blob: bf31158470e4503b672ee042c9f587107a290296 [file] [log] [blame]
/*
* ITS emulation for a GICv3-based system
*
* Copyright Linaro.org 2021
*
* Authors:
* Shashi Mallela <shashi.mallela@linaro.org>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at your
* option) any later version. See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "trace.h"
#include "hw/qdev-properties.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "gicv3_internal.h"
#include "qom/object.h"
#include "qapi/error.h"
typedef struct GICv3ITSClass GICv3ITSClass;
/* This is reusing the GICv3ITSState typedef from ARM_GICV3_ITS_COMMON */
DECLARE_OBJ_CHECKERS(GICv3ITSState, GICv3ITSClass,
ARM_GICV3_ITS, TYPE_ARM_GICV3_ITS)
struct GICv3ITSClass {
GICv3ITSCommonClass parent_class;
ResettablePhases parent_phases;
};
/*
* This is an internal enum used to distinguish between LPI triggered
* via command queue and LPI triggered via gits_translater write.
*/
typedef enum ItsCmdType {
NONE = 0, /* internal indication for GITS_TRANSLATER write */
CLEAR = 1,
DISCARD = 2,
INTERRUPT = 3,
} ItsCmdType;
typedef struct DTEntry {
bool valid;
unsigned size;
uint64_t ittaddr;
} DTEntry;
typedef struct CTEntry {
bool valid;
uint32_t rdbase;
} CTEntry;
typedef struct ITEntry {
bool valid;
int inttype;
uint32_t intid;
uint32_t doorbell;
uint32_t icid;
uint32_t vpeid;
} ITEntry;
typedef struct VTEntry {
bool valid;
unsigned vptsize;
uint32_t rdbase;
uint64_t vptaddr;
} VTEntry;
/*
* The ITS spec permits a range of CONSTRAINED UNPREDICTABLE options
* if a command parameter is not correct. These include both "stall
* processing of the command queue" and "ignore this command, and
* keep processing the queue". In our implementation we choose that
* memory transaction errors reading the command packet provoke a
* stall, but errors in parameters cause us to ignore the command
* and continue processing.
* The process_* functions which handle individual ITS commands all
* return an ItsCmdResult which tells process_cmdq() whether it should
* stall, keep going because of an error, or keep going because the
* command was a success.
*/
typedef enum ItsCmdResult {
CMD_STALL = 0,
CMD_CONTINUE = 1,
CMD_CONTINUE_OK = 2,
} ItsCmdResult;
/* True if the ITS supports the GICv4 virtual LPI feature */
static bool its_feature_virtual(GICv3ITSState *s)
{
return s->typer & R_GITS_TYPER_VIRTUAL_MASK;
}
static inline bool intid_in_lpi_range(uint32_t id)
{
return id >= GICV3_LPI_INTID_START &&
id < (1 << (GICD_TYPER_IDBITS + 1));
}
static inline bool valid_doorbell(uint32_t id)
{
/* Doorbell fields may be an LPI, or 1023 to mean "no doorbell" */
return id == INTID_SPURIOUS || intid_in_lpi_range(id);
}
static uint64_t baser_base_addr(uint64_t value, uint32_t page_sz)
{
uint64_t result = 0;
switch (page_sz) {
case GITS_PAGE_SIZE_4K:
case GITS_PAGE_SIZE_16K:
result = FIELD_EX64(value, GITS_BASER, PHYADDR) << 12;
break;
case GITS_PAGE_SIZE_64K:
result = FIELD_EX64(value, GITS_BASER, PHYADDRL_64K) << 16;
result |= FIELD_EX64(value, GITS_BASER, PHYADDRH_64K) << 48;
break;
default:
break;
}
return result;
}
static uint64_t table_entry_addr(GICv3ITSState *s, TableDesc *td,
uint32_t idx, MemTxResult *res)
{
/*
* Given a TableDesc describing one of the ITS in-guest-memory
* tables and an index into it, return the guest address
* corresponding to that table entry.
* If there was a memory error reading the L1 table of an
* indirect table, *res is set accordingly, and we return -1.
* If the L1 table entry is marked not valid, we return -1 with
* *res set to MEMTX_OK.
*
* The specification defines the format of level 1 entries of a
* 2-level table, but the format of level 2 entries and the format
* of flat-mapped tables is IMPDEF.
*/
AddressSpace *as = &s->gicv3->dma_as;
uint32_t l2idx;
uint64_t l2;
uint32_t num_l2_entries;
*res = MEMTX_OK;
if (!td->indirect) {
/* Single level table */
return td->base_addr + idx * td->entry_sz;
}
/* Two level table */
l2idx = idx / (td->page_sz / L1TABLE_ENTRY_SIZE);
l2 = address_space_ldq_le(as,
td->base_addr + (l2idx * L1TABLE_ENTRY_SIZE),
MEMTXATTRS_UNSPECIFIED, res);
if (*res != MEMTX_OK) {
return -1;
}
if (!(l2 & L2_TABLE_VALID_MASK)) {
return -1;
}
num_l2_entries = td->page_sz / td->entry_sz;
return (l2 & ((1ULL << 51) - 1)) + (idx % num_l2_entries) * td->entry_sz;
}
/*
* Read the Collection Table entry at index @icid. On success (including
* successfully determining that there is no valid CTE for this index),
* we return MEMTX_OK and populate the CTEntry struct @cte accordingly.
* If there is an error reading memory then we return the error code.
*/
static MemTxResult get_cte(GICv3ITSState *s, uint16_t icid, CTEntry *cte)
{
AddressSpace *as = &s->gicv3->dma_as;
MemTxResult res = MEMTX_OK;
uint64_t entry_addr = table_entry_addr(s, &s->ct, icid, &res);
uint64_t cteval;
if (entry_addr == -1) {
/* No L2 table entry, i.e. no valid CTE, or a memory error */
cte->valid = false;
goto out;
}
cteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
goto out;
}
cte->valid = FIELD_EX64(cteval, CTE, VALID);
cte->rdbase = FIELD_EX64(cteval, CTE, RDBASE);
out:
if (res != MEMTX_OK) {
trace_gicv3_its_cte_read_fault(icid);
} else {
trace_gicv3_its_cte_read(icid, cte->valid, cte->rdbase);
}
return res;
}
/*
* Update the Interrupt Table entry at index @evinted in the table specified
* by the dte @dte. Returns true on success, false if there was a memory
* access error.
*/
static bool update_ite(GICv3ITSState *s, uint32_t eventid, const DTEntry *dte,
const ITEntry *ite)
{
AddressSpace *as = &s->gicv3->dma_as;
MemTxResult res = MEMTX_OK;
hwaddr iteaddr = dte->ittaddr + eventid * ITS_ITT_ENTRY_SIZE;
uint64_t itel = 0;
uint32_t iteh = 0;
trace_gicv3_its_ite_write(dte->ittaddr, eventid, ite->valid,
ite->inttype, ite->intid, ite->icid,
ite->vpeid, ite->doorbell);
if (ite->valid) {
itel = FIELD_DP64(itel, ITE_L, VALID, 1);
itel = FIELD_DP64(itel, ITE_L, INTTYPE, ite->inttype);
itel = FIELD_DP64(itel, ITE_L, INTID, ite->intid);
itel = FIELD_DP64(itel, ITE_L, ICID, ite->icid);
itel = FIELD_DP64(itel, ITE_L, VPEID, ite->vpeid);
iteh = FIELD_DP32(iteh, ITE_H, DOORBELL, ite->doorbell);
}
address_space_stq_le(as, iteaddr, itel, MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
return false;
}
address_space_stl_le(as, iteaddr + 8, iteh, MEMTXATTRS_UNSPECIFIED, &res);
return res == MEMTX_OK;
}
/*
* Read the Interrupt Table entry at index @eventid from the table specified
* by the DTE @dte. On success, we return MEMTX_OK and populate the ITEntry
* struct @ite accordingly. If there is an error reading memory then we return
* the error code.
