blob: 324ca0e95aa4208c3372f35781249b7afeee65b4 [file] [log] [blame]
/*
* QEMU Enhanced Disk Format
*
* Copyright IBM, Corp. 2010
*
* Authors:
* Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2 or later.
* See the COPYING.LIB file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "block/qdict.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "qemu/bswap.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qemu/option.h"
#include "qemu/memalign.h"
#include "trace.h"
#include "qed.h"
#include "sysemu/block-backend.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qobject-input-visitor.h"
#include "qapi/qapi-visit-block-core.h"
static QemuOptsList qed_create_opts;
static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
const char *filename)
{
const QEDHeader *header = (const QEDHeader *)buf;
if (buf_size < sizeof(*header)) {
return 0;
}
if (le32_to_cpu(header->magic) != QED_MAGIC) {
return 0;
}
return 100;
}
/**
* Check whether an image format is raw
*
* @fmt: Backing file format, may be NULL
*/
static bool qed_fmt_is_raw(const char *fmt)
{
return fmt && strcmp(fmt, "raw") == 0;
}
static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
{
cpu->magic = le32_to_cpu(le->magic);
cpu->cluster_size = le32_to_cpu(le->cluster_size);
cpu->table_size = le32_to_cpu(le->table_size);
cpu->header_size = le32_to_cpu(le->header_size);
cpu->features = le64_to_cpu(le->features);
cpu->compat_features = le64_to_cpu(le->compat_features);
cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
cpu->image_size = le64_to_cpu(le->image_size);
cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
}
static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
{
le->magic = cpu_to_le32(cpu->magic);
le->cluster_size = cpu_to_le32(cpu->cluster_size);
le->table_size = cpu_to_le32(cpu->table_size);
le->header_size = cpu_to_le32(cpu->header_size);
le->features = cpu_to_le64(cpu->features);
le->compat_features = cpu_to_le64(cpu->compat_features);
le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
le->image_size = cpu_to_le64(cpu->image_size);
le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
}
int qed_write_header_sync(BDRVQEDState *s)
{
QEDHeader le;
qed_header_cpu_to_le(&s->header, &le);
return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
}
/**
* Update header in-place (does not rewrite backing filename or other strings)
*
* This function only updates known header fields in-place and does not affect
* extra data after the QED header.
*
* No new allocating reqs can start while this function runs.
*/
static int coroutine_fn qed_write_header(BDRVQEDState *s)
{
/* We must write full sectors for O_DIRECT but cannot necessarily generate
* the data following the header if an unrecognized compat feature is
* active. Therefore, first read the sectors containing the header, update
* them, and write back.
*/
int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
size_t len = nsectors * BDRV_SECTOR_SIZE;
uint8_t *buf;
int ret;
assert(s->allocating_acb || s->allocating_write_reqs_plugged);
buf = qemu_blockalign(s->bs, len);
ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
if (ret < 0) {
goto out;
}
/* Update header */
qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
ret = bdrv_co_pwrite(s->bs->file, 0, len, buf, 0);
if (ret < 0) {
goto out;
}
ret = 0;
out:
qemu_vfree(buf);
return ret;
}
static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
{
uint64_t table_entries;
uint64_t l2_size;
table_entries = (table_size * cluster_size) / sizeof(uint64_t);
l2_size = table_entries * cluster_size;
return l2_size * table_entries;
}
static bool qed_is_cluster_size_valid(uint32_t cluster_size)
{
if (cluster_size < QED_MIN_CLUSTER_SIZE ||
cluster_size > QED_MAX_CLUSTER_SIZE) {
return false;
}
if (cluster_size & (cluster_size - 1)) {
return false; /* not power of 2 */
}
return true;
}
static bool qed_is_table_size_valid(uint32_t table_size)
{
if (table_size < QED_MIN_TABLE_SIZE ||
table_size > QED_MAX_TABLE_SIZE) {
return false;
}
if (table_size & (table_size - 1)) {
return false; /* not power of 2 */
}
return true;
}
static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
uint32_t table_size)
{
if (image_size % BDRV_SECTOR_SIZE != 0) {
return false; /* not multiple of sector size */
}
if (image_size > qed_max_image_size(cluster_size, table_size)) {
return false; /* image is too large */
}
return true;
}
/**
* Read a string of known length from the image file
*
* @file: Image file
* @offset: File offset to start of string, in bytes
* @n: String length in bytes
* @buf: Destination buffer
* @buflen: Destination buffer length in bytes
* @ret: 0 on success, -errno on failure
*
* The string is NUL-terminated.
