| #include "exec.h" |
| #include "host-utils.h" |
| #include "helper.h" |
| |
| //#define DEBUG_PCALL |
| //#define DEBUG_MMU |
| //#define DEBUG_MXCC |
| //#define DEBUG_UNALIGNED |
| //#define DEBUG_UNASSIGNED |
| //#define DEBUG_ASI |
| |
| #ifdef DEBUG_MMU |
| #define DPRINTF_MMU(fmt, args...) \ |
| do { printf("MMU: " fmt , ##args); } while (0) |
| #else |
| #define DPRINTF_MMU(fmt, args...) |
| #endif |
| |
| #ifdef DEBUG_MXCC |
| #define DPRINTF_MXCC(fmt, args...) \ |
| do { printf("MXCC: " fmt , ##args); } while (0) |
| #else |
| #define DPRINTF_MXCC(fmt, args...) |
| #endif |
| |
| #ifdef DEBUG_ASI |
| #define DPRINTF_ASI(fmt, args...) \ |
| do { printf("ASI: " fmt , ##args); } while (0) |
| #else |
| #define DPRINTF_ASI(fmt, args...) |
| #endif |
| |
| void raise_exception(int tt) |
| { |
| env->exception_index = tt; |
| cpu_loop_exit(); |
| } |
| |
| void helper_trap(target_ulong nb_trap) |
| { |
| env->exception_index = TT_TRAP + (nb_trap & 0x7f); |
| cpu_loop_exit(); |
| } |
| |
| void helper_trapcc(target_ulong nb_trap, target_ulong do_trap) |
| { |
| if (do_trap) { |
| env->exception_index = TT_TRAP + (nb_trap & 0x7f); |
| cpu_loop_exit(); |
| } |
| } |
| |
| void helper_check_align(target_ulong addr, uint32_t align) |
| { |
| if (addr & align) |
| raise_exception(TT_UNALIGNED); |
| } |
| |
| #define F_HELPER(name, p) void helper_f##name##p(void) |
| |
| #if defined(CONFIG_USER_ONLY) |
| #define F_BINOP(name) \ |
| F_HELPER(name, s) \ |
| { \ |
| FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \ |
| } \ |
| F_HELPER(name, d) \ |
| { \ |
| DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ |
| } \ |
| F_HELPER(name, q) \ |
| { \ |
| QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ |
| } |
| #else |
| #define F_BINOP(name) \ |
| F_HELPER(name, s) \ |
| { \ |
| FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \ |
| } \ |
| F_HELPER(name, d) \ |
| { \ |
| DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ |
| } |
| #endif |
| |
| F_BINOP(add); |
| F_BINOP(sub); |
| F_BINOP(mul); |
| F_BINOP(div); |
| #undef F_BINOP |
| |
| void helper_fsmuld(void) |
| { |
| DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status), |
| float32_to_float64(FT1, &env->fp_status), |
| &env->fp_status); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void helper_fdmulq(void) |
| { |
| QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status), |
| float64_to_float128(DT1, &env->fp_status), |
| &env->fp_status); |
| } |
| #endif |
| |
| F_HELPER(neg, s) |
| { |
| FT0 = float32_chs(FT1); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| F_HELPER(neg, d) |
| { |
| DT0 = float64_chs(DT1); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| F_HELPER(neg, q) |
| { |
| QT0 = float128_chs(QT1); |
| } |
| #endif |
| #endif |
| |
| /* Integer to float conversion. */ |
| F_HELPER(ito, s) |
| { |
| FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status); |
| } |
| |
| F_HELPER(ito, d) |
| { |
| DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| F_HELPER(ito, q) |
| { |
| QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status); |
| } |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| F_HELPER(xto, s) |
| { |
| FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status); |
| } |
| |
| F_HELPER(xto, d) |
| { |
| DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); |
| } |
| #if defined(CONFIG_USER_ONLY) |
| F_HELPER(xto, q) |
| { |
| QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status); |
| } |
| #endif |
| #endif |
| #undef F_HELPER |
| |
| /* floating point conversion */ |
| void helper_fdtos(void) |
| { |
| FT0 = float64_to_float32(DT1, &env->fp_status); |
| } |
| |
| void helper_fstod(void) |
| { |
| DT0 = float32_to_float64(FT1, &env->fp_status); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void helper_fqtos(void) |
| { |
| FT0 = float128_to_float32(QT1, &env->fp_status); |
| } |
| |
| void helper_fstoq(void) |
| { |
| QT0 = float32_to_float128(FT1, &env->fp_status); |
| } |
| |
| void helper_fqtod(void) |
| { |
| DT0 = float128_to_float64(QT1, &env->fp_status); |
| } |
| |
| void helper_fdtoq(void) |
| { |
| QT0 = float64_to_float128(DT1, &env->fp_status); |
| } |
| #endif |
| |
| /* Float to integer conversion. */ |
| void helper_fstoi(void) |
| { |
| *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status); |
| } |
| |
| void helper_fdtoi(void) |
| { |
| *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void helper_fqtoi(void) |
| { |
| *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status); |
| } |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| void helper_fstox(void) |
| { |
| *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status); |
| } |
| |
| void helper_fdtox(void) |
| { |
| *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void helper_fqtox(void) |
| { |
| *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status); |
| } |
| #endif |
| |
| void helper_faligndata(void) |
| { |
| uint64_t tmp; |
| |
| tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8); |
| tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8); |
| *((uint64_t *)&DT0) = tmp; |
| } |
| |
| void helper_movl_FT0_0(void) |
| { |
| *((uint32_t *)&FT0) = 0; |
| } |
| |
| void helper_movl_DT0_0(void) |
| { |
| *((uint64_t *)&DT0) = 0; |
| } |
| |
| void helper_movl_FT0_1(void) |
| { |
| *((uint32_t *)&FT0) = 0xffffffff; |
| } |
| |
| void helper_movl_DT0_1(void) |
| { |
| *((uint64_t *)&DT0) = 0xffffffffffffffffULL; |
| } |
| |
| void helper_fnot(void) |
| { |
| *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1; |
| } |
| |
| void helper_fnots(void) |
| { |
| *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1; |
| } |
| |
| void helper_fnor(void) |
| { |
| *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1); |
| } |
| |
| void helper_fnors(void) |
| { |
| *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1); |
| } |
| |
| void helper_for(void) |
| { |
| *(uint64_t *)&DT0 |= *(uint64_t *)&DT1; |
| } |
| |
| void helper_fors(void) |
| { |
| *(uint32_t *)&FT0 |= *(uint32_t *)&FT1; |
| } |
| |
| void helper_fxor(void) |
| { |
| *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1; |
| } |
| |
| void helper_fxors(void) |
| { |
| *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1; |
| } |
| |
| void helper_fand(void) |
| { |
| *(uint64_t *)&DT0 &= *(uint64_t *)&DT1; |
| } |
| |
| void helper_fands(void) |
| { |
| *(uint32_t *)&FT0 &= *(uint32_t *)&FT1; |
| } |
| |
| void helper_fornot(void) |
| { |
| *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1; |
| } |
| |
| void helper_fornots(void) |
| { |
| *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1; |
| } |
| |
| void helper_fandnot(void) |
| { |
| *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1; |
| } |
| |
| void helper_fandnots(void) |
| { |
| *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1; |
| } |
| |
| void helper_fnand(void) |
| { |
| *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1); |
| } |
| |
| void helper_fnands(void) |
| { |
| *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1); |
| } |
| |
| void helper_fxnor(void) |
| { |
| *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1; |
| } |
| |
| void helper_fxnors(void) |
| { |
| *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1; |
| } |
| |
