blob: d6188f6566a1be50c39db5f88cd41d6dc38fd5fb [file] [log] [blame]
/*
* QEMU ARM CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qemu/qemu-print.h"
#include "qemu-common.h"
#include "target/arm/idau.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "cpu.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "hw/qdev-properties.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#include "hw/boards.h"
#endif
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "sysemu/hw_accel.h"
#include "kvm_arm.h"
#include "disas/capstone.h"
#include "fpu/softfloat.h"
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (is_a64(env)) {
env->pc = value;
env->thumb = 0;
} else {
env->regs[15] = value & ~1;
env->thumb = value & 1;
}
}
static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* It's OK to look at env for the current mode here, because it's
* never possible for an AArch64 TB to chain to an AArch32 TB.
*/
if (is_a64(env)) {
env->pc = tb->pc;
} else {
env->regs[15] = tb->pc;
}
}
static bool arm_cpu_has_work(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
return (cpu->power_state != PSCI_OFF)
&& cs->interrupt_request &
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_EXITTB);
}
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
}
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
}
static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Reset a single ARMCPRegInfo register */
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
return;
}
if (ri->resetfn) {
ri->resetfn(&cpu->env, ri);
return;
}
/* A zero offset is never possible as it would be regs[0]
* so we use it to indicate that reset is being handled elsewhere.
* This is basically only used for fields in non-core coprocessors
* (like the pxa2xx ones).
*/
if (!ri->fieldoffset) {
return;
}
if (cpreg_field_is_64bit(ri)) {
CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
} else {
CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
}
}
static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Purely an assertion check: we've already done reset once,
* so now check that running the reset for the cpreg doesn't
* change its value. This traps bugs where two different cpregs
* both try to reset the same state field but to different values.
*/
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
uint64_t oldvalue, newvalue;
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
return;
}
oldvalue = read_raw_cp_reg(&cpu->env, ri);
cp_reg_reset(key, value, opaque);
newvalue = read_raw_cp_reg(&cpu->env, ri);
assert(oldvalue == newvalue);
}
static void arm_cpu_reset(DeviceState *dev)
{
CPUState *s = CPU(dev);
ARMCPU *cpu = ARM_CPU(s);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
CPUARMState *env = &cpu->env;
acc->parent_reset(dev);
memset(env, 0, offsetof(CPUARMState, end_reset_fields));
g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
}
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 64 bit CPUs always start in 64 bit mode */
env->aarch64 = 1;
#if defined(CONFIG_USER_ONLY)
env->pstate = PSTATE_MODE_EL0t;
/* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
/* Enable all PAC keys. */
env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
SCTLR_EnDA | SCTLR_EnDB);
/* and to the FP/Neon instructions */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
/* and to the SVE instructions */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
/* with reasonable vector length */
if (cpu_isar_feature(aa64_sve, cpu)) {
env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
}
/*
* Enable TBI0 and TBI1. While the real kernel only enables TBI0,
* turning on both here will produce smaller code and otherwise
* make no difference to the user-level emulation.
*
* In sve_probe_page, we assume that this is set.
* Do not modify this without other changes.
*/
env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
#else
/* Reset into the highest available EL */
if (arm_feature(env, ARM_FEATURE_EL3)) {
env->pstate = PSTATE_MODE_EL3h;
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
env->pc = cpu->rvbar;
#endif
} else {
#if defined(CONFIG_USER_ONLY)
/* Userspace expects access to cp10 and cp11 for FP/Neon */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
#endif
}
#if defined(CONFIG_USER_ONLY)
env->uncached_cpsr = ARM_CPU_MODE_USR;
/* For user mode we must enable access to coprocessors */
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->cp15.c15_cpar = 3;
} else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
env->cp15.c15_cpar = 1;
}
#else
/*
* If the highest available EL is EL2, AArch32 will start in Hyp
* mode; otherwise it starts in SVC. Note that if we start in
* AArch64 then these values in the uncached_cpsr will be ignored.
*/
if (arm_feature(env, ARM_FEATURE_EL2) &&
!arm_feature(env, ARM_FEATURE_EL3)) {
env->uncached_cpsr = ARM_CPU_MODE_HYP;
} else {
env->uncached_cpsr = ARM_CPU_MODE_SVC;
}
env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
if (arm_feature(env, ARM_FEATURE_M)) {
uint32_t initial_msp; /* Loaded from 0x0 */
uint32_t initial_pc; /* Loaded from 0x4 */
uint8_t *rom;
uint32_t vecbase;
if (cpu_isar_feature(aa32_lob, cpu)) {
/*
* LTPSIZE is constant 4 if MVE not implemented, and resets
* to an UNKNOWN value if MVE is implemented. We choose to
* always reset to 4.
*/
env->v7m.ltpsize = 4;
/* The LTPSIZE field in FPDSCR is constant and reads as 4. */
env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->v7m.secure = true;
} else {
/* This bit resets to 0 if security is supported, but 1 if
* it is not. The bit is not present in v7M, but we set it
* here so we can avoid having to make checks on it conditional
* on ARM_FEATURE_V8 (we don't let the guest see the bit).
*/
env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
/*
* Set NSACR to indicate "NS access permitted to everything";
* this avoids having to have all the tests of it being
* conditional on ARM_FEATURE_M_SECURITY. Note also that from
* v8.1M the guest-visible value of NSACR in a CPU without the
* Security Extension is 0xcff.
*/
env->v7m.nsacr = 0xcff;
}
/* In v7M the reset value of this bit is IMPDEF, but ARM recommends
* that it resets to 1, so QEMU always does that rather than making
* it dependent on CPU model. In v8M it is RES1.
*/
env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* in v8M the NONBASETHRDENA bit [0] is RES1 */
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
}
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
}
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
}
/* Unlike A/R profile, M profile defines the reset LR value */
env->regs[14] = 0xffffffff;
env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
/* Load the initial SP and PC from offset 0 and 4 in the vector table */
vecbase = env->v7m.vecbase[env->v7m.secure];
rom = rom_ptr(vecbase, 8);
if (rom) {
/* Address zero is covered by ROM which hasn't yet been
* copied into physical memory.
