_cpu(env); |
| |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| |
| asi &= 0xff; |
| |
| do_check_asi(env, asi, GETPC()); |
| do_check_align(env, addr, size - 1, GETPC()); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case ASI_AIUP: /* As if user primary */ |
| case ASI_AIUS: /* As if user secondary */ |
| case ASI_AIUPL: /* As if user primary LE */ |
| case ASI_AIUSL: /* As if user secondary LE */ |
| case ASI_P: /* Primary */ |
| case ASI_S: /* Secondary */ |
| case ASI_PL: /* Primary LE */ |
| case ASI_SL: /* Secondary LE */ |
| case ASI_REAL: /* Bypass */ |
| case ASI_REAL_IO: /* Bypass, non-cacheable */ |
| case ASI_REAL_L: /* Bypass LE */ |
| case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */ |
| case ASI_N: /* Nucleus */ |
| case ASI_NL: /* Nucleus Little Endian (LE) */ |
| case ASI_NUCLEUS_QUAD_LDD: /* Nucleus quad LDD 128 bit atomic */ |
| case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */ |
| case ASI_TWINX_AIUP: /* As if user primary, twinx */ |
| case ASI_TWINX_AIUS: /* As if user secondary, twinx */ |
| case ASI_TWINX_REAL: /* Real address, twinx */ |
| case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */ |
| case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */ |
| case ASI_TWINX_REAL_L: /* Real address, twinx, LE */ |
| case ASI_TWINX_N: /* Nucleus, twinx */ |
| case ASI_TWINX_NL: /* Nucleus, twinx, LE */ |
| /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */ |
| case ASI_TWINX_P: /* Primary, twinx */ |
| case ASI_TWINX_PL: /* Primary, twinx, LE */ |
| case ASI_TWINX_S: /* Secondary, twinx */ |
| case ASI_TWINX_SL: /* Secondary, twinx, LE */ |
| /* These are always handled inline. */ |
| g_assert_not_reached(); |
| /* these ASIs have different functions on UltraSPARC-IIIi |
| * and UA2005 CPUs. Use the explicit numbers to avoid confusion |
| */ |
| case 0x31: |
| case 0x32: |
| case 0x39: |
| case 0x3a: |
| if (cpu_has_hypervisor(env)) { |
| /* UA2005 |
| * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0 |
| * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1 |
| * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0 |
| * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1 |
| */ |
| int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); |
| env->dmmu.sun4v_tsb_pointers[idx] = val; |
| } else { |
| helper_raise_exception(env, TT_ILL_INSN); |
| } |
| break; |
| case 0x33: |
| case 0x3b: |
| if (cpu_has_hypervisor(env)) { |
| /* UA2005 |
| * ASI_DMMU_CTX_ZERO_CONFIG |
| * ASI_DMMU_CTX_NONZERO_CONFIG |
| */ |
| env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val; |
| } else { |
| helper_raise_exception(env, TT_ILL_INSN); |
| } |
| break; |
| case 0x35: |
| case 0x36: |
| case 0x3d: |
| case 0x3e: |
| if (cpu_has_hypervisor(env)) { |
| /* UA2005 |
| * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0 |
| * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1 |
| * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0 |
| * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1 |
| */ |
| int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2); |
| env->immu.sun4v_tsb_pointers[idx] = val; |
| } else { |
| helper_raise_exception(env, TT_ILL_INSN); |
| } |
| break; |
| case 0x37: |
| case 0x3f: |
| if (cpu_has_hypervisor(env)) { |
| /* UA2005 |
| * ASI_IMMU_CTX_ZERO_CONFIG |
| * ASI_IMMU_CTX_NONZERO_CONFIG |
| */ |
| env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val; |
| } else { |
| helper_raise_exception(env, TT_ILL_INSN); |
| } |
| break; |
| case ASI_UPA_CONFIG: /* UPA config */ |
| /* XXX */ |
| return; |
| case ASI_LSU_CONTROL: /* LSU */ |
| env->lsu = val & (DMMU_E | IMMU_E); |
| return; |
| case ASI_IMMU: /* I-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->immu.mmuregs[reg]; |
| switch (reg) { |
| case 0: /* RO */ |
| return; |
| case 1: /* Not in I-MMU */ |
| case 2: |
| return; |
| case 3: /* SFSR */ |
| if ((val & 1) == 0) { |
| val = 0; /* Clear SFSR */ |
| } |
| env->immu.sfsr = val; |
| break; |
| case 4: /* RO */ |
| return; |
| case 5: /* TSB access */ |
| DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", env->immu.tsb, val); |
| env->immu.tsb = val; |
| break; |
| case 6: /* Tag access */ |
| env->immu.tag_access = val; |
| break; |
| case 7: |
| case 8: |
| return; |
| default: |
| sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); |
| break; |
| } |
| |
| if (oldreg != env->immu.mmuregs[reg]) { |
| DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", reg, oldreg, env->immuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case ASI_ITLB_DATA_IN: /* I-MMU data in */ |
| /* ignore real translation entries */ |
| if (!(addr & TLB_UST1_IS_REAL_BIT)) { |
| replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, |
| val, "immu", env, addr); |
| } |
| return; |
| case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */ |
| { |
| /* TODO: auto demap */ |
| |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| /* ignore real translation entries */ |
| if (!(addr & TLB_UST1_IS_REAL_BIT)) { |
| replace_tlb_entry(&env->itlb[i], env->immu.tag_access, |
| sun4v_tte_to_sun4u(env, addr, val), env); |
| } |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("immu data access replaced entry [%i]\n", i); |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case ASI_IMMU_DEMAP: /* I-MMU demap */ |
| demap_tlb(env->itlb, addr, "immu", env); |
| return; |