| #ifdef WORDS_BIGENDIAN |
| #define VIS_B64(n) b[7 - (n)] |
| #define VIS_W64(n) w[3 - (n)] |
| #define VIS_SW64(n) sw[3 - (n)] |
| #define VIS_L64(n) l[1 - (n)] |
| #define VIS_B32(n) b[3 - (n)] |
| #define VIS_W32(n) w[1 - (n)] |
| #else |
| #define VIS_B64(n) b[n] |
| #define VIS_W64(n) w[n] |
| #define VIS_SW64(n) sw[n] |
| #define VIS_L64(n) l[n] |
| #define VIS_B32(n) b[n] |
| #define VIS_W32(n) w[n] |
| #endif |
| |
| typedef union { |
| uint8_t b[8]; |
| uint16_t w[4]; |
| int16_t sw[4]; |
| uint32_t l[2]; |
| float64 d; |
| } vis64; |
| |
| typedef union { |
| uint8_t b[4]; |
| uint16_t w[2]; |
| uint32_t l; |
| float32 f; |
| } vis32; |
| |
| void helper_fpmerge(void) |
| { |
| vis64 s, d; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| // Reverse calculation order to handle overlap |
| d.VIS_B64(7) = s.VIS_B64(3); |
| d.VIS_B64(6) = d.VIS_B64(3); |
| d.VIS_B64(5) = s.VIS_B64(2); |
| d.VIS_B64(4) = d.VIS_B64(2); |
| d.VIS_B64(3) = s.VIS_B64(1); |
| d.VIS_B64(2) = d.VIS_B64(1); |
| d.VIS_B64(1) = s.VIS_B64(0); |
| //d.VIS_B64(0) = d.VIS_B64(0); |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8x16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8x16al(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8x16au(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8sux16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8ulx16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmuld8sux16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_L64(r) = tmp; |
| |
| // Reverse calculation order to handle overlap |
| PMUL(1); |
| PMUL(0); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmuld8ulx16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_L64(r) = tmp; |
| |
| // Reverse calculation order to handle overlap |
| PMUL(1); |
| PMUL(0); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fexpand(void) |
| { |
| vis32 s; |
| vis64 d; |
| |
| s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff); |
| d.d = DT1; |
| d.VIS_L64(0) = s.VIS_W32(0) << 4; |
| d.VIS_L64(1) = s.VIS_W32(1) << 4; |
| d.VIS_L64(2) = s.VIS_W32(2) << 4; |
| d.VIS_L64(3) = s.VIS_W32(3) << 4; |
| |
| DT0 = d.d; |
| } |
| |
| #define VIS_HELPER(name, F) \ |
| void name##16(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \ |
| d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \ |
| d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \ |
| d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \ |
| \ |
| DT0 = d.d; \ |
| } \ |
| \ |
| void name##16s(void) \ |
| { \ |
| vis32 s, d; \ |
| \ |
| s.f = FT0; \ |
| d.f = FT1; \ |
| \ |
| d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \ |
| d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \ |
| \ |
| FT0 = d.f; \ |
| } \ |
| \ |
| void name##32(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \ |
| d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \ |
| \ |
| DT0 = d.d; \ |
| } \ |
| \ |
| void name##32s(void) \ |
| { \ |
| vis32 s, d; \ |
| \ |
| s.f = FT0; \ |
| d.f = FT1; \ |
| \ |
| d.l = F(d.l, s.l); \ |
| \ |
| FT0 = d.f; \ |
| } |
| |
| #define FADD(a, b) ((a) + (b)) |
| #define FSUB(a, b) ((a) - (b)) |
| VIS_HELPER(helper_fpadd, FADD) |
| VIS_HELPER(helper_fpsub, FSUB) |
| |
| #define VIS_CMPHELPER(name, F) \ |
| void name##16(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \ |
| d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \ |
| d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \ |
| d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \ |
| \ |
| DT0 = d.d; \ |
| } \ |
| \ |
| void name##32(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \ |
| d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \ |
| \ |
| DT0 = d.d; \ |
| } |
| |
| #define FCMPGT(a, b) ((a) > (b)) |
| #define FCMPEQ(a, b) ((a) == (b)) |
| #define FCMPLE(a, b) ((a) <= (b)) |
| #define FCMPNE(a, b) ((a) != (b)) |
| |
| VIS_CMPHELPER(helper_fcmpgt, FCMPGT) |
| VIS_CMPHELPER(helper_fcmpeq, FCMPEQ) |
| VIS_CMPHELPER(helper_fcmple, FCMPLE) |
| VIS_CMPHELPER(helper_fcmpne, FCMPNE) |
| #endif |
| |
| void helper_check_ieee_exceptions(void) |
| { |
| target_ulong status; |
| |
| status = get_float_exception_flags(&env->fp_status); |
| if (status) { |
| /* Copy IEEE 754 flags into FSR */ |
| if (status & float_flag_invalid) |
| env->fsr |= FSR_NVC; |
| if (status & float_flag_overflow) |
| env->fsr |= FSR_OFC; |
| if (status & float_flag_underflow) |
| env->fsr |= FSR_UFC; |
| if (status & float_flag_divbyzero) |
| env->fsr |= FSR_DZC; |
| if (status & float_flag_inexact) |
| env->fsr |= FSR_NXC; |
| |
| if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { |
| /* Unmasked exception, generate a trap */ |
| env->fsr |= FSR_FTT_IEEE_EXCP; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| /* Accumulate exceptions */ |
| env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; |
| } |
| } |
| } |
| |
| void helper_clear_float_exceptions(void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| } |
| |
| void helper_fabss(void) |
| { |
| FT0 = float32_abs(FT1); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void helper_fabsd(void) |
| { |
| DT0 = float64_abs(DT1); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void helper_fabsq(void) |
| { |
| QT0 = float128_abs(QT1); |
| } |
| #endif |
| #endif |
| |
| void helper_fsqrts(void) |
| { |
| FT0 = float32_sqrt(FT1, &env->fp_status); |
| } |
| |
| void helper_fsqrtd(void) |
| { |
| DT0 = float64_sqrt(DT1, &env->fp_status); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void helper_fsqrtq(void) |
| { |
| QT0 = float128_sqrt(QT1, &env->fp_status); |
| } |
| #endif |
| |
| #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \ |
| void glue(helper_, name) (void) \ |
| { \ |
| target_ulong new_fsr; \ |
| \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \ |
| case float_relation_unordered: \ |
| new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \ |
| if ((env->fsr & FSR_NVM) || TRAP) { \ |
| env->fsr |= new_fsr; \ |
| env->fsr |= FSR_NVC; \ |
| env->fsr |= FSR_FTT_IEEE_EXCP; \ |
| raise_exception(TT_FP_EXCP); \ |
| } else { \ |
| env->fsr |= FSR_NVA; \ |
| } \ |
| break; \ |
| case float_relation_less: \ |
| new_fsr = FSR_FCC0 << FS; \ |
| break; \ |
| case float_relation_greater: \ |
| new_fsr = FSR_FCC1 << FS; \ |
| break; \ |
| default: \ |
| new_fsr = 0; \ |
| break; \ |
| } \ |
| env->fsr |= new_fsr; \ |
| } |
| |
| GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0); |
| GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); |
| |
| GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1); |
| GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); |
| |
| #ifdef CONFIG_USER_ONLY |
| GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); |
| GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0); |
| GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); |
| |
| GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0); |
| GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); |
| |
| GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0); |
| GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); |
| |
| GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1); |
| GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); |
| |
| GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1); |
| GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); |
