blob: 810c6b6d980f33ca7f543cf6f7b0559b7f526a6a [file] [log] [blame]
/*
* QEMU IDE Emulation: PCI Bus support.
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2006 Openedhand Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/pci/pci.h"
#include "migration/vmstate.h"
#include "sysemu/dma.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "hw/ide/pci.h"
#include "trace.h"
#define BMDMA_PAGE_SIZE 4096
#define BM_MIGRATION_COMPAT_STATUS_BITS \
(IDE_RETRY_DMA | IDE_RETRY_PIO | \
IDE_RETRY_READ | IDE_RETRY_FLUSH)
static uint64_t pci_ide_status_read(void *opaque, hwaddr addr, unsigned size)
{
IDEBus *bus = opaque;
if (addr != 2 || size != 1) {
return ((uint64_t)1 << (size * 8)) - 1;
}
return ide_status_read(bus, addr + 2);
}
static void pci_ide_ctrl_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
IDEBus *bus = opaque;
if (addr != 2 || size != 1) {
return;
}
ide_ctrl_write(bus, addr + 2, data);
}
const MemoryRegionOps pci_ide_cmd_le_ops = {
.read = pci_ide_status_read,
.write = pci_ide_ctrl_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t pci_ide_data_read(void *opaque, hwaddr addr, unsigned size)
{
IDEBus *bus = opaque;
if (size == 1) {
return ide_ioport_read(bus, addr);
} else if (addr == 0) {
if (size == 2) {
return ide_data_readw(bus, addr);
} else {
return ide_data_readl(bus, addr);
}
}
return ((uint64_t)1 << (size * 8)) - 1;
}
static void pci_ide_data_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
IDEBus *bus = opaque;
if (size == 1) {
ide_ioport_write(bus, addr, data);
} else if (addr == 0) {
if (size == 2) {
ide_data_writew(bus, addr, data);
} else {
ide_data_writel(bus, addr, data);
}
}
}
const MemoryRegionOps pci_ide_data_le_ops = {
.read = pci_ide_data_read,
.write = pci_ide_data_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
void pci_ide_update_mode(PCIIDEState *s)
{
PCIDevice *d = PCI_DEVICE(s);
uint8_t mode = d->config[PCI_CLASS_PROG];
/*
* This function only configures the BARs/ioports for now: PCI IDE
* controllers must manage their own IRQ routing
*/
switch (mode & 0xf) {
case 0xa:
/* Both channels legacy mode */
/*
* TODO: according to the PCI IDE specification the BARs should
* be completely disabled, however Linux for the pegasos2
* machine stil accesses the BAR addresses after switching to legacy
* mode. Hence we leave them active for now.
*/
/* Clear interrupt pin */
pci_config_set_interrupt_pin(d->config, 0);
/* Add legacy IDE ports */
if (!s->bus[0].portio_list.owner) {
portio_list_init(&s->bus[0].portio_list, OBJECT(d),
ide_portio_list, &s->bus[0], "ide");
portio_list_add(&s->bus[0].portio_list,
pci_address_space_io(d), 0x1f0);
}
if (!s->bus[0].portio2_list.owner) {
portio_list_init(&s->bus[0].portio2_list, OBJECT(d),
ide_portio2_list, &s->bus[0], "ide");
portio_list_add(&s->bus[0].portio2_list,
pci_address_space_io(d), 0x3f6);
}
if (!s->bus[1].portio_list.owner) {
portio_list_init(&s->bus[1].portio_list, OBJECT(d),
ide_portio_list, &s->bus[1], "ide");
portio_list_add(&s->bus[1].portio_list,
pci_address_space_io(d), 0x170);
}
if (!s->bus[1].portio2_list.owner) {
portio_list_init(&s->bus[1].portio2_list, OBJECT(d),
ide_portio2_list, &s->bus[1], "ide");
portio_list_add(&s->bus[1].portio2_list,
pci_address_space_io(d), 0x376);
}
break;
case 0xf:
/* Both channels native mode */
/* Set interrupt pin */
pci_config_set_interrupt_pin(d->config, 1);
/* Remove legacy IDE ports */
if (s->bus[0].portio_list.owner) {
portio_list_del(&s->bus[0].portio_list);
portio_list_destroy(&s->bus[0].portio_list);
}
if (s->bus[0].portio2_list.owner) {
portio_list_del(&s->bus[0].portio2_list);
portio_list_destroy(&s->bus[0].portio2_list);
}
if (s->bus[1].portio_list.owner) {
portio_list_del(&s->bus[1].portio_list);
portio_list_destroy(&s->bus[1].portio_list);
}
if (s->bus[1].portio2_list.owner) {
portio_list_del(&s->bus[1].portio2_list);
portio_list_destroy(&s->bus[1].portio2_list);
}
break;
}
}
static IDEState *bmdma_active_if(BMDMAState *bmdma)
{
assert(bmdma->bus->retry_unit != (uint8_t)-1);
return bmdma->bus->ifs + bmdma->bus->retry_unit;
}
static void bmdma_start_dma(const IDEDMA *dma, IDEState *s,
BlockCompletionFunc *dma_cb)
{
BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
bm->dma_cb = dma_cb;
bm->cur_prd_last = 0;
bm->cur_prd_addr = 0;
bm->cur_prd_len = 0;
if (bm->status & BM_STATUS_DMAING) {
bm->dma_cb(bmdma_active_if(bm), 0);
}
}
/**
* Prepare an sglist based on available PRDs.