*/
static MemTxResult get_ite(GICv3ITSState *s, uint32_t eventid,
const DTEntry *dte, ITEntry *ite)
{
AddressSpace *as = &s->gicv3->dma_as;
MemTxResult res = MEMTX_OK;
uint64_t itel;
uint32_t iteh;
hwaddr iteaddr = dte->ittaddr + eventid * ITS_ITT_ENTRY_SIZE;
itel = address_space_ldq_le(as, iteaddr, MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
trace_gicv3_its_ite_read_fault(dte->ittaddr, eventid);
return res;
}
iteh = address_space_ldl_le(as, iteaddr + 8, MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
trace_gicv3_its_ite_read_fault(dte->ittaddr, eventid);
return res;
}
ite->valid = FIELD_EX64(itel, ITE_L, VALID);
ite->inttype = FIELD_EX64(itel, ITE_L, INTTYPE);
ite->intid = FIELD_EX64(itel, ITE_L, INTID);
ite->icid = FIELD_EX64(itel, ITE_L, ICID);
ite->vpeid = FIELD_EX64(itel, ITE_L, VPEID);
ite->doorbell = FIELD_EX64(iteh, ITE_H, DOORBELL);
trace_gicv3_its_ite_read(dte->ittaddr, eventid, ite->valid,
ite->inttype, ite->intid, ite->icid,
ite->vpeid, ite->doorbell);
return MEMTX_OK;
}
/*
* Read the Device Table entry at index @devid. On success (including
* successfully determining that there is no valid DTE for this index),
* we return MEMTX_OK and populate the DTEntry struct accordingly.
* If there is an error reading memory then we return the error code.
*/
static MemTxResult get_dte(GICv3ITSState *s, uint32_t devid, DTEntry *dte)
{
MemTxResult res = MEMTX_OK;
AddressSpace *as = &s->gicv3->dma_as;
uint64_t entry_addr = table_entry_addr(s, &s->dt, devid, &res);
uint64_t dteval;
if (entry_addr == -1) {
/* No L2 table entry, i.e. no valid DTE, or a memory error */
dte->valid = false;
goto out;
}
dteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
goto out;
}
dte->valid = FIELD_EX64(dteval, DTE, VALID);
dte->size = FIELD_EX64(dteval, DTE, SIZE);
/* DTE word field stores bits [51:8] of the ITT address */
dte->ittaddr = FIELD_EX64(dteval, DTE, ITTADDR) << ITTADDR_SHIFT;
out:
if (res != MEMTX_OK) {
trace_gicv3_its_dte_read_fault(devid);
} else {
trace_gicv3_its_dte_read(devid, dte->valid, dte->size, dte->ittaddr);
}
return res;
}
/*
* Read the vPE Table entry at index @vpeid. On success (including
* successfully determining that there is no valid entry for this index),
* we return MEMTX_OK and populate the VTEntry struct accordingly.
* If there is an error reading memory then we return the error code.
*/
static MemTxResult get_vte(GICv3ITSState *s, uint32_t vpeid, VTEntry *vte)
{
MemTxResult res = MEMTX_OK;
AddressSpace *as = &s->gicv3->dma_as;
uint64_t entry_addr = table_entry_addr(s, &s->vpet, vpeid, &res);
uint64_t vteval;
if (entry_addr == -1) {
/* No L2 table entry, i.e. no valid VTE, or a memory error */
vte->valid = false;
trace_gicv3_its_vte_read_fault(vpeid);
return MEMTX_OK;
}
vteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res);
if (res != MEMTX_OK) {
trace_gicv3_its_vte_read_fault(vpeid);
return res;
}
vte->valid = FIELD_EX64(vteval, VTE, VALID);
vte->vptsize = FIELD_EX64(vteval, VTE, VPTSIZE);
vte->vptaddr = FIELD_EX64(vteval, VTE, VPTADDR);
vte->rdbase = FIELD_EX64(vteval, VTE, RDBASE);
trace_gicv3_its_vte_read(vpeid, vte->valid, vte->vptsize,
vte->vptaddr, vte->rdbase);
return res;
}
/*
* Given a (DeviceID, EventID), look up the corresponding ITE, including
* checking for the various invalid-value cases. If we find a valid ITE,
* fill in @ite and @dte and return CMD_CONTINUE_OK. Otherwise return
* CMD_STALL or CMD_CONTINUE as appropriate (and the contents of @ite
* should not be relied on).
*
* The string @who is purely for the LOG_GUEST_ERROR messages,
* and should indicate the name of the calling function or similar.
*/
static ItsCmdResult lookup_ite(GICv3ITSState *s, const char *who,
uint32_t devid, uint32_t eventid, ITEntry *ite,
DTEntry *dte)
{
uint64_t num_eventids;
if (devid >= s->dt.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes: devid %d>=%d",
who, devid, s->dt.num_entries);
return CMD_CONTINUE;
}
if (get_dte(s, devid, dte) != MEMTX_OK) {
return CMD_STALL;
}
if (!dte->valid) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes: "
"invalid dte for %d\n", who, devid);
return CMD_CONTINUE;
}
num_eventids = 1ULL << (dte->size + 1);
if (eventid >= num_eventids) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes: eventid %d >= %"
PRId64 "\n", who, eventid, num_eventids);
return CMD_CONTINUE;
}
if (get_ite(s, eventid, dte, ite) != MEMTX_OK) {
return CMD_STALL;
}
if (!ite->valid) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes: invalid ITE\n", who);
return CMD_CONTINUE;
}
return CMD_CONTINUE_OK;
}
/*
* Given an ICID, look up the corresponding CTE, including checking for various
* invalid-value cases. If we find a valid CTE, fill in @cte and return
* CMD_CONTINUE_OK; otherwise return CMD_STALL or CMD_CONTINUE (and the
* contents of @cte should not be relied on).
*
* The string @who is purely for the LOG_GUEST_ERROR messages,
* and should indicate the name of the calling function or similar.
*/
static ItsCmdResult lookup_cte(GICv3ITSState *s, const char *who,
uint32_t icid, CTEntry *cte)
{
if (icid >= s->ct.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid ICID 0x%x\n", who, icid);
return CMD_CONTINUE;
}
if (get_cte(s, icid, cte) != MEMTX_OK) {
return CMD_STALL;
}
if (!cte->valid) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid CTE\n", who);
return CMD_CONTINUE;
}
if (cte->rdbase >= s->gicv3->num_cpu) {
return CMD_CONTINUE;
}
return CMD_CONTINUE_OK;
}
/*
* Given a VPEID, look up the corresponding VTE, including checking
* for various invalid-value cases. if we find a valid VTE, fill in @vte
* and return CMD_CONTINUE_OK; otherwise return CMD_STALL or CMD_CONTINUE
* (and the contents of @vte should not be relied on).
*
* The string @who is purely for the LOG_GUEST_ERROR messages,
* and should indicate the name of the calling function or similar.
