| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| /* Needed early for CONFIG_BSD etc. */ |
| #include "config-host.h" |
| |
| #include "monitor.h" |
| #include "sysemu.h" |
| #include "gdbstub.h" |
| #include "dma.h" |
| #include "kvm.h" |
| #include "exec-all.h" |
| |
| #include "cpus.h" |
| #include "compatfd.h" |
| |
| #ifdef SIGRTMIN |
| #define SIG_IPI (SIGRTMIN+4) |
| #else |
| #define SIG_IPI SIGUSR1 |
| #endif |
| |
| #ifdef CONFIG_LINUX |
| |
| #include <sys/prctl.h> |
| |
| #ifndef PR_MCE_KILL |
| #define PR_MCE_KILL 33 |
| #endif |
| |
| #ifndef PR_MCE_KILL_SET |
| #define PR_MCE_KILL_SET 1 |
| #endif |
| |
| #ifndef PR_MCE_KILL_EARLY |
| #define PR_MCE_KILL_EARLY 1 |
| #endif |
| |
| #endif /* CONFIG_LINUX */ |
| |
| static CPUState *next_cpu; |
| |
| /***********************************************************/ |
| void hw_error(const char *fmt, ...) |
| { |
| va_list ap; |
| CPUState *env; |
| |
| va_start(ap, fmt); |
| fprintf(stderr, "qemu: hardware error: "); |
| vfprintf(stderr, fmt, ap); |
| fprintf(stderr, "\n"); |
| for(env = first_cpu; env != NULL; env = env->next_cpu) { |
| fprintf(stderr, "CPU #%d:\n", env->cpu_index); |
| #ifdef TARGET_I386 |
| cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU); |
| #else |
| cpu_dump_state(env, stderr, fprintf, 0); |
| #endif |
| } |
| va_end(ap); |
| abort(); |
| } |
| |
| void cpu_synchronize_all_states(void) |
| { |
| CPUState *cpu; |
| |
| for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { |
| cpu_synchronize_state(cpu); |
| } |
| } |
| |
| void cpu_synchronize_all_post_reset(void) |
| { |
| CPUState *cpu; |
| |
| for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { |
| cpu_synchronize_post_reset(cpu); |
| } |
| } |
| |
| void cpu_synchronize_all_post_init(void) |
| { |
| CPUState *cpu; |
| |
| for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) { |
| cpu_synchronize_post_init(cpu); |
| } |
| } |
| |
| int cpu_is_stopped(CPUState *env) |
| { |
| return !vm_running || env->stopped; |
| } |
| |
| static void do_vm_stop(int reason) |
| { |
| if (vm_running) { |
| cpu_disable_ticks(); |
| vm_running = 0; |
| pause_all_vcpus(); |
| vm_state_notify(0, reason); |
| qemu_aio_flush(); |
| bdrv_flush_all(); |
| monitor_protocol_event(QEVENT_STOP, NULL); |
| } |
| } |
| |
| static int cpu_can_run(CPUState *env) |
| { |
| if (env->stop) { |
| return 0; |
| } |
| if (env->stopped || !vm_running) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static bool cpu_thread_is_idle(CPUState *env) |
| { |
| if (env->stop || env->queued_work_first) { |
| return false; |
| } |
| if (env->stopped || !vm_running) { |
| return true; |
| } |
| if (!env->halted || qemu_cpu_has_work(env)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool all_cpu_threads_idle(void) |
| { |
| CPUState *env; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| if (!cpu_thread_is_idle(env)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static void cpu_debug_handler(CPUState *env) |
| { |
| gdb_set_stop_cpu(env); |
| qemu_system_debug_request(); |
| } |
| |
| #ifdef CONFIG_LINUX |
| static void sigbus_reraise(void) |
| { |
| sigset_t set; |
| struct sigaction action; |
| |
| memset(&action, 0, sizeof(action)); |
| action.sa_handler = SIG_DFL; |
| if (!sigaction(SIGBUS, &action, NULL)) { |
| raise(SIGBUS); |
| sigemptyset(&set); |
| sigaddset(&set, SIGBUS); |
| sigprocmask(SIG_UNBLOCK, &set, NULL); |
| } |
| perror("Failed to re-raise SIGBUS!\n"); |
| abort(); |
| } |
| |