| |
| GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1); |
| GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); |
| #ifdef CONFIG_USER_ONLY |
| GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); |
| GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); |
| GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); |
| GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); |
| GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); |
| GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); |
| #endif |
| #endif |
| |
| #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && defined(DEBUG_MXCC) |
| static void dump_mxcc(CPUState *env) |
| { |
| printf("mxccdata: %016llx %016llx %016llx %016llx\n", |
| env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]); |
| printf("mxccregs: %016llx %016llx %016llx %016llx\n" |
| " %016llx %016llx %016llx %016llx\n", |
| env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3], |
| env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]); |
| } |
| #endif |
| |
| #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ |
| && defined(DEBUG_ASI) |
| static void dump_asi(const char *txt, target_ulong addr, int asi, int size, |
| uint64_t r1) |
| { |
| switch (size) |
| { |
| case 1: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xff); |
| break; |
| case 2: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffff); |
| break; |
| case 4: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffffffff); |
| break; |
| case 8: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, |
| addr, asi, r1); |
| break; |
| } |
| } |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| #ifndef CONFIG_USER_ONLY |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) |
| uint32_t last_addr = addr; |
| #endif |
| |
| switch (asi) { |
| case 2: /* SuperSparc MXCC registers */ |
| switch (addr) { |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) |
| ret = env->mxccregs[3]; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) |
| ret = env->mxccregs[3]; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00c00: /* Module reset register */ |
| if (size == 8) { |
| ret = env->mxccregs[5]; |
| // should we do something here? |
| } else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) |
| ret = env->mxccregs[7]; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| default: |
| DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, sign = %d, addr = %08x -> ret = %08x," |
| "addr = %08x\n", asi, size, sign, last_addr, ret, addr); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU probe */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| if (mmulev > 4) |
| ret = 0; |
| else |
| ret = mmu_probe(env, addr, mmulev); |
| DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", |
| addr, mmulev, ret); |
| } |
| break; |
| case 4: /* read MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| |
| ret = env->mmuregs[reg]; |
| if (reg == 3) /* Fault status cleared on read */ |
| env->mmuregs[3] = 0; |
| else if (reg == 0x13) /* Fault status read */ |
| ret = env->mmuregs[3]; |
| else if (reg == 0x14) /* Fault address read */ |
| ret = env->mmuregs[4]; |
| DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); |
| } |
| break; |
| case 5: // Turbosparc ITLB Diagnostic |
| case 6: // Turbosparc DTLB Diagnostic |
| case 7: // Turbosparc IOTLB Diagnostic |
| break; |
| case 9: /* Supervisor code access */ |
| switch(size) { |
| case 1: |
| ret = ldub_code(addr); |
| break; |
| case 2: |
| ret = lduw_code(addr & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_code(addr & ~3); |
| break; |
| case 8: |
| ret = ldq_code(addr & ~7); |
| break; |
| } |
| break; |
| case 0xa: /* User data access */ |
| switch(size) { |
| case 1: |
| ret = ldub_user(addr); |
| break; |
| case 2: |
| ret = lduw_user(addr & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_user(addr & ~3); |
| break; |
| case 8: |
| ret = ldq_user(addr & ~7); |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch(size) { |
| case 1: |
| ret = ldub_kernel(addr); |
| break; |
| case 2: |
| ret = lduw_kernel(addr & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_kernel(addr & ~3); |
| break; |
| case 8: |
| ret = ldq_kernel(addr & ~7); |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| break; |
| case 0x20: /* MMU passthrough */ |
| switch(size) { |
| case 1: |
| ret = ldub_phys(addr); |
| break; |
| case 2: |
| ret = lduw_phys(addr & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys(addr & ~3); |
| break; |
| case 8: |
| ret = ldq_phys(addr & ~7); |
| break; |
| } |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| switch(size) { |
| case 1: |
| ret = ldub_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| case 2: |
| ret = lduw_phys((target_phys_addr_t)(addr & ~1) |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys((target_phys_addr_t)(addr & ~3) |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| case 8: |
| ret = ldq_phys((target_phys_addr_t)(addr & ~7) |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| } |
| break; |
| case 0x30: // Turbosparc secondary cache diagnostic |
| case 0x31: // Turbosparc RAM snoop |
| case 0x32: // Turbosparc page table descriptor diagnostic |
| case 0x39: /* data cache diagnostic register */ |
| ret = 0; |
| break; |
| case 8: /* User code access, XXX */ |
| default: |
| do_unassigned_access(addr, 0, 0, asi); |
| ret = 0; |
| break; |
| } |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) |
| { |
| switch(asi) { |
| case 2: /* SuperSparc MXCC registers */ |
| switch (addr) { |
| case 0x01c00000: /* MXCC stream data register 0 */ |
| if (size == 8) |
| env->mxccdata[0] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00008: /* MXCC stream data register 1 */ |
| if (size == 8) |
| env->mxccdata[1] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00010: /* MXCC stream data register 2 */ |
| if (size == 8) |
| env->mxccdata[2] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00018: /* MXCC stream data register 3 */ |
| if (size == 8) |
| env->mxccdata[3] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00100: /* MXCC stream source */ |
| if (size == 8) |
| env->mxccregs[0] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0); |
| env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8); |
| env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16); |
| env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24); |
| break; |
| case 0x01c00200: /* MXCC stream destination */ |
| if (size == 8) |
| env->mxccregs[1] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]); |
| break; |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) |
| env->mxccregs[3] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) |
| env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00e00: /* MXCC error register */ |
| // writing a 1 bit clears the error |
| if (size == 8) |
| env->mxccregs[6] &= ~val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) |
| env->mxccregs[7] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); |
| break; |
| default: |
| DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi, size, addr, val); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU flush */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| DPRINTF_MMU("mmu flush level %d\n", mmulev); |