*/
static ItsCmdResult lookup_vte(GICv3ITSState *s, const char *who,
uint32_t vpeid, VTEntry *vte)
{
if (vpeid >= s->vpet.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid VPEID 0x%x\n", who, vpeid);
return CMD_CONTINUE;
}
if (get_vte(s, vpeid, vte) != MEMTX_OK) {
return CMD_STALL;
}
if (!vte->valid) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid VTE for VPEID 0x%x\n", who, vpeid);
return CMD_CONTINUE;
}
if (vte->rdbase >= s->gicv3->num_cpu) {
return CMD_CONTINUE;
}
return CMD_CONTINUE_OK;
}
static ItsCmdResult process_its_cmd_phys(GICv3ITSState *s, const ITEntry *ite,
int irqlevel)
{
CTEntry cte;
ItsCmdResult cmdres;
cmdres = lookup_cte(s, __func__, ite->icid, &cte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
gicv3_redist_process_lpi(&s->gicv3->cpu[cte.rdbase], ite->intid, irqlevel);
return CMD_CONTINUE_OK;
}
static ItsCmdResult process_its_cmd_virt(GICv3ITSState *s, const ITEntry *ite,
int irqlevel)
{
VTEntry vte;
ItsCmdResult cmdres;
cmdres = lookup_vte(s, __func__, ite->vpeid, &vte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
if (!intid_in_lpi_range(ite->intid) ||
ite->intid >= (1ULL << (vte.vptsize + 1))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: intid 0x%x out of range\n",
__func__, ite->intid);
return CMD_CONTINUE;
}
/*
* For QEMU the actual pending of the vLPI is handled in the
* redistributor code
*/
gicv3_redist_process_vlpi(&s->gicv3->cpu[vte.rdbase], ite->intid,
vte.vptaddr << 16, ite->doorbell, irqlevel);
return CMD_CONTINUE_OK;
}
/*
* This function handles the processing of following commands based on
* the ItsCmdType parameter passed:-
* 1. triggering of lpi interrupt translation via ITS INT command
* 2. triggering of lpi interrupt translation via gits_translater register
* 3. handling of ITS CLEAR command
* 4. handling of ITS DISCARD command
*/
static ItsCmdResult do_process_its_cmd(GICv3ITSState *s, uint32_t devid,
uint32_t eventid, ItsCmdType cmd)
{
DTEntry dte;
ITEntry ite;
ItsCmdResult cmdres;
int irqlevel;
cmdres = lookup_ite(s, __func__, devid, eventid, &ite, &dte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
irqlevel = (cmd == CLEAR || cmd == DISCARD) ? 0 : 1;
switch (ite.inttype) {
case ITE_INTTYPE_PHYSICAL:
cmdres = process_its_cmd_phys(s, &ite, irqlevel);
break;
case ITE_INTTYPE_VIRTUAL:
if (!its_feature_virtual(s)) {
/* Can't happen unless guest is illegally writing to table memory */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid type %d in ITE (table corrupted?)\n",
__func__, ite.inttype);
return CMD_CONTINUE;
}
cmdres = process_its_cmd_virt(s, &ite, irqlevel);
break;
default:
g_assert_not_reached();
}
if (cmdres == CMD_CONTINUE_OK && cmd == DISCARD) {
ITEntry i = {};
/* remove mapping from interrupt translation table */
i.valid = false;
return update_ite(s, eventid, &dte, &i) ? CMD_CONTINUE_OK : CMD_STALL;
}
return CMD_CONTINUE_OK;
}
static ItsCmdResult process_its_cmd(GICv3ITSState *s, const uint64_t *cmdpkt,
ItsCmdType cmd)
{
uint32_t devid, eventid;
devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT;
eventid = cmdpkt[1] & EVENTID_MASK;
switch (cmd) {
case INTERRUPT:
trace_gicv3_its_cmd_int(devid, eventid);
break;
case CLEAR:
trace_gicv3_its_cmd_clear(devid, eventid);
break;
case DISCARD:
trace_gicv3_its_cmd_discard(devid, eventid);
break;
default:
g_assert_not_reached();
}
return do_process_its_cmd(s, devid, eventid, cmd);
}
static ItsCmdResult process_mapti(GICv3ITSState *s, const uint64_t *cmdpkt,
bool ignore_pInt)
{
uint32_t devid, eventid;
uint32_t pIntid = 0;
uint64_t num_eventids;
uint16_t icid = 0;
DTEntry dte;
ITEntry ite;
devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT;
eventid = cmdpkt[1] & EVENTID_MASK;
icid = cmdpkt[2] & ICID_MASK;
if (ignore_pInt) {
pIntid = eventid;
trace_gicv3_its_cmd_mapi(devid, eventid, icid);
} else {
pIntid = (cmdpkt[1] & pINTID_MASK) >> pINTID_SHIFT;
trace_gicv3_its_cmd_mapti(devid, eventid, icid, pIntid);
}
if (devid >= s->dt.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes: devid %d>=%d",
__func__, devid, s->dt.num_entries);
return CMD_CONTINUE;
}
if (get_dte(s, devid, &dte) != MEMTX_OK) {
return CMD_STALL;
}
num_eventids = 1ULL << (dte.size + 1);
if (icid >= s->ct.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid ICID 0x%x >= 0x%x\n",
__func__, icid, s->ct.num_entries);
return CMD_CONTINUE;
}
if (!dte.valid) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: no valid DTE for devid 0x%x\n", __func__, devid);
return CMD_CONTINUE;
}
if (eventid >= num_eventids) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid event ID 0x%x >= 0x%" PRIx64 "\n",
__func__, eventid, num_eventids);
return CMD_CONTINUE;
}
if (!intid_in_lpi_range(pIntid)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid interrupt ID 0x%x\n", __func__, pIntid);
return CMD_CONTINUE;
}
/* add ite entry to interrupt translation table */
ite.valid = true;
ite.inttype = ITE_INTTYPE_PHYSICAL;
ite.intid = pIntid;
ite.icid = icid;
ite.doorbell = INTID_SPURIOUS;
ite.vpeid = 0;
return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL;
}
static ItsCmdResult process_vmapti(GICv3ITSState *s, const uint64_t *cmdpkt,
bool ignore_vintid)
{
uint32_t devid, eventid, vintid, doorbell, vpeid;
uint32_t num_eventids;
DTEntry dte;
ITEntry ite;
if (!its_feature_virtual(s)) {
return CMD_CONTINUE;
}
devid = FIELD_EX64(cmdpkt[0], VMAPTI_0, DEVICEID);
eventid = FIELD_EX64(cmdpkt[1], VMAPTI_1, EVENTID);
vpeid = FIELD_EX64(cmdpkt[1], VMAPTI_1, VPEID);
doorbell = FIELD_EX64(cmdpkt[2], VMAPTI_2, DOORBELL);
if (ignore_vintid) {
vintid = eventid;
trace_gicv3_its_cmd_vmapi(devid, eventid, vpeid, doorbell);
} else {
vintid = FIELD_EX64(cmdpkt[2], VMAPTI_2, VINTID);
trace_gicv3_its_cmd_vmapti(devid, eventid, vpeid, vintid, doorbell);
}
if (devid >= s->dt.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid DeviceID 0x%x (must be less than 0x%x)\n",
__func__, devid, s->dt.num_entries);
return CMD_CONTINUE;
}
if (get_dte(s, devid, &dte) != MEMTX_OK) {
return CMD_STALL;
}
if (!dte.valid) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: no entry in device table for DeviceID 0x%x\n",
__func__, devid);
return CMD_CONTINUE;
}
num_eventids = 1ULL << (dte.size + 1);
if (eventid >= num_eventids) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: EventID 0x%x too large for DeviceID 0x%x "
"(must be less than 0x%x)\n",
__func__, eventid, devid, num_eventids);
return CMD_CONTINUE;
}
if (!intid_in_lpi_range(vintid)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: VIntID 0x%x not a valid LPI\n",
__func__, vintid);
return CMD_CONTINUE;
}
if (!valid_doorbell(doorbell)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Doorbell %d not 1023 and not a valid LPI\n",
__func__, doorbell);
return CMD_CONTINUE;
}
if (vpeid >= s->vpet.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: VPEID 0x%x out of range (must be less than 0x%x)\n",
__func__, vpeid, s->vpet.num_entries);
return CMD_CONTINUE;
}
/* add ite entry to interrupt translation table */
ite.valid = true;
ite.inttype = ITE_INTTYPE_VIRTUAL;
ite.intid = vintid;
ite.icid = 0;
ite.doorbell = doorbell;
ite.vpeid = vpeid;
return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL;
}
/*
* Update the Collection Table entry for @icid to @cte. Returns true
* on success, false if there was a memory access error.