| static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, |
| void *ctx) |
| { |
| if (kvm_on_sigbus(siginfo->ssi_code, |
| (void *)(intptr_t)siginfo->ssi_addr)) { |
| sigbus_reraise(); |
| } |
| } |
| |
| static void qemu_init_sigbus(void) |
| { |
| struct sigaction action; |
| |
| memset(&action, 0, sizeof(action)); |
| action.sa_flags = SA_SIGINFO; |
| action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; |
| sigaction(SIGBUS, &action, NULL); |
| |
| prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); |
| } |
| |
| #else /* !CONFIG_LINUX */ |
| |
| static void qemu_init_sigbus(void) |
| { |
| } |
| #endif /* !CONFIG_LINUX */ |
| |
| #ifndef _WIN32 |
| static int io_thread_fd = -1; |
| |
| static void qemu_event_increment(void) |
| { |
| /* Write 8 bytes to be compatible with eventfd. */ |
| static const uint64_t val = 1; |
| ssize_t ret; |
| |
| if (io_thread_fd == -1) { |
| return; |
| } |
| do { |
| ret = write(io_thread_fd, &val, sizeof(val)); |
| } while (ret < 0 && errno == EINTR); |
| |
| /* EAGAIN is fine, a read must be pending. */ |
| if (ret < 0 && errno != EAGAIN) { |
| fprintf(stderr, "qemu_event_increment: write() filed: %s\n", |
| strerror(errno)); |
| exit (1); |
| } |
| } |
| |
| static void qemu_event_read(void *opaque) |
| { |
| int fd = (unsigned long)opaque; |
| ssize_t len; |
| char buffer[512]; |
| |
| /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */ |
| do { |
| len = read(fd, buffer, sizeof(buffer)); |
| } while ((len == -1 && errno == EINTR) || len == sizeof(buffer)); |
| } |
| |
| static int qemu_event_init(void) |
| { |
| int err; |
| int fds[2]; |
| |
| err = qemu_eventfd(fds); |
| if (err == -1) { |
| return -errno; |
| } |
| err = fcntl_setfl(fds[0], O_NONBLOCK); |
| if (err < 0) { |
| goto fail; |
| } |
| err = fcntl_setfl(fds[1], O_NONBLOCK); |
| if (err < 0) { |
| goto fail; |
| } |
| qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL, |
| (void *)(unsigned long)fds[0]); |
| |
| io_thread_fd = fds[1]; |
| return 0; |
| |
| fail: |
| close(fds[0]); |
| close(fds[1]); |
| return err; |
| } |
| |
| static void dummy_signal(int sig) |
| { |
| } |
| |
| /* If we have signalfd, we mask out the signals we want to handle and then |
| * use signalfd to listen for them. We rely on whatever the current signal |
| * handler is to dispatch the signals when we receive them. |
| */ |
| static void sigfd_handler(void *opaque) |
| { |
| int fd = (unsigned long) opaque; |
| struct qemu_signalfd_siginfo info; |
| struct sigaction action; |
| ssize_t len; |
| |
| while (1) { |
| do { |
| len = read(fd, &info, sizeof(info)); |
| } while (len == -1 && errno == EINTR); |
| |
| if (len == -1 && errno == EAGAIN) { |
| break; |
| } |
| |
| if (len != sizeof(info)) { |
| printf("read from sigfd returned %zd: %m\n", len); |
| return; |
| } |
| |
| sigaction(info.ssi_signo, NULL, &action); |
| if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { |
| action.sa_sigaction(info.ssi_signo, |
| (siginfo_t *)&info, NULL); |
| } else if (action.sa_handler) { |
| action.sa_handler(info.ssi_signo); |
| } |
| } |
| } |
| |
| static int qemu_signalfd_init(sigset_t mask) |
| { |
| int sigfd; |
| |
| sigfd = qemu_signalfd(&mask); |
| if (sigfd == -1) { |
| fprintf(stderr, "failed to create signalfd\n"); |
| return -errno; |
| } |
| |
| fcntl_setfl(sigfd, O_NONBLOCK); |
| |
| qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL, |
| (void *)(unsigned long) sigfd); |
| |
| return 0; |
| } |
| |