*/
initial_msp = ldl_p(rom);
initial_pc = ldl_p(rom + 4);
} else {
/* Address zero not covered by a ROM blob, or the ROM blob
* is in non-modifiable memory and this is a second reset after
* it got copied into memory. In the latter case, rom_ptr
* will return a NULL pointer and we should use ldl_phys instead.
*/
initial_msp = ldl_phys(s->as, vecbase);
initial_pc = ldl_phys(s->as, vecbase + 4);
}
env->regs[13] = initial_msp & 0xFFFFFFFC;
env->regs[15] = initial_pc & ~1;
env->thumb = initial_pc & 1;
}
/* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
* executing as AArch32 then check if highvecs are enabled and
* adjust the PC accordingly.
*/
if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
env->regs[15] = 0xFFFF0000;
}
/* M profile requires that reset clears the exclusive monitor;
* A profile does not, but clearing it makes more sense than having it
* set with an exclusive access on address zero.
*/
arm_clear_exclusive(env);
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
#endif
if (arm_feature(env, ARM_FEATURE_PMSA)) {
if (cpu->pmsav7_dregion > 0) {
if (arm_feature(env, ARM_FEATURE_V8)) {
memset(env->pmsav8.rbar[M_REG_NS], 0,
sizeof(*env->pmsav8.rbar[M_REG_NS])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_NS], 0,
sizeof(*env->pmsav8.rlar[M_REG_NS])
* cpu->pmsav7_dregion);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
memset(env->pmsav8.rbar[M_REG_S], 0,
sizeof(*env->pmsav8.rbar[M_REG_S])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_S], 0,
sizeof(*env->pmsav8.rlar[M_REG_S])
* cpu->pmsav7_dregion);
}
} else if (arm_feature(env, ARM_FEATURE_V7)) {
memset(env->pmsav7.drbar, 0,
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
memset(env->pmsav7.drsr, 0,
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
memset(env->pmsav7.dracr, 0,
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
}
}
env->pmsav7.rnr[M_REG_NS] = 0;
env->pmsav7.rnr[M_REG_S] = 0;
env->pmsav8.mair0[M_REG_NS] = 0;
env->pmsav8.mair0[M_REG_S] = 0;
env->pmsav8.mair1[M_REG_NS] = 0;
env->pmsav8.mair1[M_REG_S] = 0;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
if (cpu->sau_sregion > 0) {
memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
}
env->sau.rnr = 0;
/* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
* the Cortex-M33 does.
*/
env->sau.ctrl = 0;
}
set_flush_to_zero(1, &env->vfp.standard_fp_status);
set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status_f16);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status_f16);
#ifndef CONFIG_USER_ONLY
if (kvm_enabled()) {
kvm_arm_reset_vcpu(cpu);
}
#endif
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
arm_rebuild_hflags(env);
}
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
unsigned int target_el,
unsigned int cur_el, bool secure,
uint64_t hcr_el2)
{
CPUARMState *env = cs->env_ptr;
bool pstate_unmasked;
bool unmasked = false;
/*
* Don't take exceptions if they target a lower EL.
* This check should catch any exceptions that would not be taken
* but left pending.
*/
if (cur_el > target_el) {
return false;
}
switch (excp_idx) {
case EXCP_FIQ:
pstate_unmasked = !(env->daif & PSTATE_F);
break;
case EXCP_IRQ:
pstate_unmasked = !(env->daif & PSTATE_I);
break;
case EXCP_VFIQ:
if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
/* VFIQs are only taken when hypervized and non-secure. */
return false;
}
return !(env->daif & PSTATE_F);
case EXCP_VIRQ:
if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
/* VIRQs are only taken when hypervized and non-secure. */
return false;
}
return !(env->daif & PSTATE_I);
default:
g_assert_not_reached();
}
/*
* Use the target EL, current execution state and SCR/HCR settings to
* determine whether the corresponding CPSR bit is used to mask the
* interrupt.
*/
if ((target_el > cur_el) && (target_el != 1)) {
/* Exceptions targeting a higher EL may not be maskable */
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/*
* 64-bit masking rules are simple: exceptions to EL3
* can't be masked, and exceptions to EL2 can only be
* masked from Secure state. The HCR and SCR settings
* don't affect the masking logic, only the interrupt routing.
*/
if (target_el == 3 || !secure) {
unmasked = true;
}
} else {
/*
* The old 32-bit-only environment has a more complicated
* masking setup. HCR and SCR bits not only affect interrupt
* routing but also change the behaviour of masking.
*/
bool hcr, scr;
switch (excp_idx) {
case EXCP_FIQ:
/*
* If FIQs are routed to EL3 or EL2 then there are cases where
* we override the CPSR.F in determining if the exception is
* masked or not. If neither of these are set then we fall back
* to the CPSR.F setting otherwise we further assess the state
* below.
*/
hcr = hcr_el2 & HCR_FMO;
scr = (env->cp15.scr_el3 & SCR_FIQ);
/*
* When EL3 is 32-bit, the SCR.FW bit controls whether the
* CPSR.F bit masks FIQ interrupts when taken in non-secure
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
* when non-secure but only when FIQs are only routed to EL3.
*/
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
break;
case EXCP_IRQ:
/*
* When EL3 execution state is 32-bit, if HCR.IMO is set then
* we may override the CPSR.I masking when in non-secure state.
* The SCR.IRQ setting has already been taken into consideration
* when setting the target EL, so it does not have a further
* affect here.
*/
hcr = hcr_el2 & HCR_IMO;
scr = false;
break;
default:
g_assert_not_reached();
}
if ((scr || hcr) && !secure) {
unmasked = true;
}
}
}
/*
* The PSTATE bits only mask the interrupt if we have not overriden the
* ability above.