| case ASI_DMMU: /* D-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->dmmu.mmuregs[reg]; |
| switch (reg) { |
| case 0: /* RO */ |
| case 4: |
| return; |
| case 3: /* SFSR */ |
| if ((val & 1) == 0) { |
| val = 0; /* Clear SFSR, Fault address */ |
| env->dmmu.sfar = 0; |
| } |
| env->dmmu.sfsr = val; |
| break; |
| case 1: /* Primary context */ |
| env->dmmu.mmu_primary_context = val; |
| /* can be optimized to only flush MMU_USER_IDX |
| and MMU_KERNEL_IDX entries */ |
| tlb_flush(cs); |
| break; |
| case 2: /* Secondary context */ |
| env->dmmu.mmu_secondary_context = val; |
| /* can be optimized to only flush MMU_USER_SECONDARY_IDX |
| and MMU_KERNEL_SECONDARY_IDX entries */ |
| tlb_flush(cs); |
| break; |
| case 5: /* TSB access */ |
| DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", env->dmmu.tsb, val); |
| env->dmmu.tsb = val; |
| break; |
| case 6: /* Tag access */ |
| env->dmmu.tag_access = val; |
| break; |
| case 7: /* Virtual Watchpoint */ |
| env->dmmu.virtual_watchpoint = val; |
| break; |
| case 8: /* Physical Watchpoint */ |
| env->dmmu.physical_watchpoint = val; |
| break; |
| default: |
| sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); |
| break; |
| } |
| |
| if (oldreg != env->dmmu.mmuregs[reg]) { |
| DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case ASI_DTLB_DATA_IN: /* D-MMU data in */ |
| /* ignore real translation entries */ |
| if (!(addr & TLB_UST1_IS_REAL_BIT)) { |
| replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, |
| val, "dmmu", env, addr); |
| } |
| return; |
| case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */ |
| { |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| /* ignore real translation entries */ |
| if (!(addr & TLB_UST1_IS_REAL_BIT)) { |
| replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, |
| sun4v_tte_to_sun4u(env, addr, val), env); |
| } |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case ASI_DMMU_DEMAP: /* D-MMU demap */ |
| demap_tlb(env->dtlb, addr, "dmmu", env); |
| return; |
| case ASI_INTR_RECEIVE: /* Interrupt data receive */ |
| env->ivec_status = val & 0x20; |
| return; |
| case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */ |
| if (unlikely((addr >= 0x20) && (addr < 0x30))) { |
| /* Hyperprivileged access only */ |
| sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); |
| } |
| /* fall through */ |
| case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */ |
| { |
| unsigned int i = (addr >> 3) & 0x7; |
| env->scratch[i] = val; |
| return; |
| } |
| case ASI_MMU: /* UA2005 Context ID registers */ |
| { |
| switch ((addr >> 3) & 0x3) { |
| case 1: |
| env->dmmu.mmu_primary_context = val; |
| env->immu.mmu_primary_context = val; |
| tlb_flush_by_mmuidx(cs, |
| (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX)); |
| break; |
| case 2: |
| env->dmmu.mmu_secondary_context = val; |
| env->immu.mmu_secondary_context = val; |
| tlb_flush_by_mmuidx(cs, |
| (1 << MMU_USER_SECONDARY_IDX) | |
| (1 << MMU_KERNEL_SECONDARY_IDX)); |
| break; |
| default: |
| sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); |
| } |
| } |
| return; |
| case ASI_QUEUE: /* UA2005 CPU mondo queue */ |
| case ASI_DCACHE_DATA: /* D-cache data */ |
| case ASI_DCACHE_TAG: /* D-cache tag access */ |
| case ASI_ESTATE_ERROR_EN: /* E-cache error enable */ |
| case ASI_AFSR: /* E-cache asynchronous fault status */ |
| case ASI_AFAR: /* E-cache asynchronous fault address */ |
| case ASI_EC_TAG_DATA: /* E-cache tag data */ |
| case ASI_IC_INSTR: /* I-cache instruction access */ |
| case ASI_IC_TAG: /* I-cache tag access */ |
| case ASI_IC_PRE_DECODE: /* I-cache predecode */ |
| case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */ |
| case ASI_EC_W: /* E-cache tag */ |
| case ASI_EC_R: /* E-cache tag */ |
| return; |
| case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */ |
| case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */ |
| case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */ |
| case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */ |
| case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */ |
| case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */ |
| case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */ |
| case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */ |
| case ASI_INTR_R: /* Incoming interrupt vector, RO */ |
| case ASI_PNF: /* Primary no-fault, RO */ |
| case ASI_SNF: /* Secondary no-fault, RO */ |
| case ASI_PNFL: /* Primary no-fault LE, RO */ |
| case ASI_SNFL: /* Secondary no-fault LE, RO */ |
| default: |
| sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC()); |
| return; |
| } |
| } |
| #endif /* CONFIG_USER_ONLY */ |
| #endif /* TARGET_SPARC64 */ |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, |
| vaddr addr, unsigned size, |
| MMUAccessType access_type, |
| int mmu_idx, MemTxAttrs attrs, |
| MemTxResult response, uintptr_t retaddr) |
| { |
| bool is_write = access_type == MMU_DATA_STORE; |
| bool is_exec = access_type == MMU_INST_FETCH; |
| bool is_asi = false; |
| |
| sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec, |
| is_asi, size, retaddr); |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr, |
| MMUAccessType access_type, |
| int mmu_idx, |
| uintptr_t retaddr) |
| { |
| SPARCCPU *cpu = SPARC_CPU(cs); |
| CPUSPARCState *env = &cpu->env; |
| |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr); |
| } |
| #endif |