*/
static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
char *buf, size_t buflen)
{
int ret;
if (n >= buflen) {
return -EINVAL;
}
ret = bdrv_pread(file, offset, n, buf, 0);
if (ret < 0) {
return ret;
}
buf[n] = '\0';
return 0;
}
/**
* Allocate new clusters
*
* @s: QED state
* @n: Number of contiguous clusters to allocate
* @ret: Offset of first allocated cluster
*
* This function only produces the offset where the new clusters should be
* written. It updates BDRVQEDState but does not make any changes to the image
* file.
*
* Called with table_lock held.
*/
static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
{
uint64_t offset = s->file_size;
s->file_size += n * s->header.cluster_size;
return offset;
}
QEDTable *qed_alloc_table(BDRVQEDState *s)
{
/* Honor O_DIRECT memory alignment requirements */
return qemu_blockalign(s->bs,
s->header.cluster_size * s->header.table_size);
}
/**
* Allocate a new zeroed L2 table
*
* Called with table_lock held.
*/
static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
{
CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
l2_table->table = qed_alloc_table(s);
l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
memset(l2_table->table->offsets, 0,
s->header.cluster_size * s->header.table_size);
return l2_table;
}
static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
{
qemu_co_mutex_lock(&s->table_lock);
/* No reentrancy is allowed. */
assert(!s->allocating_write_reqs_plugged);
if (s->allocating_acb != NULL) {
/* Another allocating write came concurrently. This cannot happen
* from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
*/
qemu_co_mutex_unlock(&s->table_lock);
return false;
}
s->allocating_write_reqs_plugged = true;
qemu_co_mutex_unlock(&s->table_lock);
return true;
}
static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
{
qemu_co_mutex_lock(&s->table_lock);
assert(s->allocating_write_reqs_plugged);
s->allocating_write_reqs_plugged = false;
qemu_co_queue_next(&s->allocating_write_reqs);
qemu_co_mutex_unlock(&s->table_lock);
}
static void coroutine_fn qed_need_check_timer_entry(void *opaque)
{
BDRVQEDState *s = opaque;
int ret;
trace_qed_need_check_timer_cb(s);
if (!qed_plug_allocating_write_reqs(s)) {
return;
}
/* Ensure writes are on disk before clearing flag */
ret = bdrv_co_flush(s->bs->file->bs);
if (ret < 0) {
qed_unplug_allocating_write_reqs(s);
return;
}
s->header.features &= ~QED_F_NEED_CHECK;
ret = qed_write_header(s);
(void) ret;
qed_unplug_allocating_write_reqs(s);
ret = bdrv_co_flush(s->bs);
(void) ret;
}
static void qed_need_check_timer_cb(void *opaque)
{
Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
qemu_coroutine_enter(co);
}
static void qed_start_need_check_timer(BDRVQEDState *s)
{
trace_qed_start_need_check_timer(s);
/* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
* migration.
*/
timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
}
/* It's okay to call this multiple times or when no timer is started */
static void qed_cancel_need_check_timer(BDRVQEDState *s)
{
trace_qed_cancel_need_check_timer(s);
timer_del(s->need_check_timer);
}
static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
{
BDRVQEDState *s = bs->opaque;
qed_cancel_need_check_timer(s);
timer_free(s->need_check_timer);
}
static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
AioContext *new_context)
{
BDRVQEDState *s = bs->opaque;
s->need_check_timer = aio_timer_new(new_context,
QEMU_CLOCK_VIRTUAL, SCALE_NS,
qed_need_check_timer_cb, s);
if (s->header.features & QED_F_NEED_CHECK) {
qed_start_need_check_timer(s);
}
}
static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
{
BDRVQEDState *s = bs->opaque;
/* Fire the timer immediately in order to start doing I/O as soon as the
* header is flushed.