*/
static bool update_cte(GICv3ITSState *s, uint16_t icid, const CTEntry *cte)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t entry_addr;
uint64_t cteval = 0;
MemTxResult res = MEMTX_OK;
trace_gicv3_its_cte_write(icid, cte->valid, cte->rdbase);
if (cte->valid) {
/* add mapping entry to collection table */
cteval = FIELD_DP64(cteval, CTE, VALID, 1);
cteval = FIELD_DP64(cteval, CTE, RDBASE, cte->rdbase);
}
entry_addr = table_entry_addr(s, &s->ct, icid, &res);
if (res != MEMTX_OK) {
/* memory access error: stall */
return false;
}
if (entry_addr == -1) {
/* No L2 table for this index: discard write and continue */
return true;
}
address_space_stq_le(as, entry_addr, cteval, MEMTXATTRS_UNSPECIFIED, &res);
return res == MEMTX_OK;
}
static ItsCmdResult process_mapc(GICv3ITSState *s, const uint64_t *cmdpkt)
{
uint16_t icid;
CTEntry cte;
icid = cmdpkt[2] & ICID_MASK;
cte.valid = cmdpkt[2] & CMD_FIELD_VALID_MASK;
if (cte.valid) {
cte.rdbase = (cmdpkt[2] & R_MAPC_RDBASE_MASK) >> R_MAPC_RDBASE_SHIFT;
cte.rdbase &= RDBASE_PROCNUM_MASK;
} else {
cte.rdbase = 0;
}
trace_gicv3_its_cmd_mapc(icid, cte.rdbase, cte.valid);
if (icid >= s->ct.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR, "ITS MAPC: invalid ICID 0x%x\n", icid);
return CMD_CONTINUE;
}
if (cte.valid && cte.rdbase >= s->gicv3->num_cpu) {
qemu_log_mask(LOG_GUEST_ERROR,
"ITS MAPC: invalid RDBASE %u\n", cte.rdbase);
return CMD_CONTINUE;
}
return update_cte(s, icid, &cte) ? CMD_CONTINUE_OK : CMD_STALL;
}
/*
* Update the Device Table entry for @devid to @dte. Returns true
* on success, false if there was a memory access error.
*/
static bool update_dte(GICv3ITSState *s, uint32_t devid, const DTEntry *dte)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t entry_addr;
uint64_t dteval = 0;
MemTxResult res = MEMTX_OK;
trace_gicv3_its_dte_write(devid, dte->valid, dte->size, dte->ittaddr);
if (dte->valid) {
/* add mapping entry to device table */
dteval = FIELD_DP64(dteval, DTE, VALID, 1);
dteval = FIELD_DP64(dteval, DTE, SIZE, dte->size);
dteval = FIELD_DP64(dteval, DTE, ITTADDR, dte->ittaddr);
}
entry_addr = table_entry_addr(s, &s->dt, devid, &res);
if (res != MEMTX_OK) {
/* memory access error: stall */
return false;
}
if (entry_addr == -1) {
/* No L2 table for this index: discard write and continue */
return true;
}
address_space_stq_le(as, entry_addr, dteval, MEMTXATTRS_UNSPECIFIED, &res);
return res == MEMTX_OK;
}
static ItsCmdResult process_mapd(GICv3ITSState *s, const uint64_t *cmdpkt)
{
uint32_t devid;
DTEntry dte;
devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT;
dte.size = cmdpkt[1] & SIZE_MASK;
dte.ittaddr = (cmdpkt[2] & ITTADDR_MASK) >> ITTADDR_SHIFT;
dte.valid = cmdpkt[2] & CMD_FIELD_VALID_MASK;
trace_gicv3_its_cmd_mapd(devid, dte.size, dte.ittaddr, dte.valid);
if (devid >= s->dt.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"ITS MAPD: invalid device ID field 0x%x >= 0x%x\n",
devid, s->dt.num_entries);
return CMD_CONTINUE;
}
if (dte.size > FIELD_EX64(s->typer, GITS_TYPER, IDBITS)) {
qemu_log_mask(LOG_GUEST_ERROR,
"ITS MAPD: invalid size %d\n", dte.size);
return CMD_CONTINUE;
}
return update_dte(s, devid, &dte) ? CMD_CONTINUE_OK : CMD_STALL;
}
static ItsCmdResult process_movall(GICv3ITSState *s, const uint64_t *cmdpkt)
{
uint64_t rd1, rd2;
rd1 = FIELD_EX64(cmdpkt[2], MOVALL_2, RDBASE1);
rd2 = FIELD_EX64(cmdpkt[3], MOVALL_3, RDBASE2);
trace_gicv3_its_cmd_movall(rd1, rd2);
if (rd1 >= s->gicv3->num_cpu) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: RDBASE1 %" PRId64
" out of range (must be less than %d)\n",
__func__, rd1, s->gicv3->num_cpu);
return CMD_CONTINUE;
}
if (rd2 >= s->gicv3->num_cpu) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: RDBASE2 %" PRId64
" out of range (must be less than %d)\n",
__func__, rd2, s->gicv3->num_cpu);
return CMD_CONTINUE;
}
if (rd1 == rd2) {
/* Move to same target must succeed as a no-op */
return CMD_CONTINUE_OK;
}
/* Move all pending LPIs from redistributor 1 to redistributor 2 */
gicv3_redist_movall_lpis(&s->gicv3->cpu[rd1], &s->gicv3->cpu[rd2]);
return CMD_CONTINUE_OK;
}
static ItsCmdResult process_movi(GICv3ITSState *s, const uint64_t *cmdpkt)
{
uint32_t devid, eventid;
uint16_t new_icid;
DTEntry dte;
CTEntry old_cte, new_cte;
ITEntry old_ite;
ItsCmdResult cmdres;
devid = FIELD_EX64(cmdpkt[0], MOVI_0, DEVICEID);
eventid = FIELD_EX64(cmdpkt[1], MOVI_1, EVENTID);
new_icid = FIELD_EX64(cmdpkt[2], MOVI_2, ICID);
trace_gicv3_its_cmd_movi(devid, eventid, new_icid);
cmdres = lookup_ite(s, __func__, devid, eventid, &old_ite, &dte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
if (old_ite.inttype != ITE_INTTYPE_PHYSICAL) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid command attributes: invalid ITE\n",
__func__);
return CMD_CONTINUE;
}
cmdres = lookup_cte(s, __func__, old_ite.icid, &old_cte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
cmdres = lookup_cte(s, __func__, new_icid, &new_cte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
if (old_cte.rdbase != new_cte.rdbase) {
/* Move the LPI from the old redistributor to the new one */
gicv3_redist_mov_lpi(&s->gicv3->cpu[old_cte.rdbase],
&s->gicv3->cpu[new_cte.rdbase],
old_ite.intid);
}
/* Update the ICID field in the interrupt translation table entry */
old_ite.icid = new_icid;
return update_ite(s, eventid, &dte, &old_ite) ? CMD_CONTINUE_OK : CMD_STALL;
}
/*
* Update the vPE Table entry at index @vpeid with the entry @vte.
* Returns true on success, false if there was a memory access error.