* @limit: How many bytes to prepare total.
*
* Returns the number of bytes prepared, -1 on error.
* IDEState.io_buffer_size will contain the number of bytes described
* by the PRDs, whether or not we added them to the sglist.
*/
static int32_t bmdma_prepare_buf(const IDEDMA *dma, int32_t limit)
{
BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
IDEState *s = bmdma_active_if(bm);
PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev);
struct {
uint32_t addr;
uint32_t size;
} prd;
int l, len;
pci_dma_sglist_init(&s->sg, pci_dev,
s->nsector / (BMDMA_PAGE_SIZE / BDRV_SECTOR_SIZE) + 1);
s->io_buffer_size = 0;
for(;;) {
if (bm->cur_prd_len == 0) {
/* end of table (with a fail safe of one page) */
if (bm->cur_prd_last ||
(bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE) {
return s->sg.size;
}
pci_dma_read(pci_dev, bm->cur_addr, &prd, 8);
bm->cur_addr += 8;
prd.addr = le32_to_cpu(prd.addr);
prd.size = le32_to_cpu(prd.size);
len = prd.size & 0xfffe;
if (len == 0)
len = 0x10000;
bm->cur_prd_len = len;
bm->cur_prd_addr = prd.addr;
bm->cur_prd_last = (prd.size & 0x80000000);
}
l = bm->cur_prd_len;
if (l > 0) {
uint64_t sg_len;
/* Don't add extra bytes to the SGList; consume any remaining
* PRDs from the guest, but ignore them. */
sg_len = MIN(limit - s->sg.size, bm->cur_prd_len);
if (sg_len) {
qemu_sglist_add(&s->sg, bm->cur_prd_addr, sg_len);
}
bm->cur_prd_addr += l;
bm->cur_prd_len -= l;
s->io_buffer_size += l;
}
}
qemu_sglist_destroy(&s->sg);
s->io_buffer_size = 0;
return -1;
}
/* return 0 if buffer completed */
static int bmdma_rw_buf(const IDEDMA *dma, bool is_write)
{
BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
IDEState *s = bmdma_active_if(bm);
PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev);
struct {
uint32_t addr;
uint32_t size;
} prd;
int l, len;
for(;;) {
l = s->io_buffer_size - s->io_buffer_index;
if (l <= 0)
break;
if (bm->cur_prd_len == 0) {
/* end of table (with a fail safe of one page) */
if (bm->cur_prd_last ||
(bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE)
return 0;
pci_dma_read(pci_dev, bm->cur_addr, &prd, 8);
bm->cur_addr += 8;
prd.addr = le32_to_cpu(prd.addr);
prd.size = le32_to_cpu(prd.size);
len = prd.size & 0xfffe;
if (len == 0)
len = 0x10000;
bm->cur_prd_len = len;
bm->cur_prd_addr = prd.addr;
bm->cur_prd_last = (prd.size & 0x80000000);
}
if (l > bm->cur_prd_len)
l = bm->cur_prd_len;
if (l > 0) {
if (is_write) {
pci_dma_write(pci_dev, bm->cur_prd_addr,
s->io_buffer + s->io_buffer_index, l);
} else {
pci_dma_read(pci_dev, bm->cur_prd_addr,
s->io_buffer + s->io_buffer_index, l);
}
bm->cur_prd_addr += l;
bm->cur_prd_len -= l;
s->io_buffer_index += l;
}
}
return 1;
}
static void bmdma_set_inactive(const IDEDMA *dma, bool more)
{
BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
bm->dma_cb = NULL;
if (more) {
bm->status |= BM_STATUS_DMAING;
} else {
bm->status &= ~BM_STATUS_DMAING;
}
}
static void bmdma_restart_dma(const IDEDMA *dma)
{
BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
bm->cur_addr = bm->addr;
}
static void bmdma_cancel(BMDMAState *bm)
{
if (bm->status & BM_STATUS_DMAING) {
/* cancel DMA request */
bmdma_set_inactive(&bm->dma, false);
}
}
static void bmdma_reset(const IDEDMA *dma)
{
BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
trace_bmdma_reset();
bmdma_cancel(bm);
bm->cmd = 0;
bm->status = 0;
bm->addr = 0;