| switch (mmulev) { |
| case 0: // flush page |
| tlb_flush_page(env, addr & 0xfffff000); |
| break; |
| case 1: // flush segment (256k) |
| case 2: // flush region (16M) |
| case 3: // flush context (4G) |
| case 4: // flush entire |
| tlb_flush(env, 1); |
| break; |
| default: |
| break; |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| } |
| break; |
| case 4: /* write MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| uint32_t oldreg; |
| |
| oldreg = env->mmuregs[reg]; |
| switch(reg) { |
| case 0: // Control Register |
| env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | |
| (val & 0x00ffffff); |
| // Mappings generated during no-fault mode or MMU |
| // disabled mode are invalid in normal mode |
| if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) != |
| (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm))) |
| tlb_flush(env, 1); |
| break; |
| case 1: // Context Table Pointer Register |
| env->mmuregs[reg] = val & env->mmu_ctpr_mask; |
| break; |
| case 2: // Context Register |
| env->mmuregs[reg] = val & env->mmu_cxr_mask; |
| if (oldreg != env->mmuregs[reg]) { |
| /* we flush when the MMU context changes because |
| QEMU has no MMU context support */ |
| tlb_flush(env, 1); |
| } |
| break; |
| case 3: // Synchronous Fault Status Register with Clear |
| case 4: // Synchronous Fault Address Register |
| break; |
| case 0x10: // TLB Replacement Control Register |
| env->mmuregs[reg] = val & env->mmu_trcr_mask; |
| break; |
| case 0x13: // Synchronous Fault Status Register with Read and Clear |
| env->mmuregs[3] = val & env->mmu_sfsr_mask; |
| break; |
| case 0x14: // Synchronous Fault Address Register |
| env->mmuregs[4] = val; |
| break; |
| default: |
| env->mmuregs[reg] = val; |
| break; |
| } |
| if (oldreg != env->mmuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| } |
| break; |
| case 5: // Turbosparc ITLB Diagnostic |
| case 6: // Turbosparc DTLB Diagnostic |
| case 7: // Turbosparc IOTLB Diagnostic |
| break; |
| case 0xa: /* User data access */ |
| switch(size) { |
| case 1: |
| stb_user(addr, val); |
| break; |
| case 2: |
| stw_user(addr & ~1, val); |
| break; |
| default: |
| case 4: |
| stl_user(addr & ~3, val); |
| break; |
| case 8: |
| stq_user(addr & ~7, val); |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch(size) { |
| case 1: |
| stb_kernel(addr, val); |
| break; |
| case 2: |
| stw_kernel(addr & ~1, val); |
| break; |
| default: |
| case 4: |
| stl_kernel(addr & ~3, val); |
| break; |
| case 8: |
| stq_kernel(addr & ~7, val); |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| case 0x10: /* I/D-cache flush page */ |
| case 0x11: /* I/D-cache flush segment */ |
| case 0x12: /* I/D-cache flush region */ |
| case 0x13: /* I/D-cache flush context */ |
| case 0x14: /* I/D-cache flush user */ |
| break; |
| case 0x17: /* Block copy, sta access */ |
| { |
| // val = src |
| // addr = dst |
| // copy 32 bytes |
| unsigned int i; |
| uint32_t src = val & ~3, dst = addr & ~3, temp; |
| |
| for (i = 0; i < 32; i += 4, src += 4, dst += 4) { |
| temp = ldl_kernel(src); |
| stl_kernel(dst, temp); |
| } |
| } |
| break; |
| case 0x1f: /* Block fill, stda access */ |
| { |
| // addr = dst |
| // fill 32 bytes with val |
| unsigned int i; |
| uint32_t dst = addr & 7; |
| |
| for (i = 0; i < 32; i += 8, dst += 8) |
| stq_kernel(dst, val); |
| } |
| break; |
| case 0x20: /* MMU passthrough */ |
| { |
| switch(size) { |
| case 1: |
| stb_phys(addr, val); |
| break; |
| case 2: |
| stw_phys(addr & ~1, val); |
| break; |
| case 4: |
| default: |
| stl_phys(addr & ~3, val); |
| break; |
| case 8: |
| stq_phys(addr & ~7, val); |
| break; |
| } |
| } |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| { |
| switch(size) { |
| case 1: |
| stb_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| case 2: |
| stw_phys((target_phys_addr_t)(addr & ~1) |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| case 4: |
| default: |
| stl_phys((target_phys_addr_t)(addr & ~3) |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| case 8: |
| stq_phys((target_phys_addr_t)(addr & ~7) |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| } |
| } |
| break; |
| case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic |
| case 0x31: // store buffer data, Ross RT620 I-cache flush or |
| // Turbosparc snoop RAM |
| case 0x32: // store buffer control or Turbosparc page table descriptor diagnostic |
| case 0x36: /* I-cache flash clear */ |
| case 0x37: /* D-cache flash clear */ |
| case 0x38: /* breakpoint diagnostics */ |
| case 0x4c: /* breakpoint action */ |
| break; |
| case 8: /* User code access, XXX */ |
| case 9: /* Supervisor code access, XXX */ |
| default: |
| do_unassigned_access(addr, 1, 0, asi); |
| break; |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| } |
| |
| #endif /* CONFIG_USER_ONLY */ |
| #else /* TARGET_SPARC64 */ |
| |
| #ifdef CONFIG_USER_ONLY |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_ASI) |
| target_ulong last_addr = addr; |
| #endif |
| |
| if (asi < 0x80) |
| raise_exception(TT_PRIV_ACT); |
| |
| switch (asi) { |
| case 0x80: // Primary |
| case 0x82: // Primary no-fault |
| case 0x88: // Primary LE |
| case 0x8a: // Primary no-fault LE |
| { |
| switch(size) { |
| case 1: |
| ret = ldub_raw(addr); |
| break; |
| case 2: |
| ret = lduw_raw(addr & ~1); |
| break; |
| case 4: |
| ret = ldl_raw(addr & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_raw(addr & ~7); |
| break; |
| } |
| } |
| break; |
| case 0x81: // Secondary |
| case 0x83: // Secondary no-fault |
| case 0x89: // Secondary LE |
| case 0x8b: // Secondary no-fault LE |
| // XXX |
| break; |
| default: |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0x8a: // Primary no-fault LE |
| case 0x8b: // Secondary no-fault LE |
| switch(size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) |
| { |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| if (asi < 0x80) |
| raise_exception(TT_PRIV_ACT); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| switch(size) { |
| case 2: |
| addr = bswap16(addr); |
| break; |
| case 4: |
| addr = bswap32(addr); |
| break; |
| case 8: |
| addr = bswap64(addr); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch(asi) { |
| case 0x80: // Primary |
| case 0x88: // Primary LE |
| { |
| switch(size) { |
| case 1: |
| stb_raw(addr, val); |
| break; |
| case 2: |
| stw_raw(addr & ~1, val); |
| break; |
| case 4: |
| stl_raw(addr & ~3, val); |
| break; |
| case 8: |
| default: |
| stq_raw(addr & ~7, val); |
| break; |
| } |
| } |
| break; |
| case 0x81: // Secondary |
| case 0x89: // Secondary LE |
| // XXX |
| return; |
| |
| case 0x82: // Primary no-fault, RO |
| case 0x83: // Secondary no-fault, RO |
| case 0x8a: // Primary no-fault LE, RO |
| case 0x8b: // Secondary no-fault LE, RO |
| default: |
| do_unassigned_access(addr, 1, 0, 1); |
| return; |
| } |
| } |
| |
| #else /* CONFIG_USER_ONLY */ |
| |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_ASI) |
| target_ulong last_addr = addr; |
| #endif |
| |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) |
| raise_exception(TT_PRIV_ACT); |
| |
| switch (asi) { |
| case 0x10: // As if user primary |
| case 0x18: // As if user primary LE |
| case 0x80: // Primary |
| case 0x82: // Primary no-fault |
| case 0x88: // Primary LE |
