| /* |
| * defines common to all virtual CPUs |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #ifndef CPU_ALL_H |
| #define CPU_ALL_H |
| |
| #include "qemu-common.h" |
| #include "qemu/tls.h" |
| #include "exec/cpu-common.h" |
| #include "qemu/thread.h" |
| |
| /* some important defines: |
| * |
| * WORDS_ALIGNED : if defined, the host cpu can only make word aligned |
| * memory accesses. |
| * |
| * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and |
| * otherwise little endian. |
| * |
| * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) |
| * |
| * TARGET_WORDS_BIGENDIAN : same for target cpu |
| */ |
| |
| #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) |
| #define BSWAP_NEEDED |
| #endif |
| |
| #ifdef BSWAP_NEEDED |
| |
| static inline uint16_t tswap16(uint16_t s) |
| { |
| return bswap16(s); |
| } |
| |
| static inline uint32_t tswap32(uint32_t s) |
| { |
| return bswap32(s); |
| } |
| |
| static inline uint64_t tswap64(uint64_t s) |
| { |
| return bswap64(s); |
| } |
| |
| static inline void tswap16s(uint16_t *s) |
| { |
| *s = bswap16(*s); |
| } |
| |
| static inline void tswap32s(uint32_t *s) |
| { |
| *s = bswap32(*s); |
| } |
| |
| static inline void tswap64s(uint64_t *s) |
| { |
| *s = bswap64(*s); |
| } |
| |
| #else |
| |
| static inline uint16_t tswap16(uint16_t s) |
| { |
| return s; |
| } |
| |
| static inline uint32_t tswap32(uint32_t s) |
| { |
| return s; |
| } |
| |
| static inline uint64_t tswap64(uint64_t s) |
| { |
| return s; |
| } |
| |
| static inline void tswap16s(uint16_t *s) |
| { |
| } |
| |
| static inline void tswap32s(uint32_t *s) |
| { |
| } |
| |
| static inline void tswap64s(uint64_t *s) |
| { |
| } |
| |
| #endif |
| |
| #if TARGET_LONG_SIZE == 4 |
| #define tswapl(s) tswap32(s) |
| #define tswapls(s) tswap32s((uint32_t *)(s)) |
| #define bswaptls(s) bswap32s(s) |
| #else |
| #define tswapl(s) tswap64(s) |
| #define tswapls(s) tswap64s((uint64_t *)(s)) |
| #define bswaptls(s) bswap64s(s) |
| #endif |
| |
| /* CPU memory access without any memory or io remapping */ |
| |
| /* |
| * the generic syntax for the memory accesses is: |
| * |
| * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) |
| * |
| * store: st{type}{size}{endian}_{access_type}(ptr, val) |
| * |
| * type is: |
| * (empty): integer access |
| * f : float access |
| * |
| * sign is: |
| * (empty): for floats or 32 bit size |
| * u : unsigned |
| * s : signed |
| * |
| * size is: |
| * b: 8 bits |
| * w: 16 bits |
| * l: 32 bits |
| * q: 64 bits |
| * |
| * endian is: |
| * (empty): target cpu endianness or 8 bit access |
| * r : reversed target cpu endianness (not implemented yet) |
| * be : big endian (not implemented yet) |
| * le : little endian (not implemented yet) |
| * |
| * access_type is: |
| * raw : host memory access |
| * user : user mode access using soft MMU |
| * kernel : kernel mode access using soft MMU |
| */ |
| |
| /* target-endianness CPU memory access functions */ |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| #define lduw_p(p) lduw_be_p(p) |
| #define ldsw_p(p) ldsw_be_p(p) |
| #define ldl_p(p) ldl_be_p(p) |
| #define ldq_p(p) ldq_be_p(p) |
| #define ldfl_p(p) ldfl_be_p(p) |
| #define ldfq_p(p) ldfq_be_p(p) |
| #define stw_p(p, v) stw_be_p(p, v) |
| #define stl_p(p, v) stl_be_p(p, v) |