bm->cur_addr = 0;
bm->cur_prd_last = 0;
bm->cur_prd_addr = 0;
bm->cur_prd_len = 0;
}
static void bmdma_irq(void *opaque, int n, int level)
{
BMDMAState *bm = opaque;
if (!level) {
/* pass through lower */
qemu_set_irq(bm->irq, level);
return;
}
bm->status |= BM_STATUS_INT;
/* trigger the real irq */
qemu_set_irq(bm->irq, level);
}
void bmdma_cmd_writeb(BMDMAState *bm, uint32_t val)
{
trace_bmdma_cmd_writeb(val);
/* Ignore writes to SSBM if it keeps the old value */
if ((val & BM_CMD_START) != (bm->cmd & BM_CMD_START)) {
if (!(val & BM_CMD_START)) {
ide_cancel_dma_sync(ide_bus_active_if(bm->bus));
bm->status &= ~BM_STATUS_DMAING;
} else {
bm->cur_addr = bm->addr;
if (!(bm->status & BM_STATUS_DMAING)) {
bm->status |= BM_STATUS_DMAING;
/* start dma transfer if possible */
if (bm->dma_cb)
bm->dma_cb(bmdma_active_if(bm), 0);
}
}
}
bm->cmd = val & 0x09;
}
void bmdma_status_writeb(BMDMAState *bm, uint32_t val)
{
bm->status = (val & 0x60) | (bm->status & BM_STATUS_DMAING)
| (bm->status & ~val & (BM_STATUS_ERROR | BM_STATUS_INT));
}
static uint64_t bmdma_addr_read(void *opaque, hwaddr addr,
unsigned width)
{
BMDMAState *bm = opaque;
uint32_t mask = (1ULL << (width * 8)) - 1;
uint64_t data;
data = (bm->addr >> (addr * 8)) & mask;
trace_bmdma_addr_read(data);
return data;
}
static void bmdma_addr_write(void *opaque, hwaddr addr,
uint64_t data, unsigned width)
{
BMDMAState *bm = opaque;
int shift = addr * 8;
uint32_t mask = (1ULL << (width * 8)) - 1;
trace_bmdma_addr_write(data);
bm->addr &= ~(mask << shift);
bm->addr |= ((data & mask) << shift) & ~3;
}
MemoryRegionOps bmdma_addr_ioport_ops = {
.read = bmdma_addr_read,
.write = bmdma_addr_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static bool ide_bmdma_current_needed(void *opaque)
{
BMDMAState *bm = opaque;
return (bm->cur_prd_len != 0);
}
static bool ide_bmdma_status_needed(void *opaque)
{
BMDMAState *bm = opaque;
/* Older versions abused some bits in the status register for internal
* error state. If any of these bits are set, we must add a subsection to
* transfer the real status register */
uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
return ((bm->status & abused_bits) != 0);
}
static int ide_bmdma_pre_save(void *opaque)
{
BMDMAState *bm = opaque;
uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
if (!(bm->status & BM_STATUS_DMAING) && bm->dma_cb) {
bm->bus->error_status =
ide_dma_cmd_to_retry(bmdma_active_if(bm)->dma_cmd);
}
bm->migration_retry_unit = bm->bus->retry_unit;
bm->migration_retry_sector_num = bm->bus->retry_sector_num;
bm->migration_retry_nsector = bm->bus->retry_nsector;
bm->migration_compat_status =
(bm->status & ~abused_bits) | (bm->bus->error_status & abused_bits);
return 0;
}
/* This function accesses bm->bus->error_status which is loaded only after
* BMDMA itself. This is why the function is called from ide_pci_post_load
* instead of being registered with VMState where it would run too early. */
static int ide_bmdma_post_load(void *opaque, int version_id)
{
BMDMAState *bm = opaque;
uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
if (bm->status == 0) {
bm->status = bm->migration_compat_status & ~abused_bits;
bm->bus->error_status |= bm->migration_compat_status & abused_bits;
}
if (bm->bus->error_status) {
bm->bus->retry_sector_num = bm->migration_retry_sector_num;
bm->bus->retry_nsector = bm->migration_retry_nsector;