*/
if (s->need_check_timer && timer_pending(s->need_check_timer)) {
qed_cancel_need_check_timer(s);
qed_need_check_timer_entry(s);
}
}
static void bdrv_qed_init_state(BlockDriverState *bs)
{
BDRVQEDState *s = bs->opaque;
memset(s, 0, sizeof(BDRVQEDState));
s->bs = bs;
qemu_co_mutex_init(&s->table_lock);
qemu_co_queue_init(&s->allocating_write_reqs);
}
/* Called with table_lock held. */
static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
int flags, Error **errp)
{
BDRVQEDState *s = bs->opaque;
QEDHeader le_header;
int64_t file_size;
int ret;
ret = bdrv_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
if (ret < 0) {
error_setg(errp, "Failed to read QED header");
return ret;
}
qed_header_le_to_cpu(&le_header, &s->header);
if (s->header.magic != QED_MAGIC) {
error_setg(errp, "Image not in QED format");
return -EINVAL;
}
if (s->header.features & ~QED_FEATURE_MASK) {
/* image uses unsupported feature bits */
error_setg(errp, "Unsupported QED features: %" PRIx64,
s->header.features & ~QED_FEATURE_MASK);
return -ENOTSUP;
}
if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
error_setg(errp, "QED cluster size is invalid");
return -EINVAL;
}
/* Round down file size to the last cluster */
file_size = bdrv_getlength(bs->file->bs);
if (file_size < 0) {
error_setg(errp, "Failed to get file length");
return file_size;
}
s->file_size = qed_start_of_cluster(s, file_size);
if (!qed_is_table_size_valid(s->header.table_size)) {
error_setg(errp, "QED table size is invalid");
return -EINVAL;
}
if (!qed_is_image_size_valid(s->header.image_size,
s->header.cluster_size,
s->header.table_size)) {
error_setg(errp, "QED image size is invalid");
return -EINVAL;
}
if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
error_setg(errp, "QED table offset is invalid");
return -EINVAL;
}
s->table_nelems = (s->header.cluster_size * s->header.table_size) /
sizeof(uint64_t);
s->l2_shift = ctz32(s->header.cluster_size);
s->l2_mask = s->table_nelems - 1;
s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
/* Header size calculation must not overflow uint32_t */
if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
error_setg(errp, "QED header size is too large");
return -EINVAL;
}
if ((s->header.features & QED_F_BACKING_FILE)) {
g_autofree char *backing_file_str = NULL;
if ((uint64_t)s->header.backing_filename_offset +
s->header.backing_filename_size >
s->header.cluster_size * s->header.header_size) {
error_setg(errp, "QED backing filename offset is invalid");
return -EINVAL;
}
backing_file_str = g_malloc(sizeof(bs->backing_file));
ret = qed_read_string(bs->file, s->header.backing_filename_offset,
s->header.backing_filename_size,
backing_file_str, sizeof(bs->backing_file));
if (ret < 0) {
error_setg(errp, "Failed to read backing filename");
return ret;
}
if (!g_str_equal(backing_file_str, bs->backing_file)) {
pstrcpy(bs->backing_file, sizeof(bs->backing_file),
backing_file_str);
pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
backing_file_str);
}
if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
}
}
/* Reset unknown autoclear feature bits. This is a backwards
* compatibility mechanism that allows images to be opened by older
* programs, which "knock out" unknown feature bits. When an image is
* opened by a newer program again it can detect that the autoclear
* feature is no longer valid.
*/
if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
!bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
ret = qed_write_header_sync(s);
if (ret) {
error_setg(errp, "Failed to update header");
return ret;
}
/* From here on only known autoclear feature bits are valid */
bdrv_flush(bs->file->bs);
}
s->l1_table = qed_alloc_table(s);
qed_init_l2_cache(&s->l2_cache);
ret = qed_read_l1_table_sync(s);
if (ret) {
error_setg(errp, "Failed to read L1 table");
goto out;
}
/* If image was not closed cleanly, check consistency */
if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
/* Read-only images cannot be fixed. There is no risk of corruption
* since write operations are not possible. Therefore, allow
* potentially inconsistent images to be opened read-only. This can
* aid data recovery from an otherwise inconsistent image.
