| /* |
| * common defines for all CPUs |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #ifndef CPU_DEFS_H |
| #define CPU_DEFS_H |
| |
| #ifndef NEED_CPU_H |
| #error cpu.h included from common code |
| #endif |
| |
| #include "qemu/host-utils.h" |
| #include "qemu/thread.h" |
| #ifndef CONFIG_USER_ONLY |
| #include "exec/hwaddr.h" |
| #endif |
| #include "exec/memattrs.h" |
| #include "hw/core/cpu.h" |
| |
| #include "cpu-param.h" |
| |
| #ifndef TARGET_LONG_BITS |
| # error TARGET_LONG_BITS must be defined in cpu-param.h |
| #endif |
| #ifndef TARGET_PHYS_ADDR_SPACE_BITS |
| # error TARGET_PHYS_ADDR_SPACE_BITS must be defined in cpu-param.h |
| #endif |
| #ifndef TARGET_VIRT_ADDR_SPACE_BITS |
| # error TARGET_VIRT_ADDR_SPACE_BITS must be defined in cpu-param.h |
| #endif |
| #ifndef TARGET_PAGE_BITS |
| # ifdef TARGET_PAGE_BITS_VARY |
| # ifndef TARGET_PAGE_BITS_MIN |
| # error TARGET_PAGE_BITS_MIN must be defined in cpu-param.h |
| # endif |
| # else |
| # error TARGET_PAGE_BITS must be defined in cpu-param.h |
| # endif |
| #endif |
| |
| #include "exec/target_long.h" |
| |
| /* |
| * Fix the number of mmu modes to 16, which is also the maximum |
| * supported by the softmmu tlb api. |
| */ |
| #define NB_MMU_MODES 16 |
| |
| #if defined(CONFIG_SOFTMMU) && defined(CONFIG_TCG) |
| #include "exec/tlb-common.h" |
| |
| /* use a fully associative victim tlb of 8 entries */ |
| #define CPU_VTLB_SIZE 8 |
| |
| #define CPU_TLB_DYN_MIN_BITS 6 |
| #define CPU_TLB_DYN_DEFAULT_BITS 8 |
| |
| # if HOST_LONG_BITS == 32 |
| /* Make sure we do not require a double-word shift for the TLB load */ |
| # define CPU_TLB_DYN_MAX_BITS (32 - TARGET_PAGE_BITS) |
| # else /* HOST_LONG_BITS == 64 */ |
| /* |
| * Assuming TARGET_PAGE_BITS==12, with 2**22 entries we can cover 2**(22+12) == |
| * 2**34 == 16G of address space. This is roughly what one would expect a |
| * TLB to cover in a modern (as of 2018) x86_64 CPU. For instance, Intel |
| * Skylake's Level-2 STLB has 16 1G entries. |
| * Also, make sure we do not size the TLB past the guest's address space. |
| */ |
| # ifdef TARGET_PAGE_BITS_VARY |
| # define CPU_TLB_DYN_MAX_BITS \ |
| MIN(22, TARGET_VIRT_ADDR_SPACE_BITS - TARGET_PAGE_BITS) |
| # else |
| # define CPU_TLB_DYN_MAX_BITS \ |
| MIN_CONST(22, TARGET_VIRT_ADDR_SPACE_BITS - TARGET_PAGE_BITS) |
| # endif |
| # endif |
| |
| #endif /* CONFIG_SOFTMMU && CONFIG_TCG */ |
| |
| #if defined(CONFIG_SOFTMMU) |
| /* |
| * The full TLB entry, which is not accessed by generated TCG code, |
| * so the layout is not as critical as that of CPUTLBEntry. This is |
| * also why we don't want to combine the two structs. |
| */ |
| typedef struct CPUTLBEntryFull { |
| /* |
| * @xlat_section contains: |
| * - For ram, an offset which must be added to the virtual address |
| * to obtain the ram_addr_t of the target RAM |
| * - For other memory regions, |
| * + in the lower TARGET_PAGE_BITS, the physical section number |
| * + with the TARGET_PAGE_BITS masked off, the offset within |
| * the target MemoryRegion |
| */ |
| hwaddr xlat_section; |
| |
| /* |
| * @phys_addr contains the physical address in the address space |
| * given by cpu_asidx_from_attrs(cpu, @attrs). |
| */ |
| hwaddr phys_addr; |
| |