| static void qemu_kvm_eat_signals(CPUState *env) |
| { |
| struct timespec ts = { 0, 0 }; |
| siginfo_t siginfo; |
| sigset_t waitset; |
| sigset_t chkset; |
| int r; |
| |
| sigemptyset(&waitset); |
| sigaddset(&waitset, SIG_IPI); |
| sigaddset(&waitset, SIGBUS); |
| |
| do { |
| r = sigtimedwait(&waitset, &siginfo, &ts); |
| if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { |
| perror("sigtimedwait"); |
| exit(1); |
| } |
| |
| switch (r) { |
| case SIGBUS: |
| if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) { |
| sigbus_reraise(); |
| } |
| break; |
| default: |
| break; |
| } |
| |
| r = sigpending(&chkset); |
| if (r == -1) { |
| perror("sigpending"); |
| exit(1); |
| } |
| } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); |
| |
| #ifndef CONFIG_IOTHREAD |
| if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) { |
| qemu_notify_event(); |
| } |
| #endif |
| } |
| |
| #else /* _WIN32 */ |
| |
| HANDLE qemu_event_handle; |
| |
| static void dummy_event_handler(void *opaque) |
| { |
| } |
| |
| static int qemu_event_init(void) |
| { |
| qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL); |
| if (!qemu_event_handle) { |
| fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError()); |
| return -1; |
| } |
| qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL); |
| return 0; |
| } |
| |
| static void qemu_event_increment(void) |
| { |
| if (!SetEvent(qemu_event_handle)) { |
| fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n", |
| GetLastError()); |
| exit (1); |
| } |
| } |
| |
| static void qemu_kvm_eat_signals(CPUState *env) |
| { |
| } |
| #endif /* _WIN32 */ |
| |
| #ifndef CONFIG_IOTHREAD |
| static void qemu_kvm_init_cpu_signals(CPUState *env) |
| { |
| #ifndef _WIN32 |
| int r; |
| sigset_t set; |
| struct sigaction sigact; |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = dummy_signal; |
| sigaction(SIG_IPI, &sigact, NULL); |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIG_IPI); |
| sigaddset(&set, SIGIO); |
| sigaddset(&set, SIGALRM); |
| pthread_sigmask(SIG_BLOCK, &set, NULL); |
| |
| pthread_sigmask(SIG_BLOCK, NULL, &set); |
| sigdelset(&set, SIG_IPI); |
| sigdelset(&set, SIGBUS); |
| sigdelset(&set, SIGIO); |
| sigdelset(&set, SIGALRM); |
| r = kvm_set_signal_mask(env, &set); |
| if (r) { |
| fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); |
| exit(1); |
| } |
| #endif |
| } |
| |
| #ifndef _WIN32 |
| static sigset_t block_synchronous_signals(void) |
| { |
| sigset_t set; |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIGBUS); |
| if (kvm_enabled()) { |
| /* |
| * We need to process timer signals synchronously to avoid a race |
| * between exit_request check and KVM vcpu entry. |
| */ |
| sigaddset(&set, SIGIO); |
| sigaddset(&set, SIGALRM); |
| } |
| |
| return set; |
| } |
| #endif |
| |
| int qemu_init_main_loop(void) |
| { |
| #ifndef _WIN32 |
| sigset_t blocked_signals; |
| int ret; |
| |
| blocked_signals = block_synchronous_signals(); |
| |
| ret = qemu_signalfd_init(blocked_signals); |
| if (ret) { |
| return ret; |
| } |
| #endif |
| cpu_set_debug_excp_handler(cpu_debug_handler); |
| |
| qemu_init_sigbus(); |
| |
| return qemu_event_init(); |
| } |
| |
| void qemu_main_loop_start(void) |
| { |
| } |
| |
| void qemu_init_vcpu(void *_env) |
| { |
| CPUState *env = _env; |
| int r; |
| |
| env->nr_cores = smp_cores; |
| env->nr_threads = smp_threads; |
| |
| if (kvm_enabled()) { |
| r = kvm_init_vcpu(env); |
| if (r < 0) { |
| fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); |
| exit(1); |
| } |
| qemu_kvm_init_cpu_signals(env); |
| } |
| } |
| |
| int qemu_cpu_self(void *env) |
| { |
| return 1; |
| } |
| |
| void run_on_cpu(CPUState *env, void (*func)(void *data), void *data) |
| { |
| func(data); |
| } |
| |
| void resume_all_vcpus(void) |
| { |
| } |
| |
| void pause_all_vcpus(void) |
| { |
| } |
| |
| void qemu_cpu_kick(void *env) |
| { |
| } |
| |
| void qemu_cpu_kick_self(void) |
| { |
| #ifndef _WIN32 |
| assert(cpu_single_env); |
| |
| raise(SIG_IPI); |
| #else |
| abort(); |
| #endif |
| } |
| |
| void qemu_notify_event(void) |
| { |
| CPUState *env = cpu_single_env; |
| |
| qemu_event_increment (); |
| if (env) { |
| cpu_exit(env); |
| } |
| if (next_cpu && env != next_cpu) { |
| cpu_exit(next_cpu); |
| } |
| exit_request = 1; |
| } |
| |
| void qemu_mutex_lock_iothread(void) {} |
| void qemu_mutex_unlock_iothread(void) {} |
| |
| void cpu_stop_current(void) |
| { |
| } |
| |
| void vm_stop(int reason) |
| { |
| do_vm_stop(reason); |
| } |
| |
| #else /* CONFIG_IOTHREAD */ |
| |
| #include "qemu-thread.h" |
| |
| QemuMutex qemu_global_mutex; |
| static QemuMutex qemu_fair_mutex; |
| |
| static QemuThread io_thread; |
| |
| static QemuThread *tcg_cpu_thread; |
| static QemuCond *tcg_halt_cond; |
| |
| static int qemu_system_ready; |
| /* cpu creation */ |
| static QemuCond qemu_cpu_cond; |
| /* system init */ |
| static QemuCond qemu_system_cond; |
| static QemuCond qemu_pause_cond; |
| static QemuCond qemu_work_cond; |
| |
| static void cpu_signal(int sig) |
| { |
| if (cpu_single_env) { |
| cpu_exit(cpu_single_env); |
| } |
| exit_request = 1; |
| } |
| |
| static void qemu_kvm_init_cpu_signals(CPUState *env) |
| { |
| int r; |
| sigset_t set; |
| struct sigaction sigact; |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = dummy_signal; |
| sigaction(SIG_IPI, &sigact, NULL); |
| |
| pthread_sigmask(SIG_BLOCK, NULL, &set); |
| sigdelset(&set, SIG_IPI); |
| sigdelset(&set, SIGBUS); |
| r = kvm_set_signal_mask(env, &set); |
| if (r) { |
| fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); |
| exit(1); |
| } |
| } |
| |
| static void qemu_tcg_init_cpu_signals(void) |
| { |
| sigset_t set; |
| struct sigaction sigact; |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = cpu_signal; |
| sigaction(SIG_IPI, &sigact, NULL); |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIG_IPI); |
| pthread_sigmask(SIG_UNBLOCK, &set, NULL); |
| } |
| |
| static sigset_t block_io_signals(void) |
| { |
| sigset_t set; |
| |
| /* SIGUSR2 used by posix-aio-compat.c */ |
| sigemptyset(&set); |
| sigaddset(&set, SIGUSR2); |
| pthread_sigmask(SIG_UNBLOCK, &set, NULL); |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIGIO); |
| sigaddset(&set, SIGALRM); |
| sigaddset(&set, SIG_IPI); |
| sigaddset(&set, SIGBUS); |
| pthread_sigmask(SIG_BLOCK, &set, NULL); |
| |
| return set; |
| } |
| |
| int qemu_init_main_loop(void) |
| { |
| int ret; |
| sigset_t blocked_signals; |
| |
| cpu_set_debug_excp_handler(cpu_debug_handler); |
| |
| qemu_init_sigbus(); |
| |
| blocked_signals = block_io_signals(); |
| |
| ret = qemu_signalfd_init(blocked_signals); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Note eventfd must be drained before signalfd handlers run */ |
| ret = qemu_event_init(); |
| if (ret) { |
| return ret; |
| } |
| |
| qemu_cond_init(&qemu_pause_cond); |
| qemu_cond_init(&qemu_system_cond); |
| qemu_mutex_init(&qemu_fair_mutex); |
| qemu_mutex_init(&qemu_global_mutex); |