*/
if (!bdrv_is_read_only(bs->file->bs) &&
!(flags & BDRV_O_INACTIVE)) {
BdrvCheckResult result = {0};
ret = qed_check(s, &result, true);
if (ret) {
error_setg(errp, "Image corrupted");
goto out;
}
}
}
bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
out:
if (ret) {
qed_free_l2_cache(&s->l2_cache);
qemu_vfree(s->l1_table);
}
return ret;
}
typedef struct QEDOpenCo {
BlockDriverState *bs;
QDict *options;
int flags;
Error **errp;
int ret;
} QEDOpenCo;
static void coroutine_fn bdrv_qed_open_entry(void *opaque)
{
QEDOpenCo *qoc = opaque;
BDRVQEDState *s = qoc->bs->opaque;
qemu_co_mutex_lock(&s->table_lock);
qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
qemu_co_mutex_unlock(&s->table_lock);
}
static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
QEDOpenCo qoc = {
.bs = bs,
.options = options,
.flags = flags,
.errp = errp,
.ret = -EINPROGRESS
};
bs->file = bdrv_open_child(NULL, options, "file", bs, &child_of_bds,
BDRV_CHILD_IMAGE, false, errp);
if (!bs->file) {
return -EINVAL;
}
bdrv_qed_init_state(bs);
if (qemu_in_coroutine()) {
bdrv_qed_open_entry(&qoc);
} else {
assert(qemu_get_current_aio_context() == qemu_get_aio_context());
qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
}
BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
return qoc.ret;
}
static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
{
BDRVQEDState *s = bs->opaque;
bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
}
/* We have nothing to do for QED reopen, stubs just return
* success */
static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
BlockReopenQueue *queue, Error **errp)
{
return 0;
}
static void bdrv_qed_close(BlockDriverState *bs)
{
BDRVQEDState *s = bs->opaque;
bdrv_qed_detach_aio_context(bs);
/* Ensure writes reach stable storage */
bdrv_flush(bs->file->bs);
/* Clean shutdown, no check required on next open */
if (s->header.features & QED_F_NEED_CHECK) {
s->header.features &= ~QED_F_NEED_CHECK;
qed_write_header_sync(s);
}
qed_free_l2_cache(&s->l2_cache);
qemu_vfree(s->l1_table);
}
static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
Error **errp)
{
BlockdevCreateOptionsQed *qed_opts;
BlockBackend *blk = NULL;
BlockDriverState *bs = NULL;
QEDHeader header;
QEDHeader le_header;
uint8_t *l1_table = NULL;
size_t l1_size;
int ret = 0;
assert(opts->driver == BLOCKDEV_DRIVER_QED);
qed_opts = &opts->u.qed;
/* Validate options and set default values */
if (!qed_opts->has_cluster_size) {
qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
}
if (!qed_opts->has_table_size) {
qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
}
if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
error_setg(errp, "QED cluster size must be within range [%u, %u] "
"and power of 2",
QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
return -EINVAL;
}
if (!qed_is_table_size_valid(qed_opts->table_size)) {
error_setg(errp, "QED table size must be within range [%u, %u] "
"and power of 2",
QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
return -EINVAL;
}
if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
qed_opts->table_size))
{
error_setg(errp, "QED image size must be a non-zero multiple of "
"cluster size and less than %" PRIu64 " bytes",
qed_max_image_size(qed_opts->cluster_size,
qed_opts->table_size));
return -EINVAL;
}
/* Create BlockBackend to write to the image */
bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
if (bs == NULL) {
return -EIO;
}
blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
errp);
if (!blk) {
ret = -EPERM;
goto out;
}
blk_set_allow_write_beyond_eof(blk, true);
/* Prepare image format */
header = (QEDHeader) {
.magic = QED_MAGIC,
.cluster_size = qed_opts->cluster_size,
.table_size = qed_opts->table_size,
.header_size = 1,
.features = 0,
.compat_features = 0,
.l1_table_offset = qed_opts->cluster_size,
.image_size = qed_opts->size,
};
l1_size = header.cluster_size * header.table_size;
/*
* The QED format associates file length with allocation status,
* so a new file (which is empty) must have a length of 0.