*/
return unmasked || pstate_unmasked;
}
bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUClass *cc = CPU_GET_CLASS(cs);
CPUARMState *env = cs->env_ptr;
uint32_t cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
uint32_t target_el;
uint32_t excp_idx;
/* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
if (interrupt_request & CPU_INTERRUPT_FIQ) {
excp_idx = EXCP_FIQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
excp_idx = EXCP_IRQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
excp_idx = EXCP_VIRQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
excp_idx = EXCP_VFIQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
return false;
found:
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->do_interrupt(cs);
return true;
}
void arm_cpu_update_virq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VIRQ, which is the logical OR of
* the HCR_EL2.VI bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
(env->irq_line_state & CPU_INTERRUPT_VIRQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
}
}
}
void arm_cpu_update_vfiq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VFIQ, which is the logical OR of
* the HCR_EL2.VF bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
(env->irq_line_state & CPU_INTERRUPT_VFIQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
}
}
}
#ifndef CONFIG_USER_ONLY
static void arm_cpu_set_irq(void *opaque, int irq, int level)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
static const int mask[] = {
[ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
[ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
[ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
[ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
};
if (level) {
env->irq_line_state |= mask[irq];
} else {
env->irq_line_state &= ~mask[irq];
}
switch (irq) {
case ARM_CPU_VIRQ:
assert(arm_feature(env, ARM_FEATURE_EL2));
arm_cpu_update_virq(cpu);
break;
case ARM_CPU_VFIQ:
assert(arm_feature(env, ARM_FEATURE_EL2));
arm_cpu_update_vfiq(cpu);
break;
case ARM_CPU_IRQ:
case ARM_CPU_FIQ:
if (level) {
cpu_interrupt(cs, mask[irq]);
} else {
cpu_reset_interrupt(cs, mask[irq]);
}
break;
default:
g_assert_not_reached();
}
}
static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
{
#ifdef CONFIG_KVM
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
uint32_t linestate_bit;
int irq_id;
switch (irq) {
case ARM_CPU_IRQ:
irq_id = KVM_ARM_IRQ_CPU_IRQ;
linestate_bit = CPU_INTERRUPT_HARD;
break;
case ARM_CPU_FIQ:
irq_id = KVM_ARM_IRQ_CPU_FIQ;
linestate_bit = CPU_INTERRUPT_FIQ;
break;
default:
g_assert_not_reached();
}
if (level) {
env->irq_line_state |= linestate_bit;
} else {
env->irq_line_state &= ~linestate_bit;
}
kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
#endif
}
static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
cpu_synchronize_state(cs);
return arm_cpu_data_is_big_endian(env);
}
#endif
static int
print_insn_thumb1(bfd_vma pc, disassemble_info *info)
{
return print_insn_arm(pc | 1, info);
}
static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
{
ARMCPU *ac = ARM_CPU(cpu);
CPUARMState *env = &ac->env;
bool sctlr_b;
if (is_a64(env)) {
/* We might not be compiled with the A64 disassembler
* because it needs a C++ compiler. Leave print_insn
* unset in this case to use the caller default behaviour.
*/
#if defined(CONFIG_ARM_A64_DIS)
info->print_insn = print_insn_arm_a64;
#endif
info->cap_arch = CS_ARCH_ARM64;
info->cap_insn_unit = 4;
info->cap_insn_split = 4;
} else {
int cap_mode;
if (env->thumb) {
info->print_insn = print_insn_thumb1;
info->cap_insn_unit = 2;
info->cap_insn_split = 4;
cap_mode = CS_MODE_THUMB;
} else {
info->print_insn = print_insn_arm;
info->cap_insn_unit = 4;
info->cap_insn_split = 4;
cap_mode = CS_MODE_ARM;
}
if (arm_feature(env, ARM_FEATURE_V8)) {
cap_mode |= CS_MODE_V8;
}
if (arm_feature(env, ARM_FEATURE_M)) {
cap_mode |= CS_MODE_MCLASS;
}
info->cap_arch = CS_ARCH_ARM;
info->cap_mode = cap_mode;
}
sctlr_b = arm_sctlr_b(env);
if (bswap_code(sctlr_b)) {
#ifdef TARGET_WORDS_BIGENDIAN
info->endian = BFD_ENDIAN_LITTLE;
#else
info->endian = BFD_ENDIAN_BIG;
#endif
}
info->flags &= ~INSN_ARM_BE32;
#ifndef CONFIG_USER_ONLY
if (sctlr_b) {
info->flags |= INSN_ARM_BE32;
}
#endif
}
#ifdef TARGET_AARCH64
static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t psr = pstate_read(env);
int i;
int el = arm_current_el(env);
const char *ns_status;
qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
for (i = 0; i < 32; i++) {
if (i == 31) {
qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
} else {
qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
(i + 2) % 3 ? " " : "\n");
}
}
if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
} else {
ns_status = "";
}
qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
psr,
psr & PSTATE_N ? 'N' : '-',
psr & PSTATE_Z ? 'Z' : '-',
psr & PSTATE_C ? 'C' : '-',
psr & PSTATE_V ? 'V' : '-',
ns_status,
el,
psr & PSTATE_SP ? 'h' : 't');
if (cpu_isar_feature(aa64_bti, cpu)) {
qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
}
if (!(flags & CPU_DUMP_FPU)) {
qemu_fprintf(f, "\n");
return;
}
if (fp_exception_el(env, el) != 0) {
qemu_fprintf(f, " FPU disabled\n");
return;
}
qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
vfp_get_fpcr(env), vfp_get_fpsr(env));
if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
int j, zcr_len = sve_zcr_len_for_el(env, el);
for (i = 0; i <= FFR_PRED_NUM; i++) {
bool eol;
if (i == FFR_PRED_NUM) {
qemu_fprintf(f, "FFR=");
/* It's last, so end the line. */
eol = true;
} else {
qemu_fprintf(f, "P%02d=", i);
switch (zcr_len) {
case 0:
eol = i % 8 == 7;
break;
case 1:
eol = i % 6 == 5;
break;
case 2:
case 3:
eol = i % 3 == 2;
break;
default:
/* More than one quadword per predicate. */
eol = true;
break;
}
}
for (j = zcr_len / 4; j >= 0; j--) {
int digits;
if (j * 4 + 4 <= zcr_len + 1) {
digits = 16;
} else {
digits = (zcr_len % 4 + 1) * 4;
}
qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
env->vfp.pregs[i].p[j],
j ? ":" : eol ? "\n" : " ");
}
}
for (i = 0; i < 32; i++) {
if (zcr_len == 0) {
qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
i, env->vfp.zregs[i].d[1],
env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
} else if (zcr_len == 1) {
qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
":%016" PRIx64 ":%016" PRIx64 "\n",
i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
} else {
for (j = zcr_len; j >= 0; j--) {
bool odd = (zcr_len - j) % 2 != 0;
if (j == zcr_len) {
qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
} else if (!odd) {
if (j > 0) {
qemu_fprintf(f, " [%x-%x]=", j, j - 1);
} else {
qemu_fprintf(f, " [%x]=", j);
}
}
qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
env->vfp.zregs[i].d[j * 2 + 1],
env->vfp.zregs[i].d[j * 2],
odd || j == 0 ? "\n" : ":");
}
}
}
} else {
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
i, q[1], q[0], (i & 1 ? "\n" : " "));
}
}
}
#else
static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
g_assert_not_reached();
}
#endif
static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