| case 0x8a: // Primary no-fault LE |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (env->hpstate & HS_PRIV) { |
| switch(size) { |
| case 1: |
| ret = ldub_hypv(addr); |
| break; |
| case 2: |
| ret = lduw_hypv(addr & ~1); |
| break; |
| case 4: |
| ret = ldl_hypv(addr & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_hypv(addr & ~7); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| ret = ldub_kernel(addr); |
| break; |
| case 2: |
| ret = lduw_kernel(addr & ~1); |
| break; |
| case 4: |
| ret = ldl_kernel(addr & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_kernel(addr & ~7); |
| break; |
| } |
| } |
| } else { |
| switch(size) { |
| case 1: |
| ret = ldub_user(addr); |
| break; |
| case 2: |
| ret = lduw_user(addr & ~1); |
| break; |
| case 4: |
| ret = ldl_user(addr & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_user(addr & ~7); |
| break; |
| } |
| } |
| break; |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| { |
| switch(size) { |
| case 1: |
| ret = ldub_phys(addr); |
| break; |
| case 2: |
| ret = lduw_phys(addr & ~1); |
| break; |
| case 4: |
| ret = ldl_phys(addr & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_phys(addr & ~7); |
| break; |
| } |
| break; |
| } |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x11: // As if user secondary |
| case 0x19: // As if user secondary LE |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic |
| case 0x4a: // UPA config |
| case 0x81: // Secondary |
| case 0x83: // Secondary no-fault |
| case 0x89: // Secondary LE |
| case 0x8b: // Secondary no-fault LE |
| // XXX |
| break; |
| case 0x45: // LSU |
| ret = env->lsu; |
| break; |
| case 0x50: // I-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| |
| ret = env->immuregs[reg]; |
| break; |
| } |
| case 0x51: // I-MMU 8k TSB pointer |
| case 0x52: // I-MMU 64k TSB pointer |
| case 0x55: // I-MMU data access |
| // XXX |
| break; |
| case 0x56: // I-MMU tag read |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 64; i++) { |
| // Valid, ctx match, vaddr match |
| if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 && |
| env->itlb_tag[i] == addr) { |
| ret = env->itlb_tag[i]; |
| break; |
| } |
| } |
| break; |
| } |
| case 0x58: // D-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| |
| ret = env->dmmuregs[reg]; |
| break; |
| } |
| case 0x5e: // D-MMU tag read |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 64; i++) { |
| // Valid, ctx match, vaddr match |
| if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 && |
| env->dtlb_tag[i] == addr) { |
| ret = env->dtlb_tag[i]; |
| break; |
| } |
| } |
| break; |
| } |
| case 0x59: // D-MMU 8k TSB pointer |
| case 0x5a: // D-MMU 64k TSB pointer |
| case 0x5b: // D-MMU data pointer |
| case 0x5d: // D-MMU data access |
| case 0x48: // Interrupt dispatch, RO |
| case 0x49: // Interrupt data receive |
| case 0x7f: // Incoming interrupt vector, RO |
| // XXX |
| break; |
| case 0x54: // I-MMU data in, WO |
| case 0x57: // I-MMU demap, WO |
| case 0x5c: // D-MMU data in, WO |
| case 0x5f: // D-MMU demap, WO |
| case 0x77: // Interrupt vector, WO |
| default: |
| do_unassigned_access(addr, 0, 0, 1); |
| ret = 0; |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0x8a: // Primary no-fault LE |
| case 0x8b: // Secondary no-fault LE |
| switch(size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) |
| { |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) |
| raise_exception(TT_PRIV_ACT); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| switch(size) { |
| case 2: |
| addr = bswap16(addr); |
| break; |
| case 4: |
| addr = bswap32(addr); |
| break; |
| case 8: |
| addr = bswap64(addr); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch(asi) { |
| case 0x10: // As if user primary |
| case 0x18: // As if user primary LE |
| case 0x80: // Primary |
| case 0x88: // Primary LE |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (env->hpstate & HS_PRIV) { |
| switch(size) { |
| case 1: |
| stb_hypv(addr, val); |
| break; |
| case 2: |
| stw_hypv(addr & ~1, val); |
| break; |
| case 4: |
| stl_hypv(addr & ~3, val); |
| break; |
| case 8: |
| default: |
| stq_hypv(addr & ~7, val); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| stb_kernel(addr, val); |
| break; |
| case 2: |
| stw_kernel(addr & ~1, val); |
| break; |
| case 4: |
| stl_kernel(addr & ~3, val); |
| break; |
| case 8: |
| default: |
| stq_kernel(addr & ~7, val); |
| break; |
| } |
| } |
| } else { |
| switch(size) { |
| case 1: |
| stb_user(addr, val); |
| break; |
| case 2: |
| stw_user(addr & ~1, val); |
| break; |
| case 4: |
| stl_user(addr & ~3, val); |
| break; |
| case 8: |
| default: |
| stq_user(addr & ~7, val); |
| break; |
| } |
| } |
| break; |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| { |
| switch(size) { |
| case 1: |
| stb_phys(addr, val); |
| break; |
| case 2: |
| stw_phys(addr & ~1, val); |
| break; |
| case 4: |
| stl_phys(addr & ~3, val); |
| break; |
| case 8: |
| default: |
| stq_phys(addr & ~7, val); |
| break; |
| } |
| } |
| return; |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x11: // As if user secondary |
| case 0x19: // As if user secondary LE |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic |
| case 0x4a: // UPA config |
| case 0x81: // Secondary |
| case 0x89: // Secondary LE |
| // XXX |
| return; |
| case 0x45: // LSU |
| { |
| uint64_t oldreg; |
| |
| oldreg = env->lsu; |
| env->lsu = val & (DMMU_E | IMMU_E); |
| // Mappings generated during D/I MMU disabled mode are |
| // invalid in normal mode |
| if (oldreg != env->lsu) { |
| DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu); |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| tlb_flush(env, 1); |
| } |
| return; |
| } |
| case 0x50: // I-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->immuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| case 4: |
| return; |
| case 1: // Not in I-MMU |
| case 2: |
| case 7: |
| case 8: |
| return; |
| case 3: // SFSR |
| if ((val & 1) == 0) |
| val = 0; // Clear SFSR |
| break; |
| case 5: // TSB access |
| case 6: // Tag access |
| default: |
| break; |
| } |
| env->immuregs[reg] = val; |
| if (oldreg != env->immuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0x54: // I-MMU data in |
| { |
| unsigned int i; |
| |
| // Try finding an invalid entry |
| for (i = 0; i < 64; i++) { |
| if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = val; |
| return; |
| } |
| } |
| // Try finding an unlocked entry |
| for (i = 0; i < 64; i++) { |
| if ((env->itlb_tte[i] & 0x40) == 0) { |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = val; |
| return; |
| } |
| } |
| // error state? |
| return; |
| } |
| case 0x55: // I-MMU data access |
| { |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = val; |
| return; |
| } |
| case 0x57: // I-MMU demap |
| // XXX |
| return; |
| case 0x58: // D-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->dmmuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| case 4: |
| return; |
| case 3: // SFSR |
| if ((val & 1) == 0) { |
| val = 0; // Clear SFSR, Fault address |
| env->dmmuregs[4] = 0; |
| } |
| env->dmmuregs[reg] = val; |
| break; |
| case 1: // Primary context |
| case 2: // Secondary context |
| case 5: // TSB access |
| case 6: // Tag access |
| case 7: // Virtual Watchpoint |
| case 8: // Physical Watchpoint |