*/
ret = blk_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
if (ret < 0) {
goto out;
}
if (qed_opts->has_backing_file) {
header.features |= QED_F_BACKING_FILE;
header.backing_filename_offset = sizeof(le_header);
header.backing_filename_size = strlen(qed_opts->backing_file);
if (qed_opts->has_backing_fmt) {
const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
if (qed_fmt_is_raw(backing_fmt)) {
header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
}
}
}
qed_header_cpu_to_le(&header, &le_header);
ret = blk_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
if (ret < 0) {
goto out;
}
ret = blk_pwrite(blk, sizeof(le_header), header.backing_filename_size,
qed_opts->backing_file, 0);
if (ret < 0) {
goto out;
}
l1_table = g_malloc0(l1_size);
ret = blk_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
if (ret < 0) {
goto out;
}
ret = 0; /* success */
out:
g_free(l1_table);
blk_unref(blk);
bdrv_unref(bs);
return ret;
}
static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
const char *filename,
QemuOpts *opts,
Error **errp)
{
BlockdevCreateOptions *create_options = NULL;
QDict *qdict;
Visitor *v;
BlockDriverState *bs = NULL;
int ret;
static const QDictRenames opt_renames[] = {
{ BLOCK_OPT_BACKING_FILE, "backing-file" },
{ BLOCK_OPT_BACKING_FMT, "backing-fmt" },
{ BLOCK_OPT_CLUSTER_SIZE, "cluster-size" },
{ BLOCK_OPT_TABLE_SIZE, "table-size" },
{ NULL, NULL },
};
/* Parse options and convert legacy syntax */
qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
if (!qdict_rename_keys(qdict, opt_renames, errp)) {
ret = -EINVAL;
goto fail;
}
/* Create and open the file (protocol layer) */
ret = bdrv_create_file(filename, opts, errp);
if (ret < 0) {
goto fail;
}
bs = bdrv_open(filename, NULL, NULL,
BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
if (bs == NULL) {
ret = -EIO;
goto fail;
}
/* Now get the QAPI type BlockdevCreateOptions */
qdict_put_str(qdict, "driver", "qed");
qdict_put_str(qdict, "file", bs->node_name);
v = qobject_input_visitor_new_flat_confused(qdict, errp);
if (!v) {
ret = -EINVAL;
goto fail;
}
visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
visit_free(v);
if (!create_options) {
ret = -EINVAL;
goto fail;
}
/* Silently round up size */
assert(create_options->driver == BLOCKDEV_DRIVER_QED);
create_options->u.qed.size =
ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
/* Create the qed image (format layer) */
ret = bdrv_qed_co_create(create_options, errp);
fail:
qobject_unref(qdict);
bdrv_unref(bs);
qapi_free_BlockdevCreateOptions(create_options);
return ret;
}
static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
bool want_zero,
int64_t pos, int64_t bytes,
int64_t *pnum, int64_t *map,
BlockDriverState **file)
{
BDRVQEDState *s = bs->opaque;
size_t len = MIN(bytes, SIZE_MAX);
int status;
QEDRequest request = { .l2_table = NULL };
uint64_t offset;
int ret;
qemu_co_mutex_lock(&s->table_lock);
ret = qed_find_cluster(s, &request, pos, &len, &offset);
*pnum = len;
switch (ret) {
case QED_CLUSTER_FOUND:
*map = offset | qed_offset_into_cluster(s, pos);
status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
*file = bs->file->bs;
break;
case QED_CLUSTER_ZERO:
status = BDRV_BLOCK_ZERO;
break;
case QED_CLUSTER_L2:
case QED_CLUSTER_L1:
status = 0;
break;
default:
assert(ret < 0);
status = ret;
break;
}
qed_unref_l2_cache_entry(request.l2_table);
qemu_co_mutex_unlock(&s->table_lock);
return status;
}
static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
{
return acb->bs->opaque;
}
/**
* Read from the backing file or zero-fill if no backing file
*
* @s: QED state
* @pos: Byte position in device
* @qiov: Destination I/O vector
*
* This function reads qiov->size bytes starting at pos from the backing file.
* If there is no backing file then zeroes are read.
*/
static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
QEMUIOVector *qiov)
{
if (s->bs->backing) {
BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
}
qemu_iovec_memset(qiov, 0, 0, qiov->size);
return 0;
}
/**
* Copy data from backing file into the image
*
* @s: QED state
* @pos: Byte position in device
* @len: Number of bytes
* @offset: Byte offset in image file
*/
static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
uint64_t pos, uint64_t len,
uint64_t offset)
{
QEMUIOVector qiov;
int ret;
/* Skip copy entirely if there is no work to do */
if (len == 0) {
return 0;
}
qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
ret = qed_read_backing_file(s, pos, &qiov);
if (ret) {
goto out;
}
BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
if (ret < 0) {
goto out;
}
ret = 0;
out:
qemu_vfree(qemu_iovec_buf(&qiov));
return ret;
}
/**
* Link one or more contiguous clusters into a table
*
* @s: QED state
* @table: L2 table
* @index: First cluster index
* @n: Number of contiguous clusters
* @cluster: First cluster offset
*
* The cluster offset may be an allocated byte offset in the image file, the
* zero cluster marker, or the unallocated cluster marker.
*
* Called with table_lock held.