int i;
if (is_a64(env)) {
aarch64_cpu_dump_state(cs, f, flags);
return;
}
for (i = 0; i < 16; i++) {
qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
if ((i % 4) == 3) {
qemu_fprintf(f, "\n");
} else {
qemu_fprintf(f, " ");
}
}
if (arm_feature(env, ARM_FEATURE_M)) {
uint32_t xpsr = xpsr_read(env);
const char *mode;
const char *ns_status = "";
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
ns_status = env->v7m.secure ? "S " : "NS ";
}
if (xpsr & XPSR_EXCP) {
mode = "handler";
} else {
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
mode = "unpriv-thread";
} else {
mode = "priv-thread";
}
}
qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
xpsr,
xpsr & XPSR_N ? 'N' : '-',
xpsr & XPSR_Z ? 'Z' : '-',
xpsr & XPSR_C ? 'C' : '-',
xpsr & XPSR_V ? 'V' : '-',
xpsr & XPSR_T ? 'T' : 'A',
ns_status,
mode);
} else {
uint32_t psr = cpsr_read(env);
const char *ns_status = "";
if (arm_feature(env, ARM_FEATURE_EL3) &&
(psr & CPSR_M) != ARM_CPU_MODE_MON) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
}
qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
psr,
psr & CPSR_N ? 'N' : '-',
psr & CPSR_Z ? 'Z' : '-',
psr & CPSR_C ? 'C' : '-',
psr & CPSR_V ? 'V' : '-',
psr & CPSR_T ? 'T' : 'A',
ns_status,
aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
}
if (flags & CPU_DUMP_FPU) {
int numvfpregs = 0;
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
numvfpregs = 32;
} else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
numvfpregs = 16;
}
for (i = 0; i < numvfpregs; i++) {
uint64_t v = *aa32_vfp_dreg(env, i);
qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
i * 2, (uint32_t)v,
i * 2 + 1, (uint32_t)(v >> 32),
i, v);
}
qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
}
}
uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
{
uint32_t Aff1 = idx / clustersz;
uint32_t Aff0 = idx % clustersz;
return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
}
static void cpreg_hashtable_data_destroy(gpointer data)
{
/*
* Destroy function for cpu->cp_regs hashtable data entries.
* We must free the name string because it was g_strdup()ed in
* add_cpreg_to_hashtable(). It's OK to cast away the 'const'
* from r->name because we know we definitely allocated it.
*/
ARMCPRegInfo *r = data;
g_free((void *)r->name);
g_free(r);
}
static void arm_cpu_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu_set_cpustate_pointers(cpu);
cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
g_free, cpreg_hashtable_data_destroy);
QLIST_INIT(&cpu->pre_el_change_hooks);
QLIST_INIT(&cpu->el_change_hooks);
#ifndef CONFIG_USER_ONLY
/* Our inbound IRQ and FIQ lines */
if (kvm_enabled()) {
/* VIRQ and VFIQ are unused with KVM but we add them to maintain
* the same interface as non-KVM CPUs.
*/
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
} else {
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
}
qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
ARRAY_SIZE(cpu->gt_timer_outputs));
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
"gicv3-maintenance-interrupt", 1);
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
"pmu-interrupt", 1);
#endif
/* DTB consumers generally don't in fact care what the 'compatible'
* string is, so always provide some string and trust that a hypothetical
* picky DTB consumer will also provide a helpful error message.
*/
cpu->dtb_compatible = "qemu,unknown";
cpu->psci_version = 1; /* By default assume PSCI v0.1 */
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
if (tcg_enabled()) {
cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
}
}
static Property arm_cpu_gt_cntfrq_property =
DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
NANOSECONDS_PER_SECOND / GTIMER_SCALE);
static Property arm_cpu_reset_cbar_property =
DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
static Property arm_cpu_reset_hivecs_property =
DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
static Property arm_cpu_rvbar_property =
DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
#ifndef CONFIG_USER_ONLY
static Property arm_cpu_has_el2_property =
DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
static Property arm_cpu_has_el3_property =
DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
#endif
static Property arm_cpu_cfgend_property =
DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
static Property arm_cpu_has_vfp_property =
DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
static Property arm_cpu_has_neon_property =
DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
static Property arm_cpu_has_dsp_property =
DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
static Property arm_cpu_has_mpu_property =
DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
* because the CPU initfn will have already set cpu->pmsav7_dregion to
* the right value for that particular CPU type, and we don't want
* to override that with an incorrect constant value.
*/
static Property arm_cpu_pmsav7_dregion_property =
DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
pmsav7_dregion,
qdev_prop_uint32, uint32_t);
static bool arm_get_pmu(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu->has_pmu;
}
static void arm_set_pmu(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
if (value) {
if (kvm_enabled() && !kvm_arm_pmu_supported()) {
error_setg(errp, "'pmu' feature not supported by KVM on this host");
return;
}
set_feature(&cpu->env, ARM_FEATURE_PMU);
} else {
unset_feature(&cpu->env, ARM_FEATURE_PMU);
}
cpu->has_pmu = value;
}
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
{
/*
* The exact approach to calculating guest ticks is:
*
* muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
* NANOSECONDS_PER_SECOND);
*
* We don't do that. Rather we intentionally use integer division
* truncation below and in the caller for the conversion of host monotonic
* time to guest ticks to provide the exact inverse for the semantics of
* the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
* it loses precision when representing frequencies where
* `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
* provide an exact inverse leads to scheduling timers with negative
* periods, which in turn leads to sticky behaviour in the guest.
*
* Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
* cannot become zero.
*/
return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
}
void arm_cpu_post_init(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
/* M profile implies PMSA. We have to do this here rather than
* in realize with the other feature-implication checks because
* we look at the PMSA bit to see if we should add some properties.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
set_feature(&cpu->env, ARM_FEATURE_PMSA);
}
if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
}
if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
}
#ifndef CONFIG_USER_ONLY
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
/* Add the has_el3 state CPU property only if EL3 is allowed. This will
* prevent "has_el3" from existing on CPUs which cannot support EL3.