| #define stq_p(p, v) stq_be_p(p, v) |
| #define stfl_p(p, v) stfl_be_p(p, v) |
| #define stfq_p(p, v) stfq_be_p(p, v) |
| #else |
| #define lduw_p(p) lduw_le_p(p) |
| #define ldsw_p(p) ldsw_le_p(p) |
| #define ldl_p(p) ldl_le_p(p) |
| #define ldq_p(p) ldq_le_p(p) |
| #define ldfl_p(p) ldfl_le_p(p) |
| #define ldfq_p(p) ldfq_le_p(p) |
| #define stw_p(p, v) stw_le_p(p, v) |
| #define stl_p(p, v) stl_le_p(p, v) |
| #define stq_p(p, v) stq_le_p(p, v) |
| #define stfl_p(p, v) stfl_le_p(p, v) |
| #define stfq_p(p, v) stfq_le_p(p, v) |
| #endif |
| |
| /* MMU memory access macros */ |
| |
| #if defined(CONFIG_USER_ONLY) |
| #include <assert.h> |
| #include "exec/user/abitypes.h" |
| |
| /* On some host systems the guest address space is reserved on the host. |
| * This allows the guest address space to be offset to a convenient location. |
| */ |
| #if defined(CONFIG_USE_GUEST_BASE) |
| extern unsigned long guest_base; |
| extern int have_guest_base; |
| extern unsigned long reserved_va; |
| #define GUEST_BASE guest_base |
| #define RESERVED_VA reserved_va |
| #else |
| #define GUEST_BASE 0ul |
| #define RESERVED_VA 0ul |
| #endif |
| |
| /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ |
| #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE)) |
| |
| #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS |
| #define h2g_valid(x) 1 |
| #else |
| #define h2g_valid(x) ({ \ |
| unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ |
| (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \ |
| (!RESERVED_VA || (__guest < RESERVED_VA)); \ |
| }) |
| #endif |
| |
| #define h2g(x) ({ \ |
| unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ |
| /* Check if given address fits target address space */ \ |
| assert(h2g_valid(x)); \ |
| (abi_ulong)__ret; \ |
| }) |
| |
| #define saddr(x) g2h(x) |
| #define laddr(x) g2h(x) |
| |
| #else /* !CONFIG_USER_ONLY */ |
| /* NOTE: we use double casts if pointers and target_ulong have |
| different sizes */ |
| #define saddr(x) (uint8_t *)(intptr_t)(x) |
| #define laddr(x) (uint8_t *)(intptr_t)(x) |
| #endif |
| |
| #define ldub_raw(p) ldub_p(laddr((p))) |
| #define ldsb_raw(p) ldsb_p(laddr((p))) |
| #define lduw_raw(p) lduw_p(laddr((p))) |
| #define ldsw_raw(p) ldsw_p(laddr((p))) |
| #define ldl_raw(p) ldl_p(laddr((p))) |
| #define ldq_raw(p) ldq_p(laddr((p))) |
| #define ldfl_raw(p) ldfl_p(laddr((p))) |
| #define ldfq_raw(p) ldfq_p(laddr((p))) |
| #define stb_raw(p, v) stb_p(saddr((p)), v) |
| #define stw_raw(p, v) stw_p(saddr((p)), v) |
| #define stl_raw(p, v) stl_p(saddr((p)), v) |
| #define stq_raw(p, v) stq_p(saddr((p)), v) |
| #define stfl_raw(p, v) stfl_p(saddr((p)), v) |
| #define stfq_raw(p, v) stfq_p(saddr((p)), v) |
| |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| /* if user mode, no other memory access functions */ |
| #define ldub(p) ldub_raw(p) |
| #define ldsb(p) ldsb_raw(p) |
| #define lduw(p) lduw_raw(p) |
| #define ldsw(p) ldsw_raw(p) |
| #define ldl(p) ldl_raw(p) |
| #define ldq(p) ldq_raw(p) |
| #define ldfl(p) ldfl_raw(p) |
| #define ldfq(p) ldfq_raw(p) |
| #define stb(p, v) stb_raw(p, v) |
| #define stw(p, v) stw_raw(p, v) |
| #define stl(p, v) stl_raw(p, v) |
| #define stq(p, v) stq_raw(p, v) |
| #define stfl(p, v) stfl_raw(p, v) |
| #define stfq(p, v) stfq_raw(p, v) |
| |
| #define cpu_ldub_code(env1, p) ldub_raw(p) |