*/
static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
int index, unsigned int n,
uint64_t cluster)
{
int i;
for (i = index; i < index + n; i++) {
table->offsets[i] = cluster;
if (!qed_offset_is_unalloc_cluster(cluster) &&
!qed_offset_is_zero_cluster(cluster)) {
cluster += s->header.cluster_size;
}
}
}
/* Called with table_lock held. */
static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
{
BDRVQEDState *s = acb_to_s(acb);
/* Free resources */
qemu_iovec_destroy(&acb->cur_qiov);
qed_unref_l2_cache_entry(acb->request.l2_table);
/* Free the buffer we may have allocated for zero writes */
if (acb->flags & QED_AIOCB_ZERO) {
qemu_vfree(acb->qiov->iov[0].iov_base);
acb->qiov->iov[0].iov_base = NULL;
}
/* Start next allocating write request waiting behind this one. Note that
* requests enqueue themselves when they first hit an unallocated cluster
* but they wait until the entire request is finished before waking up the
* next request in the queue. This ensures that we don't cycle through
* requests multiple times but rather finish one at a time completely.
*/
if (acb == s->allocating_acb) {
s->allocating_acb = NULL;
if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
qemu_co_queue_next(&s->allocating_write_reqs);
} else if (s->header.features & QED_F_NEED_CHECK) {
qed_start_need_check_timer(s);
}
}
}
/**
* Update L1 table with new L2 table offset and write it out
*
* Called with table_lock held.
*/
static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
{
BDRVQEDState *s = acb_to_s(acb);
CachedL2Table *l2_table = acb->request.l2_table;
uint64_t l2_offset = l2_table->offset;
int index, ret;
index = qed_l1_index(s, acb->cur_pos);
s->l1_table->offsets[index] = l2_table->offset;
ret = qed_write_l1_table(s, index, 1);
/* Commit the current L2 table to the cache */
qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
/* This is guaranteed to succeed because we just committed the entry to the
* cache.
*/
acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
assert(acb->request.l2_table != NULL);
return ret;
}
/**
* Update L2 table with new cluster offsets and write them out
*
* Called with table_lock held.
*/
static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
{
BDRVQEDState *s = acb_to_s(acb);
bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
int index, ret;
if (need_alloc) {
qed_unref_l2_cache_entry(acb->request.l2_table);
acb->request.l2_table = qed_new_l2_table(s);
}
index = qed_l2_index(s, acb->cur_pos);
qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
offset);
if (need_alloc) {
/* Write out the whole new L2 table */
ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
if (ret) {
return ret;
}
return qed_aio_write_l1_update(acb);
} else {
/* Write out only the updated part of the L2 table */
ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
false);
if (ret) {
return ret;
}
}
return 0;
}
/**
* Write data to the image file
*
* Called with table_lock *not* held.
*/
static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
{
BDRVQEDState *s = acb_to_s(acb);
uint64_t offset = acb->cur_cluster +
qed_offset_into_cluster(s, acb->cur_pos);
trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
&acb->cur_qiov, 0);
}
/**
* Populate untouched regions of new data cluster
*
* Called with table_lock held.
*/
static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
{
BDRVQEDState *s = acb_to_s(acb);
uint64_t start, len, offset;
int ret;
qemu_co_mutex_unlock(&s->table_lock);
/* Populate front untouched region of new data cluster */
start = qed_start_of_cluster(s, acb->cur_pos);
len = qed_offset_into_cluster(s, acb->cur_pos);
trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
if (ret < 0) {
goto out;
}
/* Populate back untouched region of new data cluster */
start = acb->cur_pos + acb->cur_qiov.size;
len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
offset = acb->cur_cluster +
qed_offset_into_cluster(s, acb->cur_pos) +
acb->cur_qiov.size;
trace_qed_aio_write_postfill(s, acb, start, len, offset);
ret = qed_copy_from_backing_file(s, start, len, offset);
if (ret < 0) {
goto out;
}
ret = qed_aio_write_main(acb);
if (ret < 0) {
goto out;
}
if (s->bs->backing) {
/*
* Flush new data clusters before updating the L2 table
*
* This flush is necessary when a backing file is in use. A crash
* during an allocating write could result in empty clusters in the
* image. If the write only touched a subregion of the cluster,
* then backing image sectors have been lost in the untouched
* region. The solution is to flush after writing a new data
* cluster and before updating the L2 table.