| default: |
| break; |
| } |
| env->dmmuregs[reg] = val; |
| if (oldreg != env->dmmuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0x5c: // D-MMU data in |
| { |
| unsigned int i; |
| |
| // Try finding an invalid entry |
| for (i = 0; i < 64; i++) { |
| if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = val; |
| return; |
| } |
| } |
| // Try finding an unlocked entry |
| for (i = 0; i < 64; i++) { |
| if ((env->dtlb_tte[i] & 0x40) == 0) { |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = val; |
| return; |
| } |
| } |
| // error state? |
| return; |
| } |
| case 0x5d: // D-MMU data access |
| { |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = val; |
| return; |
| } |
| case 0x5f: // D-MMU demap |
| case 0x49: // Interrupt data receive |
| // XXX |
| return; |
| case 0x51: // I-MMU 8k TSB pointer, RO |
| case 0x52: // I-MMU 64k TSB pointer, RO |
| case 0x56: // I-MMU tag read, RO |
| case 0x59: // D-MMU 8k TSB pointer, RO |
| case 0x5a: // D-MMU 64k TSB pointer, RO |
| case 0x5b: // D-MMU data pointer, RO |
| case 0x5e: // D-MMU tag read, RO |
| case 0x48: // Interrupt dispatch, RO |
| case 0x7f: // Incoming interrupt vector, RO |
| case 0x82: // Primary no-fault, RO |
| case 0x83: // Secondary no-fault, RO |
| case 0x8a: // Primary no-fault LE, RO |
| case 0x8b: // Secondary no-fault LE, RO |
| default: |
| do_unassigned_access(addr, 1, 0, 1); |
| return; |
| } |
| } |
| #endif /* CONFIG_USER_ONLY */ |
| |
| void helper_ldf_asi(target_ulong addr, int asi, int size, int rd) |
| { |
| unsigned int i; |
| target_ulong val; |
| |
| switch (asi) { |
| case 0xf0: // Block load primary |
| case 0xf1: // Block load secondary |
| case 0xf8: // Block load primary LE |
| case 0xf9: // Block load secondary LE |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| if (addr & 0x3f) { |
| raise_exception(TT_UNALIGNED); |
| return; |
| } |
| for (i = 0; i < 16; i++) { |
| *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0); |
| addr += 4; |
| } |
| |
| return; |
| default: |
| break; |
| } |
| |
| val = helper_ld_asi(addr, asi, size, 0); |
| switch(size) { |
| default: |
| case 4: |
| *((uint32_t *)&FT0) = val; |
| break; |
| case 8: |
| *((int64_t *)&DT0) = val; |
| break; |
| #if defined(CONFIG_USER_ONLY) |
| case 16: |
| // XXX |
| break; |
| #endif |
| } |
| } |
| |
| void helper_stf_asi(target_ulong addr, int asi, int size, int rd) |
| { |
| unsigned int i; |
| target_ulong val = 0; |
| |
| switch (asi) { |
| case 0xf0: // Block store primary |
| case 0xf1: // Block store secondary |
| case 0xf8: // Block store primary LE |
| case 0xf9: // Block store secondary LE |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| if (addr & 0x3f) { |
| raise_exception(TT_UNALIGNED); |
| return; |
| } |
| for (i = 0; i < 16; i++) { |
| val = *(uint32_t *)&env->fpr[rd++]; |
| helper_st_asi(addr, val, asi & 0x8f, 4); |
| addr += 4; |
| } |
| |
| return; |
| default: |
| break; |
| } |
| |
| switch(size) { |
| default: |
| case 4: |
| val = *((uint32_t *)&FT0); |
| break; |
| case 8: |
| val = *((int64_t *)&DT0); |
| break; |
| #if defined(CONFIG_USER_ONLY) |
| case 16: |
| // XXX |
| break; |
| #endif |
| } |
| helper_st_asi(addr, val, asi, size); |
| } |
| |
| target_ulong helper_cas_asi(target_ulong addr, target_ulong val1, |
| target_ulong val2, uint32_t asi) |
| { |
| target_ulong ret; |
| |
| val1 &= 0xffffffffUL; |
| ret = helper_ld_asi(addr, asi, 4, 0); |
| ret &= 0xffffffffUL; |
| if (val1 == ret) |
| helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4); |
| return ret; |
| } |
| |
| target_ulong helper_casx_asi(target_ulong addr, target_ulong val1, |
| target_ulong val2, uint32_t asi) |
| { |
| target_ulong ret; |
| |
| ret = helper_ld_asi(addr, asi, 8, 0); |
| if (val1 == ret) |
| helper_st_asi(addr, val2, asi, 8); |
| return ret; |
| } |
| #endif /* TARGET_SPARC64 */ |
| |
| #ifndef TARGET_SPARC64 |
| void helper_rett(void) |
| { |
| unsigned int cwp; |
| |
| if (env->psret == 1) |
| raise_exception(TT_ILL_INSN); |
| |
| env->psret = 1; |
| cwp = (env->cwp + 1) & (NWINDOWS - 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_UNF); |
| } |
| set_cwp(cwp); |
| env->psrs = env->psrps; |
| } |
| #endif |
| |
| target_ulong helper_udiv(target_ulong a, target_ulong b) |
| { |
| uint64_t x0; |
| uint32_t x1; |
| |
| x0 = a | ((uint64_t) (env->y) << 32); |
| x1 = b; |
| |
| if (x1 == 0) { |
| raise_exception(TT_DIV_ZERO); |
| } |
| |
| x0 = x0 / x1; |
| if (x0 > 0xffffffff) { |
| env->cc_src2 = 1; |
| return 0xffffffff; |
| } else { |
| env->cc_src2 = 0; |
| return x0; |
| } |
| } |
| |
| target_ulong helper_sdiv(target_ulong a, target_ulong b) |
| { |
| int64_t x0; |
| int32_t x1; |
| |
| x0 = a | ((int64_t) (env->y) << 32); |
| x1 = b; |
| |
| if (x1 == 0) { |
| raise_exception(TT_DIV_ZERO); |
| } |
| |
| x0 = x0 / x1; |
| if ((int32_t) x0 != x0) { |
| env->cc_src2 = 1; |
| return x0 < 0? 0x80000000: 0x7fffffff; |
| } else { |
| env->cc_src2 = 0; |
| return x0; |
| } |
| } |
| |
| uint64_t helper_pack64(target_ulong high, target_ulong low) |
| { |
| return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff); |
| } |
| |
| #ifdef TARGET_ABI32 |
| #define ADDR(x) ((x) & 0xffffffff) |
| #else |
| #define ADDR(x) (x) |
| #endif |
| |
| #ifdef __i386__ |
| void helper_std_i386(target_ulong addr, int mem_idx) |
| { |
| uint64_t tmp = ((uint64_t)env->t1 << 32) | (uint64_t)(env->t2 & 0xffffffff); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case 0: |
| stq_user(ADDR(addr), tmp); |
| break; |
| case 1: |
| stq_kernel(ADDR(addr), tmp); |
| break; |
| #ifdef TARGET_SPARC64 |
| case 2: |
| stq_hypv(ADDR(addr), tmp); |
| break; |
| #endif |
| default: |
| break; |
| } |
| #else |
| stq_raw(ADDR(addr), tmp); |
| #endif |
| } |
| #endif /* __i386__ */ |
| |
| void helper_stdf(target_ulong addr, int mem_idx) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case 0: |
| stfq_user(ADDR(addr), DT0); |
| break; |
| case 1: |
| stfq_kernel(ADDR(addr), DT0); |
| break; |
| #ifdef TARGET_SPARC64 |
| case 2: |
| stfq_hypv(ADDR(addr), DT0); |
| break; |
| #endif |
| default: |
| break; |
| } |
| #else |
| stfq_raw(ADDR(addr), DT0); |
| #endif |
| } |
| |
| void helper_lddf(target_ulong addr, int mem_idx) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case 0: |
| DT0 = ldfq_user(ADDR(addr)); |
| break; |
| case 1: |
| DT0 = ldfq_kernel(ADDR(addr)); |
| break; |
| #ifdef TARGET_SPARC64 |
| case 2: |
| DT0 = ldfq_hypv(ADDR(addr)); |
| break; |
| #endif |
| default: |
| break; |
| } |
| #else |
| DT0 = ldfq_raw(ADDR(addr)); |
| #endif |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void helper_ldqf(target_ulong addr) |
| { |
| // XXX add 128 bit load |
| CPU_QuadU u; |
| |
| u.ll.upper = ldq_raw(ADDR(addr)); |
| u.ll.lower = ldq_raw(ADDR(addr + 8)); |
| QT0 = u.q; |
| } |
| |
| void helper_stqf(target_ulong addr) |
| { |
| // XXX add 128 bit store |
| CPU_QuadU u; |
| |
| u.q = QT0; |
| stq_raw(ADDR(addr), u.ll.upper); |
| stq_raw(ADDR(addr + 8), u.ll.lower); |
| } |
| #endif |
| |
| #undef ADDR |
| |
| void helper_ldfsr(void) |
| { |
| int rnd_mode; |
| |
| PUT_FSR32(env, *((uint32_t *) &FT0)); |
| switch (env->fsr & FSR_RD_MASK) { |
| case FSR_RD_NEAREST: |
| rnd_mode = float_round_nearest_even; |
| break; |
| default: |
| case FSR_RD_ZERO: |
| rnd_mode = float_round_to_zero; |