| #define cpu_ldsb_code(env1, p) ldsb_raw(p) |
| #define cpu_lduw_code(env1, p) lduw_raw(p) |
| #define cpu_ldsw_code(env1, p) ldsw_raw(p) |
| #define cpu_ldl_code(env1, p) ldl_raw(p) |
| #define cpu_ldq_code(env1, p) ldq_raw(p) |
| |
| #define cpu_ldub_data(env, addr) ldub_raw(addr) |
| #define cpu_lduw_data(env, addr) lduw_raw(addr) |
| #define cpu_ldsw_data(env, addr) ldsw_raw(addr) |
| #define cpu_ldl_data(env, addr) ldl_raw(addr) |
| #define cpu_ldq_data(env, addr) ldq_raw(addr) |
| |
| #define cpu_stb_data(env, addr, data) stb_raw(addr, data) |
| #define cpu_stw_data(env, addr, data) stw_raw(addr, data) |
| #define cpu_stl_data(env, addr, data) stl_raw(addr, data) |
| #define cpu_stq_data(env, addr, data) stq_raw(addr, data) |
| |
| #define cpu_ldub_kernel(env, addr) ldub_raw(addr) |
| #define cpu_lduw_kernel(env, addr) lduw_raw(addr) |
| #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr) |
| #define cpu_ldl_kernel(env, addr) ldl_raw(addr) |
| #define cpu_ldq_kernel(env, addr) ldq_raw(addr) |
| |
| #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data) |
| #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data) |
| #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data) |
| #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data) |
| |
| #define ldub_kernel(p) ldub_raw(p) |
| #define ldsb_kernel(p) ldsb_raw(p) |
| #define lduw_kernel(p) lduw_raw(p) |
| #define ldsw_kernel(p) ldsw_raw(p) |
| #define ldl_kernel(p) ldl_raw(p) |
| #define ldq_kernel(p) ldq_raw(p) |
| #define ldfl_kernel(p) ldfl_raw(p) |
| #define ldfq_kernel(p) ldfq_raw(p) |
| #define stb_kernel(p, v) stb_raw(p, v) |
| #define stw_kernel(p, v) stw_raw(p, v) |
| #define stl_kernel(p, v) stl_raw(p, v) |
| #define stq_kernel(p, v) stq_raw(p, v) |
| #define stfl_kernel(p, v) stfl_raw(p, v) |
| #define stfq_kernel(p, vt) stfq_raw(p, v) |
| |
| #define cpu_ldub_data(env, addr) ldub_raw(addr) |
| #define cpu_lduw_data(env, addr) lduw_raw(addr) |
| #define cpu_ldl_data(env, addr) ldl_raw(addr) |
| |
| #define cpu_stb_data(env, addr, data) stb_raw(addr, data) |
| #define cpu_stw_data(env, addr, data) stw_raw(addr, data) |
| #define cpu_stl_data(env, addr, data) stl_raw(addr, data) |
| #endif /* defined(CONFIG_USER_ONLY) */ |
| |
| /* page related stuff */ |
| |
| #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) |
| #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) |
| #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) |
| |
| /* ??? These should be the larger of uintptr_t and target_ulong. */ |
| extern uintptr_t qemu_real_host_page_size; |
| extern uintptr_t qemu_host_page_size; |
| extern uintptr_t qemu_host_page_mask; |
| |
| #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) |
| |
| /* same as PROT_xxx */ |
| #define PAGE_READ 0x0001 |
| #define PAGE_WRITE 0x0002 |
| #define PAGE_EXEC 0x0004 |
| #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) |
| #define PAGE_VALID 0x0008 |
| /* original state of the write flag (used when tracking self-modifying |
| code */ |
| #define PAGE_WRITE_ORG 0x0010 |
| #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
| /* FIXME: Code that sets/uses this is broken and needs to go away. */ |
| #define PAGE_RESERVED 0x0020 |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| void page_dump(FILE *f); |