| qemu_mutex_lock(&qemu_global_mutex); |
| |
| qemu_thread_self(&io_thread); |
| |
| return 0; |
| } |
| |
| void qemu_main_loop_start(void) |
| { |
| qemu_system_ready = 1; |
| qemu_cond_broadcast(&qemu_system_cond); |
| } |
| |
| void run_on_cpu(CPUState *env, void (*func)(void *data), void *data) |
| { |
| struct qemu_work_item wi; |
| |
| if (qemu_cpu_self(env)) { |
| func(data); |
| return; |
| } |
| |
| wi.func = func; |
| wi.data = data; |
| if (!env->queued_work_first) { |
| env->queued_work_first = &wi; |
| } else { |
| env->queued_work_last->next = &wi; |
| } |
| env->queued_work_last = &wi; |
| wi.next = NULL; |
| wi.done = false; |
| |
| qemu_cpu_kick(env); |
| while (!wi.done) { |
| CPUState *self_env = cpu_single_env; |
| |
| qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); |
| cpu_single_env = self_env; |
| } |
| } |
| |
| static void flush_queued_work(CPUState *env) |
| { |
| struct qemu_work_item *wi; |
| |
| if (!env->queued_work_first) { |
| return; |
| } |
| |
| while ((wi = env->queued_work_first)) { |
| env->queued_work_first = wi->next; |
| wi->func(wi->data); |
| wi->done = true; |
| } |
| env->queued_work_last = NULL; |
| qemu_cond_broadcast(&qemu_work_cond); |
| } |
| |
| static void qemu_wait_io_event_common(CPUState *env) |
| { |
| if (env->stop) { |
| env->stop = 0; |
| env->stopped = 1; |
| qemu_cond_signal(&qemu_pause_cond); |
| } |
| flush_queued_work(env); |
| env->thread_kicked = false; |
| } |
| |
| static void qemu_tcg_wait_io_event(void) |
| { |
| CPUState *env; |
| |
| while (all_cpu_threads_idle()) { |
| qemu_cond_timedwait(tcg_halt_cond, &qemu_global_mutex, 1000); |
| } |
| |
| qemu_mutex_unlock(&qemu_global_mutex); |
| |
| /* |
| * Users of qemu_global_mutex can be starved, having no chance |
| * to acquire it since this path will get to it first. |
| * So use another lock to provide fairness. |
| */ |
| qemu_mutex_lock(&qemu_fair_mutex); |
| qemu_mutex_unlock(&qemu_fair_mutex); |
| |
| qemu_mutex_lock(&qemu_global_mutex); |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| qemu_wait_io_event_common(env); |
| } |
| } |
| |
| static void qemu_kvm_wait_io_event(CPUState *env) |
| { |
| while (cpu_thread_is_idle(env)) { |
| qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000); |
| } |
| |
| qemu_kvm_eat_signals(env); |
| qemu_wait_io_event_common(env); |
| } |
| |
| static int qemu_cpu_exec(CPUState *env); |
| |
| static void *qemu_kvm_cpu_thread_fn(void *arg) |
| { |
| CPUState *env = arg; |
| int r; |
| |
| qemu_mutex_lock(&qemu_global_mutex); |
| qemu_thread_self(env->thread); |
| |
| r = kvm_init_vcpu(env); |
| if (r < 0) { |
| fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); |
| exit(1); |
| } |
| |
| qemu_kvm_init_cpu_signals(env); |
| |
| /* signal CPU creation */ |
| env->created = 1; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| /* and wait for machine initialization */ |
| while (!qemu_system_ready) { |
| qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); |
| } |
| |
| while (1) { |
| if (cpu_can_run(env)) { |
| qemu_cpu_exec(env); |
| } |
| qemu_kvm_wait_io_event(env); |
| } |
| |
| return NULL; |
| } |
| |
| static void *qemu_tcg_cpu_thread_fn(void *arg) |
| { |
| CPUState *env = arg; |
| |
| qemu_tcg_init_cpu_signals(); |
| qemu_thread_self(env->thread); |
| |
| /* signal CPU creation */ |
| qemu_mutex_lock(&qemu_global_mutex); |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| env->created = 1; |