*/
static bool update_vte(GICv3ITSState *s, uint32_t vpeid, const VTEntry *vte)
{
AddressSpace *as = &s->gicv3->dma_as;
uint64_t entry_addr;
uint64_t vteval = 0;
MemTxResult res = MEMTX_OK;
trace_gicv3_its_vte_write(vpeid, vte->valid, vte->vptsize, vte->vptaddr,
vte->rdbase);
if (vte->valid) {
vteval = FIELD_DP64(vteval, VTE, VALID, 1);
vteval = FIELD_DP64(vteval, VTE, VPTSIZE, vte->vptsize);
vteval = FIELD_DP64(vteval, VTE, VPTADDR, vte->vptaddr);
vteval = FIELD_DP64(vteval, VTE, RDBASE, vte->rdbase);
}
entry_addr = table_entry_addr(s, &s->vpet, vpeid, &res);
if (res != MEMTX_OK) {
return false;
}
if (entry_addr == -1) {
/* No L2 table for this index: discard write and continue */
return true;
}
address_space_stq_le(as, entry_addr, vteval, MEMTXATTRS_UNSPECIFIED, &res);
return res == MEMTX_OK;
}
static ItsCmdResult process_vmapp(GICv3ITSState *s, const uint64_t *cmdpkt)
{
VTEntry vte;
uint32_t vpeid;
if (!its_feature_virtual(s)) {
return CMD_CONTINUE;
}
vpeid = FIELD_EX64(cmdpkt[1], VMAPP_1, VPEID);
vte.rdbase = FIELD_EX64(cmdpkt[2], VMAPP_2, RDBASE);
vte.valid = FIELD_EX64(cmdpkt[2], VMAPP_2, V);
vte.vptsize = FIELD_EX64(cmdpkt[3], VMAPP_3, VPTSIZE);
vte.vptaddr = FIELD_EX64(cmdpkt[3], VMAPP_3, VPTADDR);
trace_gicv3_its_cmd_vmapp(vpeid, vte.rdbase, vte.valid,
vte.vptaddr, vte.vptsize);
/*
* For GICv4.0 the VPT_size field is only 5 bits, whereas we
* define our field macros to include the full GICv4.1 8 bits.
* The range check on VPT_size will catch the cases where
* the guest set the RES0-in-GICv4.0 bits [7:6].
*/
if (vte.vptsize > FIELD_EX64(s->typer, GITS_TYPER, IDBITS)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid VPT_size 0x%x\n", __func__, vte.vptsize);
return CMD_CONTINUE;
}
if (vte.valid && vte.rdbase >= s->gicv3->num_cpu) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid rdbase 0x%x\n", __func__, vte.rdbase);
return CMD_CONTINUE;
}
if (vpeid >= s->vpet.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: VPEID 0x%x out of range (must be less than 0x%x)\n",
__func__, vpeid, s->vpet.num_entries);
return CMD_CONTINUE;
}
return update_vte(s, vpeid, &vte) ? CMD_CONTINUE_OK : CMD_STALL;
}
typedef struct VmovpCallbackData {
uint64_t rdbase;
uint32_t vpeid;
/*
* Overall command result. If more than one callback finds an
* error, STALL beats CONTINUE.
*/
ItsCmdResult result;
} VmovpCallbackData;
static void vmovp_callback(gpointer data, gpointer opaque)
{
/*
* This function is called to update the VPEID field in a VPE
* table entry for this ITS. This might be because of a VMOVP
* command executed on any ITS that is connected to the same GIC
* as this ITS. We need to read the VPE table entry for the VPEID
* and update its RDBASE field.
*/
GICv3ITSState *s = data;
VmovpCallbackData *cbdata = opaque;
VTEntry vte;
ItsCmdResult cmdres;
cmdres = lookup_vte(s, __func__, cbdata->vpeid, &vte);
switch (cmdres) {
case CMD_STALL:
cbdata->result = CMD_STALL;
return;
case CMD_CONTINUE:
if (cbdata->result != CMD_STALL) {
cbdata->result = CMD_CONTINUE;
}
return;
case CMD_CONTINUE_OK:
break;
}
vte.rdbase = cbdata->rdbase;
if (!update_vte(s, cbdata->vpeid, &vte)) {
cbdata->result = CMD_STALL;
}
}
static ItsCmdResult process_vmovp(GICv3ITSState *s, const uint64_t *cmdpkt)
{
VmovpCallbackData cbdata;
if (!its_feature_virtual(s)) {
return CMD_CONTINUE;
}
cbdata.vpeid = FIELD_EX64(cmdpkt[1], VMOVP_1, VPEID);
cbdata.rdbase = FIELD_EX64(cmdpkt[2], VMOVP_2, RDBASE);
trace_gicv3_its_cmd_vmovp(cbdata.vpeid, cbdata.rdbase);
if (cbdata.rdbase >= s->gicv3->num_cpu) {
return CMD_CONTINUE;
}
/*
* Our ITS implementation reports GITS_TYPER.VMOVP == 1, which means
* that when the VMOVP command is executed on an ITS to change the
* VPEID field in a VPE table entry the change must be propagated
* to all the ITSes connected to the same GIC.
*/
cbdata.result = CMD_CONTINUE_OK;
gicv3_foreach_its(s->gicv3, vmovp_callback, &cbdata);
return cbdata.result;
}
static ItsCmdResult process_vmovi(GICv3ITSState *s, const uint64_t *cmdpkt)
{
uint32_t devid, eventid, vpeid, doorbell;
bool doorbell_valid;
DTEntry dte;
ITEntry ite;
VTEntry old_vte, new_vte;
ItsCmdResult cmdres;
if (!its_feature_virtual(s)) {
return CMD_CONTINUE;
}
devid = FIELD_EX64(cmdpkt[0], VMOVI_0, DEVICEID);
eventid = FIELD_EX64(cmdpkt[1], VMOVI_1, EVENTID);
vpeid = FIELD_EX64(cmdpkt[1], VMOVI_1, VPEID);
doorbell_valid = FIELD_EX64(cmdpkt[2], VMOVI_2, D);
doorbell = FIELD_EX64(cmdpkt[2], VMOVI_2, DOORBELL);
trace_gicv3_its_cmd_vmovi(devid, eventid, vpeid, doorbell_valid, doorbell);
if (doorbell_valid && !valid_doorbell(doorbell)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid doorbell 0x%x\n", __func__, doorbell);
return CMD_CONTINUE;
}
cmdres = lookup_ite(s, __func__, devid, eventid, &ite, &dte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
if (ite.inttype != ITE_INTTYPE_VIRTUAL) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: ITE is not for virtual interrupt\n",
__func__);
return CMD_CONTINUE;
}
cmdres = lookup_vte(s, __func__, ite.vpeid, &old_vte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
cmdres = lookup_vte(s, __func__, vpeid, &new_vte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
if (!intid_in_lpi_range(ite.intid) ||
ite.intid >= (1ULL << (old_vte.vptsize + 1)) ||
ite.intid >= (1ULL << (new_vte.vptsize + 1))) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: ITE intid 0x%x out of range\n",
__func__, ite.intid);
return CMD_CONTINUE;
}
ite.vpeid = vpeid;
if (doorbell_valid) {
ite.doorbell = doorbell;
}
/*
* Move the LPI from the old redistributor to the new one. We don't
* need to do anything if the guest somehow specified the
* same pending table for source and destination.