| |
| typedef int (*walk_memory_regions_fn)(void *, abi_ulong, |
| abi_ulong, unsigned long); |
| int walk_memory_regions(void *, walk_memory_regions_fn); |
| |
| int page_get_flags(target_ulong address); |
| void page_set_flags(target_ulong start, target_ulong end, int flags); |
| int page_check_range(target_ulong start, target_ulong len, int flags); |
| #endif |
| |
| CPUArchState *cpu_copy(CPUArchState *env); |
| |
| #define CPU_DUMP_CODE 0x00010000 |
| #define CPU_DUMP_FPU 0x00020000 /* dump FPU register state, not just integer */ |
| /* dump info about TCG QEMU's condition code optimization state */ |
| #define CPU_DUMP_CCOP 0x00040000 |
| |
| void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf, |
| int flags); |
| void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf, |
| int flags); |
| |
| void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...) |
| GCC_FMT_ATTR(2, 3); |
| extern CPUArchState *first_cpu; |
| DECLARE_TLS(CPUArchState *,cpu_single_env); |
| #define cpu_single_env tls_var(cpu_single_env) |
| |
| /* Flags for use in ENV->INTERRUPT_PENDING. |
| |
| The numbers assigned here are non-sequential in order to preserve |
| binary compatibility with the vmstate dump. Bit 0 (0x0001) was |
| previously used for CPU_INTERRUPT_EXIT, and is cleared when loading |
| the vmstate dump. */ |
| |
| /* External hardware interrupt pending. This is typically used for |
| interrupts from devices. */ |
| #define CPU_INTERRUPT_HARD 0x0002 |
| |
| /* Exit the current TB. This is typically used when some system-level device |
| makes some change to the memory mapping. E.g. the a20 line change. */ |
| #define CPU_INTERRUPT_EXITTB 0x0004 |
| |
| /* Halt the CPU. */ |
| #define CPU_INTERRUPT_HALT 0x0020 |
| |
| /* Debug event pending. */ |
| #define CPU_INTERRUPT_DEBUG 0x0080 |
| |
| /* Several target-specific external hardware interrupts. Each target/cpu.h |
| should define proper names based on these defines. */ |
| #define CPU_INTERRUPT_TGT_EXT_0 0x0008 |
| #define CPU_INTERRUPT_TGT_EXT_1 0x0010 |
| #define CPU_INTERRUPT_TGT_EXT_2 0x0040 |
| #define CPU_INTERRUPT_TGT_EXT_3 0x0200 |
| #define CPU_INTERRUPT_TGT_EXT_4 0x1000 |
| |
| /* Several target-specific internal interrupts. These differ from the |
| preceding target-specific interrupts in that they are intended to |
| originate from within the cpu itself, typically in response to some |
| instruction being executed. These, therefore, are not masked while |
| single-stepping within the debugger. */ |
| #define CPU_INTERRUPT_TGT_INT_0 0x0100 |
| #define CPU_INTERRUPT_TGT_INT_1 0x0400 |
| #define CPU_INTERRUPT_TGT_INT_2 0x0800 |
| #define CPU_INTERRUPT_TGT_INT_3 0x2000 |
| |
| /* First unused bit: 0x4000. */ |
| |
| /* The set of all bits that should be masked when single-stepping. */ |
| #define CPU_INTERRUPT_SSTEP_MASK \ |
| (CPU_INTERRUPT_HARD \ |
| | CPU_INTERRUPT_TGT_EXT_0 \ |
| | CPU_INTERRUPT_TGT_EXT_1 \ |
| | CPU_INTERRUPT_TGT_EXT_2 \ |
| | CPU_INTERRUPT_TGT_EXT_3 \ |
| | CPU_INTERRUPT_TGT_EXT_4) |
| |
| #ifndef CONFIG_USER_ONLY |
| typedef void (*CPUInterruptHandler)(CPUArchState *, int); |
| |
| extern CPUInterruptHandler cpu_interrupt_handler; |
| |
| static inline void cpu_interrupt(CPUArchState *s, int mask) |
| { |
| cpu_interrupt_handler(s, mask); |
| } |
| #else /* USER_ONLY */ |