*/
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
object_property_add_link(obj, "secure-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->secure_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
}
if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
}
#endif
if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
cpu->has_pmu = true;
object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
}
/*
* Allow user to turn off VFP and Neon support, but only for TCG --
* KVM does not currently allow us to lie to the guest about its
* ID/feature registers, so the guest always sees what the host has.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
? cpu_isar_feature(aa64_fp_simd, cpu)
: cpu_isar_feature(aa32_vfp, cpu)) {
cpu->has_vfp = true;
if (!kvm_enabled()) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
cpu->has_neon = true;
if (!kvm_enabled()) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
}
if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
qdev_property_add_static(DEVICE(obj),
&arm_cpu_pmsav7_dregion_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
/*
* M profile: initial value of the Secure VTOR. We can't just use
* a simple DEFINE_PROP_UINT32 for this because we want to permit
* the property to be set after realize.
*/
object_property_add_uint32_ptr(obj, "init-svtor",
&cpu->init_svtor,
OBJ_PROP_FLAG_READWRITE);
}
qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
}
if (kvm_enabled()) {
kvm_arm_add_vcpu_properties(obj);
}
#ifndef CONFIG_USER_ONLY
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
cpu_isar_feature(aa64_mte, cpu)) {
object_property_add_link(obj, "tag-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->tag_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
object_property_add_link(obj, "secure-tag-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->secure_tag_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
}
}
#endif
}
static void arm_cpu_finalizefn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
ARMELChangeHook *hook, *next;
g_hash_table_destroy(cpu->cp_regs);
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
#ifndef CONFIG_USER_ONLY
if (cpu->pmu_timer) {
timer_del(cpu->pmu_timer);
timer_deinit(cpu->pmu_timer);
timer_free(cpu->pmu_timer);
}
#endif
}
void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
{
Error *local_err = NULL;
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
arm_cpu_sve_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
if (kvm_enabled()) {
kvm_arm_steal_time_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
}
static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
ARMCPU *cpu = ARM_CPU(dev);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
CPUARMState *env = &cpu->env;
int pagebits;
Error *local_err = NULL;
bool no_aa32 = false;
/* If we needed to query the host kernel for the CPU features
* then it's possible that might have failed in the initfn, but
* this is the first point where we can report it.
*/
if (cpu->host_cpu_probe_failed) {
if (!kvm_enabled()) {
error_setg(errp, "The 'host' CPU type can only be used with KVM");
} else {
error_setg(errp, "Failed to retrieve host CPU features");
}
return;
}
#ifndef CONFIG_USER_ONLY
/* The NVIC and M-profile CPU are two halves of a single piece of
* hardware; trying to use one without the other is a command line
* error and will result in segfaults if not caught here.
*/
if (arm_feature(env, ARM_FEATURE_M)) {
if (!env->nvic) {
error_setg(errp, "This board cannot be used with Cortex-M CPUs");
return;
}
} else {
if (env->nvic) {
error_setg(errp, "This board can only be used with Cortex-M CPUs");
return;
}
}
{
uint64_t scale;
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
if (!cpu->gt_cntfrq_hz) {
error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
cpu->gt_cntfrq_hz);
return;
}
scale = gt_cntfrq_period_ns(cpu);
} else {
scale = GTIMER_SCALE;
}
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_ptimer_cb, cpu);
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_vtimer_cb, cpu);
cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_htimer_cb, cpu);
cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_stimer_cb, cpu);
cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_hvtimer_cb, cpu);
}
#endif
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
arm_cpu_finalize_features(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
cpu->has_vfp != cpu->has_neon) {
/*
* This is an architectural requirement for AArch64; AArch32 is
* more flexible and permits VFP-no-Neon and Neon-no-VFP.
*/
error_setg(errp,
"AArch64 CPUs must have both VFP and Neon or neither");
return;
}
if (!cpu->has_vfp) {
uint64_t t;
uint32_t u;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
cpu->isar.id_aa64pfr0 = t;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
cpu->isar.id_isar6 = u;
u = cpu->isar.mvfr0;
u = FIELD_DP32(u, MVFR0, FPSP, 0);
u = FIELD_DP32(u, MVFR0, FPDP, 0);
u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
u = FIELD_DP32(u, MVFR0, FPROUND, 0);
if (!arm_feature(env, ARM_FEATURE_M)) {
u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
}
cpu->isar.mvfr0 = u;
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
u = FIELD_DP32(u, MVFR1, FPHP, 0);
if (arm_feature(env, ARM_FEATURE_M)) {
u = FIELD_DP32(u, MVFR1, FP16, 0);
}
cpu->isar.mvfr1 = u;
u = cpu->isar.mvfr2;
u = FIELD_DP32(u, MVFR2, FPMISC, 0);
cpu->isar.mvfr2 = u;
}
if (!cpu->has_neon) {
uint64_t t;
uint32_t u;
unset_feature(env, ARM_FEATURE_NEON);
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
cpu->isar.id_aa64pfr0 = t;
u = cpu->isar.id_isar5;
u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
cpu->isar.id_isar5 = u;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, DP, 0);
u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
cpu->isar.id_isar6 = u;
if (!arm_feature(env, ARM_FEATURE_M)) {
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
cpu->isar.mvfr1 = u;
u = cpu->isar.mvfr2;
u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
cpu->isar.mvfr2 = u;
}
}
if (!cpu->has_neon && !cpu->has_vfp) {
uint64_t t;
uint32_t u;
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
cpu->isar.id_aa64isar1 = t;
u = cpu->isar.mvfr0;
u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
cpu->isar.mvfr0 = u;
/* Despite the name, this field covers both VFP and Neon */
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
cpu->isar.mvfr1 = u;
}
if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
uint32_t u;
unset_feature(env, ARM_FEATURE_THUMB_DSP);
u = cpu->isar.id_isar1;
u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
cpu->isar.id_isar1 = u;
u = cpu->isar.id_isar2;
u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
cpu->isar.id_isar2 = u;
u = cpu->isar.id_isar3;
u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
cpu->isar.id_isar3 = u;
}
/* Some features automatically imply others: */
if (arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V7);
} else {
set_feature(env, ARM_FEATURE_V7VE);
}
}
/*
* There exist AArch64 cpus without AArch32 support. When KVM
* queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
* Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
* As a general principle, we also do not make ID register
* consistency checks anywhere unless using TCG, because only
* for TCG would a consistency-check failure be a QEMU bug.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
}
if (arm_feature(env, ARM_FEATURE_V7VE)) {
/* v7 Virtualization Extensions. In real hardware this implies
* EL2 and also the presence of the Security Extensions.