| } |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| /* and wait for machine initialization */ |
| while (!qemu_system_ready) { |
| qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); |
| } |
| |
| while (1) { |
| cpu_exec_all(); |
| qemu_tcg_wait_io_event(); |
| } |
| |
| return NULL; |
| } |
| |
| void qemu_cpu_kick(void *_env) |
| { |
| CPUState *env = _env; |
| |
| qemu_cond_broadcast(env->halt_cond); |
| if (!env->thread_kicked) { |
| qemu_thread_signal(env->thread, SIG_IPI); |
| env->thread_kicked = true; |
| } |
| } |
| |
| void qemu_cpu_kick_self(void) |
| { |
| assert(cpu_single_env); |
| |
| if (!cpu_single_env->thread_kicked) { |
| qemu_thread_signal(cpu_single_env->thread, SIG_IPI); |
| cpu_single_env->thread_kicked = true; |
| } |
| } |
| |
| int qemu_cpu_self(void *_env) |
| { |
| CPUState *env = _env; |
| QemuThread this; |
| |
| qemu_thread_self(&this); |
| |
| return qemu_thread_equal(&this, env->thread); |
| } |
| |
| void qemu_mutex_lock_iothread(void) |
| { |
| if (kvm_enabled()) { |
| qemu_mutex_lock(&qemu_global_mutex); |
| } else { |
| qemu_mutex_lock(&qemu_fair_mutex); |
| if (qemu_mutex_trylock(&qemu_global_mutex)) { |
| qemu_thread_signal(tcg_cpu_thread, SIG_IPI); |
| qemu_mutex_lock(&qemu_global_mutex); |
| } |
| qemu_mutex_unlock(&qemu_fair_mutex); |
| } |
| } |
| |
| void qemu_mutex_unlock_iothread(void) |
| { |
| qemu_mutex_unlock(&qemu_global_mutex); |
| } |
| |
| static int all_vcpus_paused(void) |
| { |
| CPUState *penv = first_cpu; |
| |
| while (penv) { |
| if (!penv->stopped) { |
| return 0; |
| } |
| penv = (CPUState *)penv->next_cpu; |
| } |
| |
| return 1; |
| } |
| |
| void pause_all_vcpus(void) |
| { |
| CPUState *penv = first_cpu; |
| |
| while (penv) { |
| penv->stop = 1; |
| qemu_cpu_kick(penv); |
| penv = (CPUState *)penv->next_cpu; |
| } |
| |
| while (!all_vcpus_paused()) { |
| qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100); |
| penv = first_cpu; |
| while (penv) { |
| qemu_cpu_kick(penv); |
| penv = (CPUState *)penv->next_cpu; |
| } |
| } |
| } |
| |
| void resume_all_vcpus(void) |
| { |
| CPUState *penv = first_cpu; |
| |
| while (penv) { |
| penv->stop = 0; |
| penv->stopped = 0; |
| qemu_cpu_kick(penv); |
| penv = (CPUState *)penv->next_cpu; |
| } |
| } |
| |
| static void qemu_tcg_init_vcpu(void *_env) |
| { |
| CPUState *env = _env; |
| |
| /* share a single thread for all cpus with TCG */ |
| if (!tcg_cpu_thread) { |
| env->thread = qemu_mallocz(sizeof(QemuThread)); |
| env->halt_cond = qemu_mallocz(sizeof(QemuCond)); |
| qemu_cond_init(env->halt_cond); |
| qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env); |
| while (env->created == 0) { |
| qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); |
| } |
| tcg_cpu_thread = env->thread; |
| tcg_halt_cond = env->halt_cond; |
| } else { |
| env->thread = tcg_cpu_thread; |
| env->halt_cond = tcg_halt_cond; |
| } |
| } |
| |
| static void qemu_kvm_start_vcpu(CPUState *env) |
| { |
| env->thread = qemu_mallocz(sizeof(QemuThread)); |
| env->halt_cond = qemu_mallocz(sizeof(QemuCond)); |
| qemu_cond_init(env->halt_cond); |
| qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env); |
| while (env->created == 0) { |
| qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); |
| } |
| } |
| |
| void qemu_init_vcpu(void *_env) |
| { |
| CPUState *env = _env; |
| |
| env->nr_cores = smp_cores; |
| env->nr_threads = smp_threads; |
| if (kvm_enabled()) { |
| qemu_kvm_start_vcpu(env); |
| } else { |
| qemu_tcg_init_vcpu(env); |
| } |
| } |
