blob: e5297dbb01b1a391c7ce5ecd533feaf1dcd74f12 [file] [log] [blame]
/*
* Instructions Per Second (IPS) rate limiting plugin.
*
* This plugin can be used to restrict the execution of a system to a
* particular number of Instructions Per Second (IPS). This controls
* time as seen by the guest so while wall-clock time may be longer
* from the guests point of view time will pass at the normal rate.
*
* This uses the new plugin API which allows the plugin to control
* system time.
*
* Copyright (c) 2023 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <stdio.h>
#include <glib.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
/* how many times do we update time per sec */
#define NUM_TIME_UPDATE_PER_SEC 10
#define NSEC_IN_ONE_SEC (1000 * 1000 * 1000)
static GMutex global_state_lock;
static uint64_t max_insn_per_second = 1000 * 1000 * 1000; /* ips per core, per second */
static uint64_t max_insn_per_quantum; /* trap every N instructions */
static int64_t virtual_time_ns; /* last set virtual time */
static const void *time_handle;
typedef struct {
uint64_t total_insn;
uint64_t quantum_insn; /* insn in last quantum */
int64_t last_quantum_time; /* time when last quantum started */
} vCPUTime;
struct qemu_plugin_scoreboard *vcpus;
/* return epoch time in ns */
static int64_t now_ns(void)
{
return g_get_real_time() * 1000;
}
static uint64_t num_insn_during(int64_t elapsed_ns)
{
double num_secs = elapsed_ns / (double) NSEC_IN_ONE_SEC;
return num_secs * (double) max_insn_per_second;
}
static int64_t time_for_insn(uint64_t num_insn)
{
double num_secs = (double) num_insn / (double) max_insn_per_second;
return num_secs * (double) NSEC_IN_ONE_SEC;
}
static void update_system_time(vCPUTime *vcpu)
{
int64_t elapsed_ns = now_ns() - vcpu->last_quantum_time;
uint64_t max_insn = num_insn_during(elapsed_ns);
if (vcpu->quantum_insn >= max_insn) {
/* this vcpu ran faster than expected, so it has to sleep */
uint64_t insn_advance = vcpu->quantum_insn - max_insn;
uint64_t time_advance_ns = time_for_insn(insn_advance);
int64_t sleep_us = time_advance_ns / 1000;
g_usleep(sleep_us);
}
vcpu->total_insn += vcpu->quantum_insn;
vcpu->quantum_insn = 0;
vcpu->last_quantum_time = now_ns();
/* based on total number of instructions, what should be the new time? */
int64_t new_virtual_time = time_for_insn(vcpu->total_insn);
g_mutex_lock(&global_state_lock);
/* Time only moves forward. Another vcpu might have updated it already. */
if (new_virtual_time > virtual_time_ns) {
qemu_plugin_update_ns(time_handle, new_virtual_time);
virtual_time_ns = new_virtual_time;
}
g_mutex_unlock(&global_state_lock);
}
static void vcpu_init(qemu_plugin_id_t id, unsigned int cpu_index)
{
vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index);
vcpu->total_insn = 0;
vcpu->quantum_insn = 0;
vcpu->last_quantum_time = now_ns();
}
static void vcpu_exit(qemu_plugin_id_t id, unsigned int cpu_index)
{
vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index);
update_system_time(vcpu);
}
static void every_quantum_insn(unsigned int cpu_index, void *udata)
{
vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index);
g_assert(vcpu->quantum_insn >= max_insn_per_quantum);
update_system_time(vcpu);
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
size_t n_insns = qemu_plugin_tb_n_insns(tb);
qemu_plugin_u64 quantum_insn =
qemu_plugin_scoreboard_u64_in_struct(vcpus, vCPUTime, quantum_insn);
/* count (and eventually trap) once per tb */
qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
tb, QEMU_PLUGIN_INLINE_ADD_U64, quantum_insn, n_insns);
qemu_plugin_register_vcpu_tb_exec_cond_cb(
tb, every_quantum_insn,
QEMU_PLUGIN_CB_NO_REGS, QEMU_PLUGIN_COND_GE,
quantum_insn, max_insn_per_quantum, NULL);
}
static void plugin_exit(qemu_plugin_id_t id, void *udata)
{
qemu_plugin_scoreboard_free(vcpus);
}
QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
const qemu_info_t *info, int argc,
char **argv)
{
for (int i = 0; i < argc; i++) {
char *opt = argv[i];
g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
if (g_strcmp0(tokens[0], "ips") == 0) {
max_insn_per_second = g_ascii_strtoull(tokens[1], NULL, 10);
if (!max_insn_per_second && errno) {
fprintf(stderr, "%s: couldn't parse %s (%s)\n",
__func__, tokens[1], g_strerror(errno));
return -1;
}
} else {
fprintf(stderr, "option parsing failed: %s\n", opt);
return -1;
}
}
vcpus = qemu_plugin_scoreboard_new(sizeof(vCPUTime));
max_insn_per_quantum = max_insn_per_second / NUM_TIME_UPDATE_PER_SEC;
if (max_insn_per_quantum == 0) {
fprintf(stderr, "minimum of %d instructions per second needed\n",
NUM_TIME_UPDATE_PER_SEC);
return -1;
}
time_handle = qemu_plugin_request_time_control();
g_assert(time_handle);
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_vcpu_init_cb(id, vcpu_init);
qemu_plugin_register_vcpu_exit_cb(id, vcpu_exit);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}