* For QEMU, for backwards-compatibility we implement some
* CPUs or CPU configs which have no actual EL2 or EL3 but do
* include the various other features that V7VE implies.
* Presence of EL2 itself is ARM_FEATURE_EL2, and of the
* Security Extensions is ARM_FEATURE_EL3.
*/
assert(!tcg_enabled() || no_aa32 ||
cpu_isar_feature(aa32_arm_div, cpu));
set_feature(env, ARM_FEATURE_LPAE);
set_feature(env, ARM_FEATURE_V7);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
set_feature(env, ARM_FEATURE_VAPA);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_MPIDR);
if (!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V6K);
} else {
set_feature(env, ARM_FEATURE_V6);
}
/* Always define VBAR for V7 CPUs even if it doesn't exist in
* non-EL3 configs. This is needed by some legacy boards.
*/
set_feature(env, ARM_FEATURE_VBAR);
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_MVFR);
}
if (arm_feature(env, ARM_FEATURE_V6)) {
set_feature(env, ARM_FEATURE_V5);
if (!arm_feature(env, ARM_FEATURE_M)) {
assert(!tcg_enabled() || no_aa32 ||
cpu_isar_feature(aa32_jazelle, cpu));
set_feature(env, ARM_FEATURE_AUXCR);
}
}
if (arm_feature(env, ARM_FEATURE_V5)) {
set_feature(env, ARM_FEATURE_V4T);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
set_feature(env, ARM_FEATURE_V7MP);
}
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
set_feature(env, ARM_FEATURE_CBAR);
}
if (arm_feature(env, ARM_FEATURE_THUMB2) &&
!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_THUMB_DSP);
}
/*
* We rely on no XScale CPU having VFP so we can use the same bits in the
* TB flags field for VECSTRIDE and XSCALE_CPAR.
*/
assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
!cpu_isar_feature(aa32_vfp_simd, cpu) ||
!arm_feature(env, ARM_FEATURE_XSCALE));
if (arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_M) &&
!arm_feature(env, ARM_FEATURE_PMSA)) {
/* v7VMSA drops support for the old ARMv5 tiny pages, so we
* can use 4K pages.
*/
pagebits = 12;
} else {
/* For CPUs which might have tiny 1K pages, or which have an
* MPU and might have small region sizes, stick with 1K pages.
*/
pagebits = 10;
}
if (!set_preferred_target_page_bits(pagebits)) {
/* This can only ever happen for hotplugging a CPU, or if
* the board code incorrectly creates a CPU which it has
* promised via minimum_page_size that it will not.
*/
error_setg(errp, "This CPU requires a smaller page size than the "
"system is using");
return;
}
/* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
* We don't support setting cluster ID ([16..23]) (known as Aff2
* in later ARM ARM versions), or any of the higher affinity level fields,
* so these bits always RAZ.
*/
if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
ARM_DEFAULT_CPUS_PER_CLUSTER);
}
if (cpu->reset_hivecs) {
cpu->reset_sctlr |= (1 << 13);
}
if (cpu->cfgend) {
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
cpu->reset_sctlr |= SCTLR_EE;
} else {
cpu->reset_sctlr |= SCTLR_B;
}
}
if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
/* If the has_el3 CPU property is disabled then we need to disable the
* feature.
*/
unset_feature(env, ARM_FEATURE_EL3);
/* Disable the security extension feature bits in the processor feature
* registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
*/
cpu->isar.id_pfr1 &= ~0xf0;
cpu->isar.id_aa64pfr0 &= ~0xf000;
}
if (!cpu->has_el2) {
unset_feature(env, ARM_FEATURE_EL2);
}
if (!cpu->has_pmu) {
unset_feature(env, ARM_FEATURE_PMU);
}
if (arm_feature(env, ARM_FEATURE_PMU)) {
pmu_init(cpu);
if (!kvm_enabled()) {
arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
}
#ifndef CONFIG_USER_ONLY
cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
cpu);
#endif
} else {
cpu->isar.id_aa64dfr0 =
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
cpu->pmceid0 = 0;
cpu->pmceid1 = 0;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/* Disable the hypervisor feature bits in the processor feature
* registers if we don't have EL2. These are id_pfr1[15:12] and
* id_aa64pfr0_el1[11:8].
*/
cpu->isar.id_aa64pfr0 &= ~0xf00;
cpu->isar.id_pfr1 &= ~0xf000;
}
#ifndef CONFIG_USER_ONLY
if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
/*
* Disable the MTE feature bits if we do not have tag-memory
* provided by the machine.
*/
cpu->isar.id_aa64pfr1 =
FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
}
#endif
/* MPU can be configured out of a PMSA CPU either by setting has-mpu
* to false or by setting pmsav7-dregion to 0.
*/
if (!cpu->has_mpu) {
cpu->pmsav7_dregion = 0;
}
if (cpu->pmsav7_dregion == 0) {
cpu->has_mpu = false;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7)) {
uint32_t nr = cpu->pmsav7_dregion;
if (nr > 0xff) {
error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
return;
}
if (nr) {
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
}
} else {
env->pmsav7.drbar = g_new0(uint32_t, nr);
env->pmsav7.drsr = g_new0(uint32_t, nr);
env->pmsav7.dracr = g_new0(uint32_t, nr);
}
}
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
uint32_t nr = cpu->sau_sregion;
if (nr > 0xff) {
error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
return;
}
if (nr) {
env->sau.rbar = g_new0(uint32_t, nr);
env->sau.rlar = g_new0(uint32_t, nr);
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
set_feature(env, ARM_FEATURE_VBAR);
}
register_cp_regs_for_features(cpu);
arm_cpu_register_gdb_regs_for_features(cpu);
init_cpreg_list(cpu);
#ifndef CONFIG_USER_ONLY
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
/*
* We must set cs->num_ases to the final value before
* the first call to cpu_address_space_init.