*/
if (old_vte.vptaddr != new_vte.vptaddr) {
gicv3_redist_mov_vlpi(&s->gicv3->cpu[old_vte.rdbase],
old_vte.vptaddr << 16,
&s->gicv3->cpu[new_vte.rdbase],
new_vte.vptaddr << 16,
ite.intid,
ite.doorbell);
}
/* Update the ITE to the new VPEID and possibly doorbell values */
return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL;
}
static ItsCmdResult process_vinvall(GICv3ITSState *s, const uint64_t *cmdpkt)
{
VTEntry vte;
uint32_t vpeid;
ItsCmdResult cmdres;
if (!its_feature_virtual(s)) {
return CMD_CONTINUE;
}
vpeid = FIELD_EX64(cmdpkt[1], VINVALL_1, VPEID);
trace_gicv3_its_cmd_vinvall(vpeid);
cmdres = lookup_vte(s, __func__, vpeid, &vte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
gicv3_redist_vinvall(&s->gicv3->cpu[vte.rdbase], vte.vptaddr << 16);
return CMD_CONTINUE_OK;
}
static ItsCmdResult process_inv(GICv3ITSState *s, const uint64_t *cmdpkt)
{
uint32_t devid, eventid;
ITEntry ite;
DTEntry dte;
CTEntry cte;
VTEntry vte;
ItsCmdResult cmdres;
devid = FIELD_EX64(cmdpkt[0], INV_0, DEVICEID);
eventid = FIELD_EX64(cmdpkt[1], INV_1, EVENTID);
trace_gicv3_its_cmd_inv(devid, eventid);
cmdres = lookup_ite(s, __func__, devid, eventid, &ite, &dte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
switch (ite.inttype) {
case ITE_INTTYPE_PHYSICAL:
cmdres = lookup_cte(s, __func__, ite.icid, &cte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
gicv3_redist_inv_lpi(&s->gicv3->cpu[cte.rdbase], ite.intid);
break;
case ITE_INTTYPE_VIRTUAL:
if (!its_feature_virtual(s)) {
/* Can't happen unless guest is illegally writing to table memory */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid type %d in ITE (table corrupted?)\n",
__func__, ite.inttype);
return CMD_CONTINUE;
}
cmdres = lookup_vte(s, __func__, ite.vpeid, &vte);
if (cmdres != CMD_CONTINUE_OK) {
return cmdres;
}
if (!intid_in_lpi_range(ite.intid) ||
ite.intid >= (1ULL << (vte.vptsize + 1))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: intid 0x%x out of range\n",
__func__, ite.intid);
return CMD_CONTINUE;
}
gicv3_redist_inv_vlpi(&s->gicv3->cpu[vte.rdbase], ite.intid,
vte.vptaddr << 16);
break;
default:
g_assert_not_reached();
}
return CMD_CONTINUE_OK;
}
/*
* Current implementation blocks until all
* commands are processed
*/
static void process_cmdq(GICv3ITSState *s)
{
uint32_t wr_offset = 0;
uint32_t rd_offset = 0;
uint32_t cq_offset = 0;
AddressSpace *as = &s->gicv3->dma_as;
uint8_t cmd;
int i;
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
return;
}
wr_offset = FIELD_EX64(s->cwriter, GITS_CWRITER, OFFSET);
if (wr_offset >= s->cq.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid write offset "
"%d\n", __func__, wr_offset);
return;
}
rd_offset = FIELD_EX64(s->creadr, GITS_CREADR, OFFSET);
if (rd_offset >= s->cq.num_entries) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid read offset "
"%d\n", __func__, rd_offset);
return;
}
while (wr_offset != rd_offset) {
ItsCmdResult result = CMD_CONTINUE_OK;
void *hostmem;
hwaddr buflen;
uint64_t cmdpkt[GITS_CMDQ_ENTRY_WORDS];
cq_offset = (rd_offset * GITS_CMDQ_ENTRY_SIZE);
buflen = GITS_CMDQ_ENTRY_SIZE;
hostmem = address_space_map(as, s->cq.base_addr + cq_offset,
&buflen, false, MEMTXATTRS_UNSPECIFIED);
if (!hostmem || buflen != GITS_CMDQ_ENTRY_SIZE) {
if (hostmem) {
address_space_unmap(as, hostmem, buflen, false, 0);
}
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, STALLED, 1);
qemu_log_mask(LOG_GUEST_ERROR,
"%s: could not read command at 0x%" PRIx64 "\n",
__func__, s->cq.base_addr + cq_offset);
break;
}
for (i = 0; i < ARRAY_SIZE(cmdpkt); i++) {
cmdpkt[i] = ldq_le_p(hostmem + i * sizeof(uint64_t));
}
address_space_unmap(as, hostmem, buflen, false, 0);
cmd = cmdpkt[0] & CMD_MASK;
trace_gicv3_its_process_command(rd_offset, cmd);
switch (cmd) {
case GITS_CMD_INT:
result = process_its_cmd(s, cmdpkt, INTERRUPT);
break;
case GITS_CMD_CLEAR:
result = process_its_cmd(s, cmdpkt, CLEAR);
break;
case GITS_CMD_SYNC:
/*
* Current implementation makes a blocking synchronous call
* for every command issued earlier, hence the internal state
* is already consistent by the time SYNC command is executed.
* Hence no further processing is required for SYNC command.
*/
trace_gicv3_its_cmd_sync();
break;
case GITS_CMD_VSYNC:
/*
* VSYNC also is a nop, because our implementation is always
* in sync.
*/
if (!its_feature_virtual(s)) {
result = CMD_CONTINUE;
break;
}
trace_gicv3_its_cmd_vsync();
break;
case GITS_CMD_MAPD:
result = process_mapd(s, cmdpkt);
break;
case GITS_CMD_MAPC:
result = process_mapc(s, cmdpkt);
break;
case GITS_CMD_MAPTI:
result = process_mapti(s, cmdpkt, false);
break;
case GITS_CMD_MAPI:
result = process_mapti(s, cmdpkt, true);
break;
case GITS_CMD_DISCARD:
result = process_its_cmd(s, cmdpkt, DISCARD);
break;
case GITS_CMD_INV:
result = process_inv(s, cmdpkt);
break;
case GITS_CMD_INVALL:
/*
* Current implementation doesn't cache any ITS tables,
* but the calculated lpi priority information. We only
* need to trigger lpi priority re-calculation to be in
* sync with LPI config table or pending table changes.
* INVALL operates on a collection specified by ICID so
* it only affects physical LPIs.
*/
trace_gicv3_its_cmd_invall();
for (i = 0; i < s->gicv3->num_cpu; i++) {
gicv3_redist_update_lpi(&s->gicv3->cpu[i]);
}
break;
case GITS_CMD_MOVI:
result = process_movi(s, cmdpkt);
break;
case GITS_CMD_MOVALL:
result = process_movall(s, cmdpkt);
break;
case GITS_CMD_VMAPTI:
result = process_vmapti(s, cmdpkt, false);
break;
case GITS_CMD_VMAPI:
result = process_vmapti(s, cmdpkt, true);
break;
case GITS_CMD_VMAPP:
result = process_vmapp(s, cmdpkt);
break;
case GITS_CMD_VMOVP:
result = process_vmovp(s, cmdpkt);
break;
case GITS_CMD_VMOVI:
result = process_vmovi(s, cmdpkt);
break;
case GITS_CMD_VINVALL:
result = process_vinvall(s, cmdpkt);
break;
default:
trace_gicv3_its_cmd_unknown(cmd);
break;
}
if (result != CMD_STALL) {
/* CMD_CONTINUE or CMD_CONTINUE_OK */
rd_offset++;
rd_offset %= s->cq.num_entries;
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, OFFSET, rd_offset);
} else {
/* CMD_STALL */
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, STALLED, 1);
qemu_log_mask(LOG_GUEST_ERROR,
"%s: 0x%x cmd processing failed, stalling\n",
__func__, cmd);
break;
}
}
}
/*
* This function extracts the ITS Device and Collection table specific
* parameters (like base_addr, size etc) from GITS_BASER register.
* It is called during ITS enable and also during post_load migration
*/
static void extract_table_params(GICv3ITSState *s)
{
uint16_t num_pages = 0;
uint8_t page_sz_type;
uint8_t type;
uint32_t page_sz = 0;
uint64_t value;
for (int i = 0; i < 8; i++) {
TableDesc *td;
int idbits;
value = s->baser[i];
if (!value) {
continue;
}
page_sz_type = FIELD_EX64(value, GITS_BASER, PAGESIZE);
switch (page_sz_type) {
case 0:
page_sz = GITS_PAGE_SIZE_4K;
break;
case 1:
page_sz = GITS_PAGE_SIZE_16K;
break;
case 2:
case 3:
page_sz = GITS_PAGE_SIZE_64K;
break;
default:
g_assert_not_reached();
}
num_pages = FIELD_EX64(value, GITS_BASER, SIZE) + 1;
type = FIELD_EX64(value, GITS_BASER, TYPE);
switch (type) {
case GITS_BASER_TYPE_DEVICE:
td = &s->dt;
idbits = FIELD_EX64(s->typer, GITS_TYPER, DEVBITS) + 1;
break;
case GITS_BASER_TYPE_COLLECTION:
td = &s->ct;
if (FIELD_EX64(s->typer, GITS_TYPER, CIL)) {
idbits = FIELD_EX64(s->typer, GITS_TYPER, CIDBITS) + 1;
} else {
/* 16-bit CollectionId supported when CIL == 0 */
idbits = 16;
}
break;
case GITS_BASER_TYPE_VPE:
td = &s->vpet;
/*
* For QEMU vPEIDs are always 16 bits. (GICv4.1 allows an
* implementation to implement fewer bits and report this
* via GICD_TYPER2.)