| break; |
| case FSR_RD_POS: |
| rnd_mode = float_round_up; |
| break; |
| case FSR_RD_NEG: |
| rnd_mode = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_mode, &env->fp_status); |
| } |
| |
| void helper_stfsr(void) |
| { |
| *((uint32_t *) &FT0) = GET_FSR32(env); |
| } |
| |
| void helper_debug(void) |
| { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |
| |
| #ifndef TARGET_SPARC64 |
| /* XXX: use another pointer for %iN registers to avoid slow wrapping |
| handling ? */ |
| void helper_save(void) |
| { |
| uint32_t cwp; |
| |
| cwp = (env->cwp - 1) & (NWINDOWS - 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_OVF); |
| } |
| set_cwp(cwp); |
| } |
| |
| void helper_restore(void) |
| { |
| uint32_t cwp; |
| |
| cwp = (env->cwp + 1) & (NWINDOWS - 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_UNF); |
| } |
| set_cwp(cwp); |
| } |
| |
| void helper_wrpsr(target_ulong new_psr) |
| { |
| if ((new_psr & PSR_CWP) >= NWINDOWS) |
| raise_exception(TT_ILL_INSN); |
| else |
| PUT_PSR(env, new_psr); |
| } |
| |
| target_ulong helper_rdpsr(void) |
| { |
| return GET_PSR(env); |
| } |
| |
| #else |
| /* XXX: use another pointer for %iN registers to avoid slow wrapping |
| handling ? */ |
| void helper_save(void) |
| { |
| uint32_t cwp; |
| |
| cwp = (env->cwp - 1) & (NWINDOWS - 1); |
| if (env->cansave == 0) { |
| raise_exception(TT_SPILL | (env->otherwin != 0 ? |
| (TT_WOTHER | ((env->wstate & 0x38) >> 1)): |
| ((env->wstate & 0x7) << 2))); |
| } else { |
| if (env->cleanwin - env->canrestore == 0) { |
| // XXX Clean windows without trap |
| raise_exception(TT_CLRWIN); |
| } else { |
| env->cansave--; |
| env->canrestore++; |
| set_cwp(cwp); |
| } |
| } |
| } |
| |
| void helper_restore(void) |
| { |
| uint32_t cwp; |
| |
| cwp = (env->cwp + 1) & (NWINDOWS - 1); |
| if (env->canrestore == 0) { |
| raise_exception(TT_FILL | (env->otherwin != 0 ? |
| (TT_WOTHER | ((env->wstate & 0x38) >> 1)): |
| ((env->wstate & 0x7) << 2))); |
| } else { |
| env->cansave++; |
| env->canrestore--; |
| set_cwp(cwp); |
| } |
| } |
| |
| void helper_flushw(void) |
| { |
| if (env->cansave != NWINDOWS - 2) { |
| raise_exception(TT_SPILL | (env->otherwin != 0 ? |
| (TT_WOTHER | ((env->wstate & 0x38) >> 1)): |
| ((env->wstate & 0x7) << 2))); |
| } |
| } |
| |
| void helper_saved(void) |
| { |
| env->cansave++; |
| if (env->otherwin == 0) |
| env->canrestore--; |
| else |
| env->otherwin--; |
| } |
| |
| void helper_restored(void) |
| { |
| env->canrestore++; |
| if (env->cleanwin < NWINDOWS - 1) |
| env->cleanwin++; |
| if (env->otherwin == 0) |
| env->cansave--; |
| else |
| env->otherwin--; |
| } |
| |
| target_ulong helper_rdccr(void) |
| { |
| return GET_CCR(env); |
| } |
| |
| void helper_wrccr(target_ulong new_ccr) |
| { |
| PUT_CCR(env, new_ccr); |
| } |
| |
| // CWP handling is reversed in V9, but we still use the V8 register |
| // order. |
| target_ulong helper_rdcwp(void) |
| { |
| return GET_CWP64(env); |
| } |
| |
| void helper_wrcwp(target_ulong new_cwp) |
| { |
| PUT_CWP64(env, new_cwp); |
| } |
| |
| // This function uses non-native bit order |
| #define GET_FIELD(X, FROM, TO) \ |
| ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) |
| |
| // This function uses the order in the manuals, i.e. bit 0 is 2^0 |
| #define GET_FIELD_SP(X, FROM, TO) \ |
| GET_FIELD(X, 63 - (TO), 63 - (FROM)) |
| |
| target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize) |
| { |
| return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) | |
| (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) | |
| (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) | |
| (GET_FIELD_SP(pixel_addr, 56, 59) << 13) | |
| (GET_FIELD_SP(pixel_addr, 35, 38) << 9) | |
| (GET_FIELD_SP(pixel_addr, 13, 16) << 5) | |
| (((pixel_addr >> 55) & 1) << 4) | |
| (GET_FIELD_SP(pixel_addr, 33, 34) << 2) | |
| GET_FIELD_SP(pixel_addr, 11, 12); |
| } |
| |
| target_ulong helper_alignaddr(target_ulong addr, target_ulong offset) |
| { |
| uint64_t tmp; |
| |
| tmp = addr + offset; |
| env->gsr &= ~7ULL; |
| env->gsr |= tmp & 7ULL; |
| return tmp & ~7ULL; |
| } |
| |
| target_ulong helper_popc(target_ulong val) |
| { |
| return ctpop64(val); |
| } |
| |
| static inline uint64_t *get_gregset(uint64_t pstate) |
| { |
| switch (pstate) { |
| default: |
| case 0: |
| return env->bgregs; |
| case PS_AG: |
| return env->agregs; |
| case PS_MG: |
| return env->mgregs; |
| case PS_IG: |
| return env->igregs; |
| } |
| } |
| |
| static inline void change_pstate(uint64_t new_pstate) |
| { |
| uint64_t pstate_regs, new_pstate_regs; |
| uint64_t *src, *dst; |
| |
| pstate_regs = env->pstate & 0xc01; |
| new_pstate_regs = new_pstate & 0xc01; |
| if (new_pstate_regs != pstate_regs) { |
| // Switch global register bank |
| src = get_gregset(new_pstate_regs); |
| dst = get_gregset(pstate_regs); |
| memcpy32(dst, env->gregs); |
| memcpy32(env->gregs, src); |
| } |
| env->pstate = new_pstate; |
| } |
| |
| void helper_wrpstate(target_ulong new_state) |
| { |
| change_pstate(new_state & 0xf3f); |
| } |
| |
| void helper_done(void) |
| { |
| env->tl--; |
| env->tsptr = &env->ts[env->tl]; |
| env->pc = env->tsptr->tpc; |
| env->npc = env->tsptr->tnpc + 4; |
| PUT_CCR(env, env->tsptr->tstate >> 32); |
| env->asi = (env->tsptr->tstate >> 24) & 0xff; |
| change_pstate((env->tsptr->tstate >> 8) & 0xf3f); |
| PUT_CWP64(env, env->tsptr->tstate & 0xff); |
| } |
| |
| void helper_retry(void) |
| { |
| env->tl--; |
| env->tsptr = &env->ts[env->tl]; |
| env->pc = env->tsptr->tpc; |
| env->npc = env->tsptr->tnpc; |
| PUT_CCR(env, env->tsptr->tstate >> 32); |
| env->asi = (env->tsptr->tstate >> 24) & 0xff; |
| change_pstate((env->tsptr->tstate >> 8) & 0xf3f); |
| PUT_CWP64(env, env->tsptr->tstate & 0xff); |
| } |
| #endif |
| |
| void set_cwp(int new_cwp) |
| { |
| /* put the modified wrap registers at their proper location */ |
| if (env->cwp == (NWINDOWS - 1)) |
| memcpy32(env->regbase, env->regbase + NWINDOWS * 16); |
| env->cwp = new_cwp; |
| /* put the wrap registers at their temporary location */ |
| if (new_cwp == (NWINDOWS - 1)) |
| memcpy32(env->regbase + NWINDOWS * 16, env->regbase); |
| env->regwptr = env->regbase + (new_cwp * 16); |
| REGWPTR = env->regwptr; |
| } |
| |
| void cpu_set_cwp(CPUState *env1, int new_cwp) |
| { |
| CPUState *saved_env; |
| #ifdef reg_REGWPTR |
| target_ulong *saved_regwptr; |
| #endif |
| |
| saved_env = env; |
| #ifdef reg_REGWPTR |
| saved_regwptr = REGWPTR; |
| #endif |
| env = env1; |
| set_cwp(new_cwp); |
| env = saved_env; |
| #ifdef reg_REGWPTR |
| REGWPTR = saved_regwptr; |
| #endif |
| } |
| |
| #ifdef TARGET_SPARC64 |
| #ifdef DEBUG_PCALL |
| static const char * const excp_names[0x50] = { |
| [TT_TFAULT] = "Instruction Access Fault", |
| [TT_TMISS] = "Instruction Access MMU Miss", |
| [TT_CODE_ACCESS] = "Instruction Access Error", |
| [TT_ILL_INSN] = "Illegal Instruction", |
| [TT_PRIV_INSN] = "Privileged Instruction", |
| [TT_NFPU_INSN] = "FPU Disabled", |
| [TT_FP_EXCP] = "FPU Exception", |
| [TT_TOVF] = "Tag Overflow", |
| [TT_CLRWIN] = "Clean Windows", |
| [TT_DIV_ZERO] = "Division By Zero", |
| [TT_DFAULT] = "Data Access Fault", |
| [TT_DMISS] = "Data Access MMU Miss", |
| [TT_DATA_ACCESS] = "Data Access Error", |
| [TT_DPROT] = "Data Protection Error", |
| [TT_UNALIGNED] = "Unaligned Memory Access", |