| /* @attrs contains the memory transaction attributes for the page. */ |
| MemTxAttrs attrs; |
| |
| /* @prot contains the complete protections for the page. */ |
| uint8_t prot; |
| |
| /* @lg_page_size contains the log2 of the page size. */ |
| uint8_t lg_page_size; |
| |
| /* |
| * Additional tlb flags for use by the slow path. If non-zero, |
| * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. |
| */ |
| uint8_t slow_flags[MMU_ACCESS_COUNT]; |
| |
| /* |
| * Allow target-specific additions to this structure. |
| * This may be used to cache items from the guest cpu |
| * page tables for later use by the implementation. |
| */ |
| #ifdef TARGET_PAGE_ENTRY_EXTRA |
| TARGET_PAGE_ENTRY_EXTRA |
| #endif |
| } CPUTLBEntryFull; |
| #endif /* CONFIG_SOFTMMU */ |
| |
| #if defined(CONFIG_SOFTMMU) && defined(CONFIG_TCG) |
| /* |
| * Data elements that are per MMU mode, minus the bits accessed by |
| * the TCG fast path. |
| */ |
| typedef struct CPUTLBDesc { |
| /* |
| * Describe a region covering all of the large pages allocated |
| * into the tlb. When any page within this region is flushed, |
| * we must flush the entire tlb. The region is matched if |
| * (addr & large_page_mask) == large_page_addr. |
| */ |
| vaddr large_page_addr; |
| vaddr large_page_mask; |
| /* host time (in ns) at the beginning of the time window */ |
| int64_t window_begin_ns; |
| /* maximum number of entries observed in the window */ |
| size_t window_max_entries; |
| size_t n_used_entries; |
| /* The next index to use in the tlb victim table. */ |
| size_t vindex; |
| /* The tlb victim table, in two parts. */ |
| CPUTLBEntry vtable[CPU_VTLB_SIZE]; |
| CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; |
| CPUTLBEntryFull *fulltlb; |
| } CPUTLBDesc; |
| |
| /* |
| * Data elements that are shared between all MMU modes. |
| */ |
| typedef struct CPUTLBCommon { |
| /* Serialize updates to f.table and d.vtable, and others as noted. */ |
| QemuSpin lock; |
| /* |
| * Within dirty, for each bit N, modifications have been made to |
| * mmu_idx N since the last time that mmu_idx was flushed. |
| * Protected by tlb_c.lock. |
| */ |
| uint16_t dirty; |
| /* |
| * Statistics. These are not lock protected, but are read and |
| * written atomically. This allows the monitor to print a snapshot |
| * of the stats without interfering with the cpu. |
| */ |
| size_t full_flush_count; |
| size_t part_flush_count; |
| size_t elide_flush_count; |
| } CPUTLBCommon; |
| |
| /* |
| * The entire softmmu tlb, for all MMU modes. |
| * The meaning of each of the MMU modes is defined in the target code. |
| * Since this is placed within CPUNegativeOffsetState, the smallest |
| * negative offsets are at the end of the struct. |
| */ |
| |
| typedef struct CPUTLB { |
| CPUTLBCommon c; |
| CPUTLBDesc d[NB_MMU_MODES]; |
| CPUTLBDescFast f[NB_MMU_MODES]; |
| } CPUTLB; |
| |
| #else |
| |
| typedef struct CPUTLB { } CPUTLB; |
| |
| #endif /* CONFIG_SOFTMMU && CONFIG_TCG */ |
| |
| /* |
| * This structure must be placed in ArchCPU immediately |
| * before CPUArchState, as a field named "neg". |
| */ |
| typedef struct CPUNegativeOffsetState { |
| CPUTLB tlb; |
| IcountDecr icount_decr; |
| } CPUNegativeOffsetState; |
| |
| #endif |