*/
idbits = 16;
break;
default:
/*
* GITS_BASER<n>.TYPE is read-only, so GITS_BASER_RO_MASK
* ensures we will only see type values corresponding to
* the values set up in gicv3_its_reset().
*/
g_assert_not_reached();
}
memset(td, 0, sizeof(*td));
/*
* If GITS_BASER<n>.Valid is 0 for any <n> then we will not process
* interrupts. (GITS_TYPER.HCC is 0 for this implementation, so we
* do not have a special case where the GITS_BASER<n>.Valid bit is 0
* for the register corresponding to the Collection table but we
* still have to process interrupts using non-memory-backed
* Collection table entries.)
* The specification makes it UNPREDICTABLE to enable the ITS without
* marking each BASER<n> as valid. We choose to handle these as if
* the table was zero-sized, so commands using the table will fail
* and interrupts requested via GITS_TRANSLATER writes will be ignored.
* This happens automatically by leaving the num_entries field at
* zero, which will be caught by the bounds checks we have before
* every table lookup anyway.
*/
if (!FIELD_EX64(value, GITS_BASER, VALID)) {
continue;
}
td->page_sz = page_sz;
td->indirect = FIELD_EX64(value, GITS_BASER, INDIRECT);
td->entry_sz = FIELD_EX64(value, GITS_BASER, ENTRYSIZE) + 1;
td->base_addr = baser_base_addr(value, page_sz);
if (!td->indirect) {
td->num_entries = (num_pages * page_sz) / td->entry_sz;
} else {
td->num_entries = (((num_pages * page_sz) /
L1TABLE_ENTRY_SIZE) *
(page_sz / td->entry_sz));
}
td->num_entries = MIN(td->num_entries, 1ULL << idbits);
}
}
static void extract_cmdq_params(GICv3ITSState *s)
{
uint16_t num_pages = 0;
uint64_t value = s->cbaser;
num_pages = FIELD_EX64(value, GITS_CBASER, SIZE) + 1;
memset(&s->cq, 0 , sizeof(s->cq));
if (FIELD_EX64(value, GITS_CBASER, VALID)) {
s->cq.num_entries = (num_pages * GITS_PAGE_SIZE_4K) /
GITS_CMDQ_ENTRY_SIZE;
s->cq.base_addr = FIELD_EX64(value, GITS_CBASER, PHYADDR);
s->cq.base_addr <<= R_GITS_CBASER_PHYADDR_SHIFT;
}
}
static MemTxResult gicv3_its_translation_read(void *opaque, hwaddr offset,
uint64_t *data, unsigned size,
MemTxAttrs attrs)
{
/*
* GITS_TRANSLATER is write-only, and all other addresses
* in the interrupt translation space frame are RES0.
*/
*data = 0;
return MEMTX_OK;
}
static MemTxResult gicv3_its_translation_write(void *opaque, hwaddr offset,
uint64_t data, unsigned size,
MemTxAttrs attrs)
{
GICv3ITSState *s = (GICv3ITSState *)opaque;
bool result = true;
trace_gicv3_its_translation_write(offset, data, size, attrs.requester_id);
switch (offset) {
case GITS_TRANSLATER:
if (s->ctlr & R_GITS_CTLR_ENABLED_MASK) {
result = do_process_its_cmd(s, attrs.requester_id, data, NONE);
}
break;
default:
break;
}
if (result) {
return MEMTX_OK;
} else {
return MEMTX_ERROR;
}
}
static bool its_writel(GICv3ITSState *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_CTLR:
if (value & R_GITS_CTLR_ENABLED_MASK) {
s->ctlr |= R_GITS_CTLR_ENABLED_MASK;
extract_table_params(s);
extract_cmdq_params(s);
process_cmdq(s);
} else {
s->ctlr &= ~R_GITS_CTLR_ENABLED_MASK;
}
break;
case GITS_CBASER:
/*
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
s->cbaser = deposit64(s->cbaser, 0, 32, value);
s->creadr = 0;
}
break;
case GITS_CBASER + 4:
/*
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
s->cbaser = deposit64(s->cbaser, 32, 32, value);
s->creadr = 0;
}
break;
case GITS_CWRITER:
s->cwriter = deposit64(s->cwriter, 0, 32,
(value & ~R_GITS_CWRITER_RETRY_MASK));
if (s->cwriter != s->creadr) {
process_cmdq(s);
}
break;
case GITS_CWRITER + 4:
s->cwriter = deposit64(s->cwriter, 32, 32, value);
break;
case GITS_CREADR:
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
s->creadr = deposit64(s->creadr, 0, 32,
(value & ~R_GITS_CREADR_STALLED_MASK));
} else {
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
HWADDR_FMT_plx "\n", __func__, offset);
}
break;
case GITS_CREADR + 4:
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
s->creadr = deposit64(s->creadr, 32, 32, value);
} else {
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
HWADDR_FMT_plx "\n", __func__, offset);
}
break;
case GITS_BASER ... GITS_BASER + 0x3f:
/*
* IMPDEF choice:- GITS_BASERn register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
index = (offset - GITS_BASER) / 8;
if (s->baser[index] == 0) {
/* Unimplemented GITS_BASERn: RAZ/WI */
break;
}
if (offset & 7) {
value <<= 32;
value &= ~GITS_BASER_RO_MASK;
s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(0, 32);
s->baser[index] |= value;
} else {
value &= ~GITS_BASER_RO_MASK;
s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(32, 32);
s->baser[index] |= value;
}
}
break;
case GITS_IIDR:
case GITS_IDREGS ... GITS_IDREGS + 0x2f:
/* RO registers, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
HWADDR_FMT_plx "\n", __func__, offset);
break;
default:
result = false;
break;
}
return result;
}
static bool its_readl(GICv3ITSState *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_CTLR:
*data = s->ctlr;
break;
case GITS_IIDR:
*data = gicv3_iidr();
break;
case GITS_IDREGS ... GITS_IDREGS + 0x2f:
/* ID registers */
*data = gicv3_idreg(s->gicv3, offset - GITS_IDREGS, GICV3_PIDR0_ITS);
break;
case GITS_TYPER:
*data = extract64(s->typer, 0, 32);
break;
case GITS_TYPER + 4:
*data = extract64(s->typer, 32, 32);
break;
case GITS_CBASER:
*data = extract64(s->cbaser, 0, 32);
break;
case GITS_CBASER + 4:
*data = extract64(s->cbaser, 32, 32);
break;
case GITS_CREADR:
*data = extract64(s->creadr, 0, 32);
break;
case GITS_CREADR + 4:
*data = extract64(s->creadr, 32, 32);
break;
case GITS_CWRITER:
*data = extract64(s->cwriter, 0, 32);
break;
case GITS_CWRITER + 4:
*data = extract64(s->cwriter, 32, 32);
break;
case GITS_BASER ... GITS_BASER + 0x3f:
index = (offset - GITS_BASER) / 8;
if (offset & 7) {
*data = extract64(s->baser[index], 32, 32);
} else {
*data = extract64(s->baser[index], 0, 32);
}
break;
default:
result = false;
break;
}
return result;
}
static bool its_writell(GICv3ITSState *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_BASER ... GITS_BASER + 0x3f:
/*
* IMPDEF choice:- GITS_BASERn register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
index = (offset - GITS_BASER) / 8;
if (s->baser[index] == 0) {
/* Unimplemented GITS_BASERn: RAZ/WI */
break;
}
s->baser[index] &= GITS_BASER_RO_MASK;
s->baser[index] |= (value & ~GITS_BASER_RO_MASK);
}
break;
case GITS_CBASER:
/*
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
* already enabled
*/
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
s->cbaser = value;
s->creadr = 0;
}
break;
case GITS_CWRITER:
s->cwriter = value & ~R_GITS_CWRITER_RETRY_MASK;
if (s->cwriter != s->creadr) {
process_cmdq(s);
}
break;
case GITS_CREADR:
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
s->creadr = value & ~R_GITS_CREADR_STALLED_MASK;
} else {
/* RO register, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
HWADDR_FMT_plx "\n", __func__, offset);
}
break;
case GITS_TYPER:
/* RO registers, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
HWADDR_FMT_plx "\n", __func__, offset);
break;
default:
result = false;
break;
}
return result;
}
static bool its_readll(GICv3ITSState *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
bool result = true;
int index;
switch (offset) {
case GITS_TYPER:
*data = s->typer;
break;
case GITS_BASER ... GITS_BASER + 0x3f:
index = (offset - GITS_BASER) / 8;
*data = s->baser[index];
break;
case GITS_CBASER:
*data = s->cbaser;
break;
case GITS_CREADR:
*data = s->creadr;
break;
case GITS_CWRITER:
*data = s->cwriter;
break;
default:
result = false;
break;
}
return result;
}
static MemTxResult gicv3_its_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICv3ITSState *s = (GICv3ITSState *)opaque;
bool result;
switch (size) {
case 4:
result = its_readl(s, offset, data, attrs);
break;
case 8:
result = its_readll(s, offset, data, attrs);
break;
default:
result = false;
break;
}
if (!result) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read at offset " HWADDR_FMT_plx
" size %u\n", __func__, offset, size);
trace_gicv3_its_badread(offset, size);
/*
* The spec requires that reserved registers are RAZ/WI;
* so use false returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
*data = 0;
} else {
trace_gicv3_its_read(offset, *data, size);
}
return MEMTX_OK;
}
static MemTxResult gicv3_its_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
GICv3ITSState *s = (GICv3ITSState *)opaque;
bool result;
switch (size) {
case 4:
result = its_writel(s, offset, data, attrs);
break;
case 8:
result = its_writell(s, offset, data, attrs);
break;
default:
result = false;
break;
}
if (!result) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write at offset " HWADDR_FMT_plx
" size %u\n", __func__, offset, size);
trace_gicv3_its_badwrite(offset, data, size);
/*
* The spec requires that reserved registers are RAZ/WI;
* so use false returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
} else {
trace_gicv3_its_write(offset, data, size);
}
return MEMTX_OK;
}
static const MemoryRegionOps gicv3_its_control_ops = {
.read_with_attrs = gicv3_its_read,
.write_with_attrs = gicv3_its_write,
.valid.min_access_size = 4,
.valid.max_access_size = 8,
.impl.min_access_size = 4,
.impl.max_access_size = 8,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const MemoryRegionOps gicv3_its_translation_ops = {
.read_with_attrs = gicv3_its_translation_read,
.write_with_attrs = gicv3_its_translation_write,
.valid.min_access_size = 2,
.valid.max_access_size = 4,
.impl.min_access_size = 2,
.impl.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void gicv3_arm_its_realize(DeviceState *dev, Error **errp)
{
GICv3ITSState *s = ARM_GICV3_ITS_COMMON(dev);
int i;
for (i = 0; i < s->gicv3->num_cpu; i++) {
if (!(s->gicv3->cpu[i].gicr_typer & GICR_TYPER_PLPIS)) {
error_setg(errp, "Physical LPI not supported by CPU %d", i);
return;
}
}
gicv3_add_its(s->gicv3, dev);
gicv3_its_init_mmio(s, &gicv3_its_control_ops, &gicv3_its_translation_ops);
/* set the ITS default features supported */
s->typer = FIELD_DP64(s->typer, GITS_TYPER, PHYSICAL, 1);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, ITT_ENTRY_SIZE,
ITS_ITT_ENTRY_SIZE - 1);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, IDBITS, ITS_IDBITS);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, DEVBITS, ITS_DEVBITS);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIL, 1);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIDBITS, ITS_CIDBITS);
if (s->gicv3->revision >= 4) {
/* Our VMOVP handles cross-ITS synchronization itself */
s->typer = FIELD_DP64(s->typer, GITS_TYPER, VMOVP, 1);
s->typer = FIELD_DP64(s->typer, GITS_TYPER, VIRTUAL, 1);
}
}
static void gicv3_its_reset_hold(Object *obj, ResetType type)
{
GICv3ITSState *s = ARM_GICV3_ITS_COMMON(obj);
GICv3ITSClass *c = ARM_GICV3_ITS_GET_CLASS(s);
if (c->parent_phases.hold) {
c->parent_phases.hold(obj, type);
}
/* Quiescent bit reset to 1 */
s->ctlr = FIELD_DP32(s->ctlr, GITS_CTLR, QUIESCENT, 1);
/*
* setting GITS_BASER0.Type = 0b001 (Device)
* GITS_BASER1.Type = 0b100 (Collection Table)
* GITS_BASER2.Type = 0b010 (vPE) for GICv4 and later
* GITS_BASER<n>.Type,where n = 3 to 7 are 0b00 (Unimplemented)
* GITS_BASER<0,1>.Page_Size = 64KB
* and default translation table entry size to 16 bytes
*/
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, TYPE,
GITS_BASER_TYPE_DEVICE);
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, PAGESIZE,
GITS_BASER_PAGESIZE_64K);
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, ENTRYSIZE,
GITS_DTE_SIZE - 1);
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, TYPE,
GITS_BASER_TYPE_COLLECTION);
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, PAGESIZE,
GITS_BASER_PAGESIZE_64K);
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, ENTRYSIZE,
GITS_CTE_SIZE - 1);
if (its_feature_virtual(s)) {
s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, TYPE,
GITS_BASER_TYPE_VPE);
s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, PAGESIZE,
GITS_BASER_PAGESIZE_64K);
s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, ENTRYSIZE,
GITS_VPE_SIZE - 1);
}
}
static void gicv3_its_post_load(GICv3ITSState *s)
{
if (s->ctlr & R_GITS_CTLR_ENABLED_MASK) {
extract_table_params(s);
extract_cmdq_params(s);
}
}
static Property gicv3_its_props[] = {
DEFINE_PROP_LINK("parent-gicv3", GICv3ITSState, gicv3, "arm-gicv3",
GICv3State *),
DEFINE_PROP_END_OF_LIST(),
};
static void gicv3_its_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
GICv3ITSClass *ic = ARM_GICV3_ITS_CLASS(klass);
GICv3ITSCommonClass *icc = ARM_GICV3_ITS_COMMON_CLASS(klass);
dc->realize = gicv3_arm_its_realize;
device_class_set_props(dc, gicv3_its_props);
resettable_class_set_parent_phases(rc, NULL, gicv3_its_reset_hold, NULL,
&ic->parent_phases);
icc->post_load = gicv3_its_post_load;
}
static const TypeInfo gicv3_its_info = {
.name = TYPE_ARM_GICV3_ITS,
.parent = TYPE_ARM_GICV3_ITS_COMMON,
.instance_size = sizeof(GICv3ITSState),
.class_init = gicv3_its_class_init,
.class_size = sizeof(GICv3ITSClass),
};
static void gicv3_its_register_types(void)
{
type_register_static(&gicv3_its_info);
}
type_init(gicv3_its_register_types)