*/
ret = bdrv_co_flush(s->bs->file->bs);
}
out:
qemu_co_mutex_lock(&s->table_lock);
return ret;
}
/**
* Check if the QED_F_NEED_CHECK bit should be set during allocating write
*/
static bool qed_should_set_need_check(BDRVQEDState *s)
{
/* The flush before L2 update path ensures consistency */
if (s->bs->backing) {
return false;
}
return !(s->header.features & QED_F_NEED_CHECK);
}
/**
* Write new data cluster
*
* @acb: Write request
* @len: Length in bytes
*
* This path is taken when writing to previously unallocated clusters.
*
* Called with table_lock held.
*/
static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
{
BDRVQEDState *s = acb_to_s(acb);
int ret;
/* Cancel timer when the first allocating request comes in */
if (s->allocating_acb == NULL) {
qed_cancel_need_check_timer(s);
}
/* Freeze this request if another allocating write is in progress */
if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
if (s->allocating_acb != NULL) {
qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
assert(s->allocating_acb == NULL);
}
s->allocating_acb = acb;
return -EAGAIN; /* start over with looking up table entries */
}
acb->cur_nclusters = qed_bytes_to_clusters(s,
qed_offset_into_cluster(s, acb->cur_pos) + len);
qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
if (acb->flags & QED_AIOCB_ZERO) {
/* Skip ahead if the clusters are already zero */
if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
return 0;
}
acb->cur_cluster = 1;
} else {
acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
}
if (qed_should_set_need_check(s)) {
s->header.features |= QED_F_NEED_CHECK;
ret = qed_write_header(s);
if (ret < 0) {
return ret;
}
}
if (!(acb->flags & QED_AIOCB_ZERO)) {
ret = qed_aio_write_cow(acb);
if (ret < 0) {
return ret;
}
}
return qed_aio_write_l2_update(acb, acb->cur_cluster);
}
/**
* Write data cluster in place
*
* @acb: Write request
* @offset: Cluster offset in bytes
* @len: Length in bytes
*
* This path is taken when writing to already allocated clusters.
*
* Called with table_lock held.
*/
static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
size_t len)
{
BDRVQEDState *s = acb_to_s(acb);
int r;
qemu_co_mutex_unlock(&s->table_lock);
/* Allocate buffer for zero writes */
if (acb->flags & QED_AIOCB_ZERO) {
struct iovec *iov = acb->qiov->iov;
if (!iov->iov_base) {
iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
if (iov->iov_base == NULL) {
r = -ENOMEM;
goto out;
}
memset(iov->iov_base, 0, iov->iov_len);
}
}
/* Calculate the I/O vector */
acb->cur_cluster = offset;
qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
/* Do the actual write. */
r = qed_aio_write_main(acb);
out:
qemu_co_mutex_lock(&s->table_lock);
return r;
}
/**
* Write data cluster
*
* @opaque: Write request
* @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
* @offset: Cluster offset in bytes
* @len: Length in bytes
*
* Called with table_lock held.
*/
static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
uint64_t offset, size_t len)
{
QEDAIOCB *acb = opaque;
trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
acb->find_cluster_ret = ret;
switch (ret) {
case QED_CLUSTER_FOUND:
return qed_aio_write_inplace(acb, offset, len);
case QED_CLUSTER_L2:
case QED_CLUSTER_L1:
case QED_CLUSTER_ZERO:
return qed_aio_write_alloc(acb, len);
default:
g_assert_not_reached();
}
}
/**
* Read data cluster
*
* @opaque: Read request
* @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
* @offset: Cluster offset in bytes
* @len: Length in bytes
*
* Called with table_lock held.
*/
static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
uint64_t offset, size_t len)
{
QEDAIOCB *acb = opaque;
BDRVQEDState *s = acb_to_s(acb);
BlockDriverState *bs = acb->bs;
int r;
qemu_co_mutex_unlock(&s->table_lock);
/* Adjust offset into cluster */
offset += qed_offset_into_cluster(s, acb->cur_pos);
trace_qed_aio_read_data(s, acb, ret, offset, len);
qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
/* Handle zero cluster and backing file reads, otherwise read
* data cluster directly.