bm->bus->retry_unit = bm->migration_retry_unit;
}
return 0;
}
static const VMStateDescription vmstate_bmdma_current = {
.name = "ide bmdma_current",
.version_id = 1,
.minimum_version_id = 1,
.needed = ide_bmdma_current_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cur_addr, BMDMAState),
VMSTATE_UINT32(cur_prd_last, BMDMAState),
VMSTATE_UINT32(cur_prd_addr, BMDMAState),
VMSTATE_UINT32(cur_prd_len, BMDMAState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_bmdma_status = {
.name ="ide bmdma/status",
.version_id = 1,
.minimum_version_id = 1,
.needed = ide_bmdma_status_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(status, BMDMAState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_bmdma = {
.name = "ide bmdma",
.version_id = 3,
.minimum_version_id = 0,
.pre_save = ide_bmdma_pre_save,
.fields = (VMStateField[]) {
VMSTATE_UINT8(cmd, BMDMAState),
VMSTATE_UINT8(migration_compat_status, BMDMAState),
VMSTATE_UINT32(addr, BMDMAState),
VMSTATE_INT64(migration_retry_sector_num, BMDMAState),
VMSTATE_UINT32(migration_retry_nsector, BMDMAState),
VMSTATE_UINT8(migration_retry_unit, BMDMAState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_bmdma_current,
&vmstate_bmdma_status,
NULL
}
};
static int ide_pci_post_load(void *opaque, int version_id)
{
PCIIDEState *d = opaque;
int i;
for(i = 0; i < 2; i++) {
/* current versions always store 0/1, but older version
stored bigger values. We only need last bit */
d->bmdma[i].migration_retry_unit &= 1;
ide_bmdma_post_load(&d->bmdma[i], -1);
}
return 0;
}
const VMStateDescription vmstate_ide_pci = {
.name = "ide",
.version_id = 3,
.minimum_version_id = 0,
.post_load = ide_pci_post_load,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, PCIIDEState),
VMSTATE_STRUCT_ARRAY(bmdma, PCIIDEState, 2, 0,
vmstate_bmdma, BMDMAState),
VMSTATE_IDE_BUS_ARRAY(bus, PCIIDEState, 2),
VMSTATE_IDE_DRIVES(bus[0].ifs, PCIIDEState),
VMSTATE_IDE_DRIVES(bus[1].ifs, PCIIDEState),
VMSTATE_END_OF_LIST()
}
};
/* hd_table must contain 4 block drivers */
void pci_ide_create_devs(PCIDevice *dev)
{
PCIIDEState *d = PCI_IDE(dev);
DriveInfo *hd_table[2 * MAX_IDE_DEVS];
static const int bus[4] = { 0, 0, 1, 1 };
static const int unit[4] = { 0, 1, 0, 1 };
int i;
ide_drive_get(hd_table, ARRAY_SIZE(hd_table));
for (i = 0; i < 4; i++) {
if (hd_table[i]) {
ide_bus_create_drive(d->bus + bus[i], unit[i], hd_table[i]);
}
}
}
static const struct IDEDMAOps bmdma_ops = {
.start_dma = bmdma_start_dma,
.prepare_buf = bmdma_prepare_buf,
.rw_buf = bmdma_rw_buf,
.restart_dma = bmdma_restart_dma,
.set_inactive = bmdma_set_inactive,
.reset = bmdma_reset,
};
void bmdma_init(IDEBus *bus, BMDMAState *bm, PCIIDEState *d)
{
if (bus->dma == &bm->dma) {
return;
}
bm->dma.ops = &bmdma_ops;
bus->dma = &bm->dma;
bm->irq = bus->irq;
bus->irq = qemu_allocate_irq(bmdma_irq, bm, 0);
bm->bus = bus;
bm->pci_dev = d;
}
static void pci_ide_init(Object *obj)
{
PCIIDEState *d = PCI_IDE(obj);
qdev_init_gpio_out_named(DEVICE(d), d->isa_irq, "isa-irq",
ARRAY_SIZE(d->isa_irq));
}
static const TypeInfo pci_ide_type_info = {
.name = TYPE_PCI_IDE,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(PCIIDEState),
.instance_init = pci_ide_init,
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
static void pci_ide_register_types(void)
{
type_register_static(&pci_ide_type_info);
}
type_init(pci_ide_register_types)