| |
| void qemu_notify_event(void) |
| { |
| qemu_event_increment(); |
| } |
| |
| void cpu_stop_current(void) |
| { |
| if (cpu_single_env) { |
| cpu_single_env->stopped = 1; |
| cpu_exit(cpu_single_env); |
| } |
| } |
| |
| void vm_stop(int reason) |
| { |
| QemuThread me; |
| qemu_thread_self(&me); |
| |
| if (!qemu_thread_equal(&me, &io_thread)) { |
| qemu_system_vmstop_request(reason); |
| /* |
| * FIXME: should not return to device code in case |
| * vm_stop() has been requested. |
| */ |
| cpu_stop_current(); |
| return; |
| } |
| do_vm_stop(reason); |
| } |
| |
| #endif |
| |
| static int qemu_cpu_exec(CPUState *env) |
| { |
| int ret; |
| #ifdef CONFIG_PROFILER |
| int64_t ti; |
| #endif |
| |
| #ifdef CONFIG_PROFILER |
| ti = profile_getclock(); |
| #endif |
| if (use_icount) { |
| int64_t count; |
| int decr; |
| qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); |
| env->icount_decr.u16.low = 0; |
| env->icount_extra = 0; |
| count = qemu_icount_round (qemu_next_deadline()); |
| qemu_icount += count; |
| decr = (count > 0xffff) ? 0xffff : count; |
| count -= decr; |
| env->icount_decr.u16.low = decr; |
| env->icount_extra = count; |
| } |
| ret = cpu_exec(env); |
| #ifdef CONFIG_PROFILER |
| qemu_time += profile_getclock() - ti; |
| #endif |
| if (use_icount) { |
| /* Fold pending instructions back into the |
| instruction counter, and clear the interrupt flag. */ |
| qemu_icount -= (env->icount_decr.u16.low |
| + env->icount_extra); |
| env->icount_decr.u32 = 0; |
| env->icount_extra = 0; |
| } |
| return ret; |
| } |
| |
| bool cpu_exec_all(void) |
| { |
| int r; |
| |
| if (next_cpu == NULL) { |
| next_cpu = first_cpu; |
| } |
| for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) { |
| CPUState *env = next_cpu; |
| |
| qemu_clock_enable(vm_clock, |
| (env->singlestep_enabled & SSTEP_NOTIMER) == 0); |
| |
| if (qemu_alarm_pending()) { |
| break; |
| } |
| if (cpu_can_run(env)) { |
| r = qemu_cpu_exec(env); |
| if (kvm_enabled()) { |
| qemu_kvm_eat_signals(env); |
| } |
| if (r == EXCP_DEBUG) { |
| break; |
| } |
| } else if (env->stop) { |
| break; |
| } |
| } |
| exit_request = 0; |
| return !all_cpu_threads_idle(); |
| } |
| |
| void set_numa_modes(void) |
| { |
| CPUState *env; |
| int i; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (node_cpumask[i] & (1 << env->cpu_index)) { |
| env->numa_node = i; |
| } |
| } |
| } |
| } |
| |
| void set_cpu_log(const char *optarg) |
| { |
| int mask; |
| const CPULogItem *item; |
| |
| mask = cpu_str_to_log_mask(optarg); |
| if (!mask) { |
| printf("Log items (comma separated):\n"); |
| for (item = cpu_log_items; item->mask != 0; item++) { |
| printf("%-10s %s\n", item->name, item->help); |
| } |
| exit(1); |
| } |
| cpu_set_log(mask); |
| } |
| |
| /* Return the virtual CPU time, based on the instruction counter. */ |
| int64_t cpu_get_icount(void) |
| { |
| int64_t icount; |
| CPUState *env = cpu_single_env;; |
| |
| icount = qemu_icount; |
| if (env) { |
| if (!can_do_io(env)) { |
| fprintf(stderr, "Bad clock read\n"); |
| } |
| icount -= (env->icount_decr.u16.low + env->icount_extra); |
| } |
| return qemu_icount_bias + (icount << icount_time_shift); |
| } |
| |
| void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) |
| { |
| /* XXX: implement xxx_cpu_list for targets that still miss it */ |
| #if defined(cpu_list_id) |
| cpu_list_id(f, cpu_fprintf, optarg); |
| #elif defined(cpu_list) |
| cpu_list(f, cpu_fprintf); /* deprecated */ |
| #endif |
| } |