*/
if (cpu->tag_memory != NULL) {
cs->num_ases = 3 + has_secure;
} else {
cs->num_ases = 1 + has_secure;
}
if (has_secure) {
if (!cpu->secure_memory) {
cpu->secure_memory = cs->memory;
}
cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
cpu->secure_memory);
}
if (cpu->tag_memory != NULL) {
cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
cpu->tag_memory);
if (has_secure) {
cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
cpu->secure_tag_memory);
}
}
cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
/* No core_count specified, default to smp_cpus. */
if (cpu->core_count == -1) {
cpu->core_count = smp_cpus;
}
#endif
if (tcg_enabled()) {
int dcz_blocklen = 4 << cpu->dcz_blocksize;
/*
* We only support DCZ blocklen that fits on one page.
*
* Architectually this is always true. However TARGET_PAGE_SIZE
* is variable and, for compatibility with -machine virt-2.7,
* is only 1KiB, as an artifact of legacy ARMv5 subpage support.
* But even then, while the largest architectural DCZ blocklen
* is 2KiB, no cpu actually uses such a large blocklen.
*/
assert(dcz_blocklen <= TARGET_PAGE_SIZE);
/*
* We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
* both nibbles of each byte storing tag data may be written at once.
* Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
*/
if (cpu_isar_feature(aa64_mte, cpu)) {
assert(dcz_blocklen >= 2 * TAG_GRANULE);
}
}
qemu_init_vcpu(cs);
cpu_reset(cs);
acc->parent_realize(dev, errp);
}
static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
char **cpuname;
const char *cpunamestr;
cpuname = g_strsplit(cpu_model, ",", 1);
cpunamestr = cpuname[0];
#ifdef CONFIG_USER_ONLY
/* For backwards compatibility usermode emulation allows "-cpu any",
* which has the same semantics as "-cpu max".
*/
if (!strcmp(cpunamestr, "any")) {
cpunamestr = "max";
}
#endif
typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
oc = object_class_by_name(typename);
g_strfreev(cpuname);
g_free(typename);
if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
object_class_is_abstract(oc)) {
return NULL;
}
return oc;
}
/* CPU models. These are not needed for the AArch64 linux-user build. */
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
{ .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void cortex_a8_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a8";
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_EL3);
cpu->midr = 0x410fc080;
cpu->reset_fpsid = 0x410330c0;
cpu->isar.mvfr0 = 0x11110222;
cpu->isar.mvfr1 = 0x00011111;
cpu->ctr = 0x82048004;
cpu->reset_sctlr = 0x00c50078;
cpu->isar.id_pfr0 = 0x1031;
cpu->isar.id_pfr1 = 0x11;
cpu->isar.id_dfr0 = 0x400;
cpu->id_afr0 = 0;
cpu->isar.id_mmfr0 = 0x31100003;
cpu->isar.id_mmfr1 = 0x20000000;
cpu->isar.id_mmfr2 = 0x01202000;
cpu->isar.id_mmfr3 = 0x11;
cpu->isar.id_isar0 = 0x00101111;
cpu->isar.id_isar1 = 0x12112111;
cpu->isar.id_isar2 = 0x21232031;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x00111142;
cpu->isar.dbgdidr = 0x15141000;
cpu->clidr = (1 << 27) | (2 << 24) | 3;
cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
cpu->reset_auxcr = 2;
define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
}
static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
/* power_control should be set to maximum latency. Again,
* default to 0 and set by private hook
*/
{ .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
{ .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
{ .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0,
.fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
{ .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
/* TLB lockdown control */
{ .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
.access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
{ .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
.access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
{ .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
{ .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
{ .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
REGINFO_SENTINEL
};
static void cortex_a9_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a9";
set_feature(&cpu->env, ARM_FEATURE_V7);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_EL3);
/* Note that A9 supports the MP extensions even for
* A9UP and single-core A9MP (which are both different
* and valid configurations; we don't model A9UP).
*/
set_feature(&cpu->env, ARM_FEATURE_V7MP);
set_feature(&cpu->env, ARM_FEATURE_CBAR);
cpu->midr = 0x410fc090;
cpu->reset_fpsid = 0x41033090;
cpu->isar.mvfr0 = 0x11110222;
cpu->isar.mvfr1 = 0x01111111;
cpu->ctr = 0x80038003;
cpu->reset_sctlr = 0x00c50078;
cpu->isar.id_pfr0 = 0x1031;
cpu->isar.id_pfr1 = 0x11;
cpu->isar.id_dfr0 = 0x000;
cpu->id_afr0 = 0;
cpu->isar.id_mmfr0 = 0x00100103;
cpu->isar.id_mmfr1 = 0x20000000;
cpu->isar.id_mmfr2 = 0x01230000;
cpu->isar.id_mmfr3 = 0x00002111;
cpu->isar.id_isar0 = 0x00101111;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232041;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x00111142;
cpu->isar.dbgdidr = 0x35141000;
cpu->clidr = (1 << 27) | (1 << 24) | 3;
cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
}
#ifndef CONFIG_USER_ONLY
static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
MachineState *ms = MACHINE(qdev_get_machine());
/* Linux wants the number of processors from here.
* Might as well set the interrupt-controller bit too.
*/
return ((ms->smp.cpus - 1) << 24) | (1 << 23);
}
#endif
static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
#ifndef CONFIG_USER_ONLY
{ .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
.access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
.writefn = arm_cp_write_ignore, },
#endif
{ .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
REGINFO_SENTINEL
};
static void cortex_a7_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a7";
set_feature(&cpu->env, ARM_FEATURE_V7VE);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
cpu->midr = 0x410fc075;
cpu->reset_fpsid = 0x41023075;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x11111111;
cpu->ctr = 0x84448003;
cpu->reset_sctlr = 0x00c50078;
cpu->isar.id_pfr0 = 0x00001131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x02010555;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10101105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01240000;
cpu->isar.id_mmfr3 = 0x02102211;
/* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
* table 4-41 gives 0x02101110, which includes the arm div insns.