| [TT_PRIV_ACT] = "Privileged Action", |
| [TT_EXTINT | 0x1] = "External Interrupt 1", |
| [TT_EXTINT | 0x2] = "External Interrupt 2", |
| [TT_EXTINT | 0x3] = "External Interrupt 3", |
| [TT_EXTINT | 0x4] = "External Interrupt 4", |
| [TT_EXTINT | 0x5] = "External Interrupt 5", |
| [TT_EXTINT | 0x6] = "External Interrupt 6", |
| [TT_EXTINT | 0x7] = "External Interrupt 7", |
| [TT_EXTINT | 0x8] = "External Interrupt 8", |
| [TT_EXTINT | 0x9] = "External Interrupt 9", |
| [TT_EXTINT | 0xa] = "External Interrupt 10", |
| [TT_EXTINT | 0xb] = "External Interrupt 11", |
| [TT_EXTINT | 0xc] = "External Interrupt 12", |
| [TT_EXTINT | 0xd] = "External Interrupt 13", |
| [TT_EXTINT | 0xe] = "External Interrupt 14", |
| [TT_EXTINT | 0xf] = "External Interrupt 15", |
| }; |
| #endif |
| |
| void do_interrupt(int intno) |
| { |
| #ifdef DEBUG_PCALL |
| if (loglevel & CPU_LOG_INT) { |
| static int count; |
| const char *name; |
| |
| if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80)) |
| name = "Unknown"; |
| else if (intno >= 0x100) |
| name = "Trap Instruction"; |
| else if (intno >= 0xc0) |
| name = "Window Fill"; |
| else if (intno >= 0x80) |
| name = "Window Spill"; |
| else { |
| name = excp_names[intno]; |
| if (!name) |
| name = "Unknown"; |
| } |
| |
| fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64 |
| " SP=%016" PRIx64 "\n", |
| count, name, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| fprintf(logfile, " code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| fprintf(logfile, " %02x", ldub(ptr + i)); |
| } |
| fprintf(logfile, "\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->tl == MAXTL) { |
| cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index); |
| return; |
| } |
| #endif |
| env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) | |
| ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) | |
| GET_CWP64(env); |
| env->tsptr->tpc = env->pc; |
| env->tsptr->tnpc = env->npc; |
| env->tsptr->tt = intno; |
| change_pstate(PS_PEF | PS_PRIV | PS_AG); |
| |
| if (intno == TT_CLRWIN) |
| set_cwp((env->cwp - 1) & (NWINDOWS - 1)); |
| else if ((intno & 0x1c0) == TT_SPILL) |
| set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1)); |
| else if ((intno & 0x1c0) == TT_FILL) |
| set_cwp((env->cwp + 1) & (NWINDOWS - 1)); |
| env->tbr &= ~0x7fffULL; |
| env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); |
| if (env->tl < MAXTL - 1) { |
| env->tl++; |
| } else { |
| env->pstate |= PS_RED; |
| if (env->tl != MAXTL) |
| env->tl++; |
| } |
| env->tsptr = &env->ts[env->tl]; |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = 0; |
| } |
| #else |
| #ifdef DEBUG_PCALL |
| static const char * const excp_names[0x80] = { |
| [TT_TFAULT] = "Instruction Access Fault", |
| [TT_ILL_INSN] = "Illegal Instruction", |
| [TT_PRIV_INSN] = "Privileged Instruction", |
| [TT_NFPU_INSN] = "FPU Disabled", |
| [TT_WIN_OVF] = "Window Overflow", |
| [TT_WIN_UNF] = "Window Underflow", |
| [TT_UNALIGNED] = "Unaligned Memory Access", |
| [TT_FP_EXCP] = "FPU Exception", |
| [TT_DFAULT] = "Data Access Fault", |
| [TT_TOVF] = "Tag Overflow", |
| [TT_EXTINT | 0x1] = "External Interrupt 1", |
| [TT_EXTINT | 0x2] = "External Interrupt 2", |
| [TT_EXTINT | 0x3] = "External Interrupt 3", |
| [TT_EXTINT | 0x4] = "External Interrupt 4", |
| [TT_EXTINT | 0x5] = "External Interrupt 5", |
| [TT_EXTINT | 0x6] = "External Interrupt 6", |
| [TT_EXTINT | 0x7] = "External Interrupt 7", |
| [TT_EXTINT | 0x8] = "External Interrupt 8", |
| [TT_EXTINT | 0x9] = "External Interrupt 9", |
| [TT_EXTINT | 0xa] = "External Interrupt 10", |
| [TT_EXTINT | 0xb] = "External Interrupt 11", |
| [TT_EXTINT | 0xc] = "External Interrupt 12", |
| [TT_EXTINT | 0xd] = "External Interrupt 13", |
| [TT_EXTINT | 0xe] = "External Interrupt 14", |
| [TT_EXTINT | 0xf] = "External Interrupt 15", |
| [TT_TOVF] = "Tag Overflow", |
| [TT_CODE_ACCESS] = "Instruction Access Error", |
| [TT_DATA_ACCESS] = "Data Access Error", |
| [TT_DIV_ZERO] = "Division By Zero", |
| [TT_NCP_INSN] = "Coprocessor Disabled", |
| }; |
| #endif |
| |
| void do_interrupt(int intno) |
| { |
| int cwp; |
| |
| #ifdef DEBUG_PCALL |
| if (loglevel & CPU_LOG_INT) { |
| static int count; |
| const char *name; |
| |
| if (intno < 0 || intno >= 0x100) |
| name = "Unknown"; |
| else if (intno >= 0x80) |
| name = "Trap Instruction"; |
| else { |
| name = excp_names[intno]; |
| if (!name) |
| name = "Unknown"; |
| } |
| |
| fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n", |
| count, name, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| fprintf(logfile, " code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| fprintf(logfile, " %02x", ldub(ptr + i)); |
| } |
| fprintf(logfile, "\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->psret == 0) { |
| cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index); |
| return; |
| } |
| #endif |
| env->psret = 0; |
| cwp = (env->cwp - 1) & (NWINDOWS - 1); |
| set_cwp(cwp); |
| env->regwptr[9] = env->pc; |
| env->regwptr[10] = env->npc; |
| env->psrps = env->psrs; |
| env->psrs = 1; |
| env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = 0; |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user, |
| void *retaddr); |
| |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| #ifdef __s390__ |
| # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) |
| #else |
| # define GETPC() (__builtin_return_address(0)) |
| #endif |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user, |
| void *retaddr) |
| { |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc); |
| #endif |
| raise_exception(TT_UNALIGNED); |
| } |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| int ret; |
| unsigned long pc; |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| |
| ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (ret) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, (void *)T2); |
| } |
| } |
| cpu_loop_exit(); |
| } |
| env = saved_env; |
| } |
| |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int is_asi) |
| { |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| #ifdef DEBUG_UNASSIGNED |
| if (is_asi) |
| printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from " |
| TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi, |
| env->pc); |
| else |
| printf("Unassigned mem %s access to " TARGET_FMT_plx " from " |
| TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc); |
| #endif |
| if (env->mmuregs[3]) /* Fault status register */ |
| env->mmuregs[3] = 1; /* overflow (not read before another fault) */ |
| if (is_asi) |
| env->mmuregs[3] |= 1 << 16; |
| if (env->psrs) |
| env->mmuregs[3] |= 1 << 5; |
| if (is_exec) |
| env->mmuregs[3] |= 1 << 6; |
| if (is_write) |
| env->mmuregs[3] |= 1 << 7; |
| env->mmuregs[3] |= (5 << 2) | 2; |
| env->mmuregs[4] = addr; /* Fault address register */ |
| if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { |
| if (is_exec) |
| raise_exception(TT_CODE_ACCESS); |
| else |
| raise_exception(TT_DATA_ACCESS); |
| } |
| env = saved_env; |
| } |
| #else |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int is_asi) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", |
| addr, env->pc); |
| env = saved_env; |
| #endif |
| if (is_exec) |
| raise_exception(TT_CODE_ACCESS); |
| else |
| raise_exception(TT_DATA_ACCESS); |
| } |
| #endif |
| |