| void cpu_interrupt(CPUArchState *env, int mask); |
| #endif /* USER_ONLY */ |
| |
| void cpu_reset_interrupt(CPUArchState *env, int mask); |
| |
| void cpu_exit(CPUArchState *s); |
| |
| /* Breakpoint/watchpoint flags */ |
| #define BP_MEM_READ 0x01 |
| #define BP_MEM_WRITE 0x02 |
| #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) |
| #define BP_STOP_BEFORE_ACCESS 0x04 |
| #define BP_WATCHPOINT_HIT 0x08 |
| #define BP_GDB 0x10 |
| #define BP_CPU 0x20 |
| |
| int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, |
| CPUBreakpoint **breakpoint); |
| int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags); |
| void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint); |
| void cpu_breakpoint_remove_all(CPUArchState *env, int mask); |
| int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, |
| int flags, CPUWatchpoint **watchpoint); |
| int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, |
| target_ulong len, int flags); |
| void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint); |
| void cpu_watchpoint_remove_all(CPUArchState *env, int mask); |
| |
| #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ |
| #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ |
| #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ |
| |
| void cpu_single_step(CPUArchState *env, int enabled); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| /* Return the physical page corresponding to a virtual one. Use it |
| only for debugging because no protection checks are done. Return -1 |
| if no page found. */ |
| hwaddr cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr); |
| |
| /* memory API */ |
| |
| extern int phys_ram_fd; |
| extern ram_addr_t ram_size; |
| |
| /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
| #define RAM_PREALLOC_MASK (1 << 0) |
| |
| typedef struct RAMBlock { |
| struct MemoryRegion *mr; |
| uint8_t *host; |
| ram_addr_t offset; |
| ram_addr_t length; |
| uint32_t flags; |
| char idstr[256]; |
| /* Reads can take either the iothread or the ramlist lock. |
| * Writes must take both locks. |
| */ |
| QTAILQ_ENTRY(RAMBlock) next; |
| #if defined(__linux__) && !defined(TARGET_S390X) |
| int fd; |
| #endif |
| } RAMBlock; |
| |
| typedef struct RAMList { |
| QemuMutex mutex; |
| /* Protected by the iothread lock. */ |
| uint8_t *phys_dirty; |
| RAMBlock *mru_block; |
| /* Protected by the ramlist lock. */ |
| QTAILQ_HEAD(, RAMBlock) blocks; |
| uint32_t version; |
| } RAMList; |
| extern RAMList ram_list; |
| |
| extern const char *mem_path; |
| extern int mem_prealloc; |
| |
| /* Flags stored in the low bits of the TLB virtual address. These are |
| defined so that fast path ram access is all zeros. */ |
| /* Zero if TLB entry is valid. */ |
| #define TLB_INVALID_MASK (1 << 3) |
| /* Set if TLB entry references a clean RAM page. The iotlb entry will |
| contain the page physical address. */ |
| #define TLB_NOTDIRTY (1 << 4) |
| /* Set if TLB entry is an IO callback. */ |
| #define TLB_MMIO (1 << 5) |
| |
| void dump_exec_info(FILE *f, fprintf_function cpu_fprintf); |
| ram_addr_t last_ram_offset(void); |
| void qemu_mutex_lock_ramlist(void); |
| void qemu_mutex_unlock_ramlist(void); |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, |
| uint8_t *buf, int len, int is_write); |
| |
| #endif /* CPU_ALL_H */ |