*/
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232041;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x10011142;
cpu->isar.dbgdidr = 0x3515f005;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
}
static void cortex_a15_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a15";
set_feature(&cpu->env, ARM_FEATURE_V7VE);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
cpu->midr = 0x412fc0f1;
cpu->reset_fpsid = 0x410430f0;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x11111111;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50078;
cpu->isar.id_pfr0 = 0x00001131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x02010555;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x20000000;
cpu->isar.id_mmfr2 = 0x01240000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232041;
cpu->isar.id_isar3 = 0x11112131;
cpu->isar.id_isar4 = 0x10011142;
cpu->isar.dbgdidr = 0x3515f021;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
}
#ifndef TARGET_AARCH64
/*
* -cpu max: a CPU with as many features enabled as our emulation supports.
* The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
* this only needs to handle 32 bits, and need not care about KVM.
*/
static void arm_max_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cortex_a15_initfn(obj);
/* old-style VFP short-vector support */
cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
#ifdef CONFIG_USER_ONLY
/*
* We don't set these in system emulation mode for the moment,
* since we don't correctly set (all of) the ID registers to
* advertise them.
*/
set_feature(&cpu->env, ARM_FEATURE_V8);
{
uint32_t t;
t = cpu->isar.id_isar5;
t = FIELD_DP32(t, ID_ISAR5, AES, 2);
t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
cpu->isar.id_isar5 = t;
t = cpu->isar.id_isar6;
t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
t = FIELD_DP32(t, ID_ISAR6, DP, 1);
t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
t = FIELD_DP32(t, ID_ISAR6, SB, 1);
t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
cpu->isar.id_isar6 = t;
t = cpu->isar.mvfr1;
t = FIELD_DP32(t, MVFR1, FPHP, 3); /* v8.2-FP16 */
t = FIELD_DP32(t, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
cpu->isar.mvfr1 = t;
t = cpu->isar.mvfr2;
t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
cpu->isar.mvfr2 = t;
t = cpu->isar.id_mmfr3;
t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
cpu->isar.id_mmfr3 = t;
t = cpu->isar.id_mmfr4;
t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
cpu->isar.id_mmfr4 = t;
}
#endif
}
#endif
#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
static const ARMCPUInfo arm_cpus[] = {
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
{ .name = "cortex-a7", .initfn = cortex_a7_initfn },
{ .name = "cortex-a8", .initfn = cortex_a8_initfn },
{ .name = "cortex-a9", .initfn = cortex_a9_initfn },
{ .name = "cortex-a15", .initfn = cortex_a15_initfn },
#ifndef TARGET_AARCH64
{ .name = "max", .initfn = arm_max_initfn },
#endif
#ifdef CONFIG_USER_ONLY
{ .name = "any", .initfn = arm_max_initfn },
#endif
#endif
};
static Property arm_cpu_properties[] = {
DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
mp_affinity, ARM64_AFFINITY_INVALID),
DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
DEFINE_PROP_END_OF_LIST()
};
static gchar *arm_gdb_arch_name(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
return g_strdup("iwmmxt");
}
return g_strdup("arm");
}
static void arm_cpu_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(acc);
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_parent_realize(dc, arm_cpu_realizefn,
&acc->parent_realize);
device_class_set_props(dc, arm_cpu_properties);
device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
cc->class_by_name = arm_cpu_class_by_name;
cc->has_work = arm_cpu_has_work;
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
cc->gdb_read_register = arm_cpu_gdb_read_register;
cc->gdb_write_register = arm_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cc->do_interrupt = arm_cpu_do_interrupt;
cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
cc->asidx_from_attrs = arm_asidx_from_attrs;
cc->vmsd = &vmstate_arm_cpu;
cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
cc->write_elf64_note = arm_cpu_write_elf64_note;
cc->write_elf32_note = arm_cpu_write_elf32_note;
#endif
cc->gdb_num_core_regs = 26;
cc->gdb_core_xml_file = "arm-core.xml";
cc->gdb_arch_name = arm_gdb_arch_name;
cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
cc->gdb_stop_before_watchpoint = true;
cc->disas_set_info = arm_disas_set_info;
#ifdef CONFIG_TCG
cc->tcg_initialize = arm_translate_init;
cc->tlb_fill = arm_cpu_tlb_fill;
cc->debug_excp_handler = arm_debug_excp_handler;
cc->debug_check_watchpoint = arm_debug_check_watchpoint;
cc->do_unaligned_access = arm_cpu_do_unaligned_access;
#if !defined(CONFIG_USER_ONLY)
cc->do_transaction_failed = arm_cpu_do_transaction_failed;
cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
#endif
}
#ifdef CONFIG_KVM
static void arm_host_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
kvm_arm_set_cpu_features_from_host(cpu);
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
aarch64_add_sve_properties(obj);
}
arm_cpu_post_init(obj);
}
static const TypeInfo host_arm_cpu_type_info = {
.name = TYPE_ARM_HOST_CPU,
.parent = TYPE_AARCH64_CPU,
.instance_init = arm_host_initfn,
};
#endif
static void arm_cpu_instance_init(Object *obj)
{
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
acc->info->initfn(obj);
arm_cpu_post_init(obj);
}
static void cpu_register_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
acc->info = data;
}
void arm_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_align = __alignof__(ARMCPU),
.instance_init = arm_cpu_instance_init,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init ?: cpu_register_class_init,
.class_data = (void *)info,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo arm_cpu_type_info = {
.name = TYPE_ARM_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(ARMCPU),
.instance_align = __alignof__(ARMCPU),
.instance_init = arm_cpu_initfn,
.instance_finalize = arm_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(ARMCPUClass),
.class_init = arm_cpu_class_init,
};
static const TypeInfo idau_interface_type_info = {
.name = TYPE_IDAU_INTERFACE,
.parent = TYPE_INTERFACE,
.class_size = sizeof(IDAUInterfaceClass),
};
static void arm_cpu_register_types(void)
{
const size_t cpu_count = ARRAY_SIZE(arm_cpus);
type_register_static(&arm_cpu_type_info);
#ifdef CONFIG_KVM
type_register_static(&host_arm_cpu_type_info);
#endif
if (cpu_count) {
size_t i;
type_register_static(&idau_interface_type_info);
for (i = 0; i < cpu_count; ++i) {
arm_cpu_register(&arm_cpus[i]);
}
}
}
type_init(arm_cpu_register_types)