*/
if (ret == QED_CLUSTER_ZERO) {
qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
r = 0;
} else if (ret != QED_CLUSTER_FOUND) {
r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
} else {
BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
&acb->cur_qiov, 0);
}
qemu_co_mutex_lock(&s->table_lock);
return r;
}
/**
* Begin next I/O or complete the request
*/
static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
{
BDRVQEDState *s = acb_to_s(acb);
uint64_t offset;
size_t len;
int ret;
qemu_co_mutex_lock(&s->table_lock);
while (1) {
trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
acb->qiov_offset += acb->cur_qiov.size;
acb->cur_pos += acb->cur_qiov.size;
qemu_iovec_reset(&acb->cur_qiov);
/* Complete request */
if (acb->cur_pos >= acb->end_pos) {
ret = 0;
break;
}
/* Find next cluster and start I/O */
len = acb->end_pos - acb->cur_pos;
ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
if (ret < 0) {
break;
}
if (acb->flags & QED_AIOCB_WRITE) {
ret = qed_aio_write_data(acb, ret, offset, len);
} else {
ret = qed_aio_read_data(acb, ret, offset, len);
}
if (ret < 0 && ret != -EAGAIN) {
break;
}
}
trace_qed_aio_complete(s, acb, ret);
qed_aio_complete(acb);
qemu_co_mutex_unlock(&s->table_lock);
return ret;
}
static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
QEMUIOVector *qiov, int nb_sectors,
int flags)
{
QEDAIOCB acb = {
.bs = bs,
.cur_pos = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
.end_pos = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
.qiov = qiov,
.flags = flags,
};
qemu_iovec_init(&acb.cur_qiov, qiov->niov);
trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
/* Start request */
return qed_aio_next_io(&acb);
}
static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *qiov)
{
return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
}
static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
int64_t sector_num, int nb_sectors,
QEMUIOVector *qiov, int flags)
{
assert(!flags);
return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
}
static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
int64_t offset,
int64_t bytes,
BdrvRequestFlags flags)
{
BDRVQEDState *s = bs->opaque;
/*
* Zero writes start without an I/O buffer. If a buffer becomes necessary
* then it will be allocated during request processing.
*/
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
/*
* QED is not prepared for 63bit write-zero requests, so rely on
* max_pwrite_zeroes.
*/
assert(bytes <= INT_MAX);
/* Fall back if the request is not aligned */
if (qed_offset_into_cluster(s, offset) ||
qed_offset_into_cluster(s, bytes)) {
return -ENOTSUP;
}
return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
bytes >> BDRV_SECTOR_BITS,
QED_AIOCB_WRITE | QED_AIOCB_ZERO);
}
static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
int64_t offset,
bool exact,
PreallocMode prealloc,
BdrvRequestFlags flags,
Error **errp)
{
BDRVQEDState *s = bs->opaque;
uint64_t old_image_size;
int ret;
if (prealloc != PREALLOC_MODE_OFF) {
error_setg(errp, "Unsupported preallocation mode '%s'",
PreallocMode_str(prealloc));
return -ENOTSUP;
}
if (!qed_is_image_size_valid(offset, s->header.cluster_size,
s->header.table_size)) {
error_setg(errp, "Invalid image size specified");
return -EINVAL;
}
if ((uint64_t)offset < s->header.image_size) {
error_setg(errp, "Shrinking images is currently not supported");
return -ENOTSUP;
}
old_image_size = s->header.image_size;
s->header.image_size = offset;
ret = qed_write_header_sync(s);
if (ret < 0) {
s->header.image_size = old_image_size;
error_setg_errno(errp, -ret, "Failed to update the image size");
}
return ret;
}
static int64_t bdrv_qed_getlength(BlockDriverState *bs)
{
BDRVQEDState *s = bs->opaque;
return s->header.image_size;
}
static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
{
BDRVQEDState *s = bs->opaque;
memset(bdi, 0, sizeof(*bdi));
bdi->cluster_size = s->header.cluster_size;
bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
return 0;
}
static int bdrv_qed_change_backing_file(BlockDriverState *bs,
const char *backing_file,
const char *backing_fmt)
{
BDRVQEDState *s = bs->opaque;
QEDHeader new_header, le_header;
void *buffer;
size_t buffer_len, backing_file_len;
int ret;
/* Refuse to set backing filename if unknown compat feature bits are
* active. If the image uses an unknown compat feature then we may not
* know the layout of data following the header structure and cannot safely
* add a new string.
*/
if (backing_file && (s->header.compat_features &
~QED_COMPAT_FEATURE_MASK)) {
return -ENOTSUP;
}
memcpy(&new_header, &s->header, sizeof(new_header));
new_header.features &= ~(QED_F_BACKING_FILE |
QED_F_BACKING_FORMAT_NO_PROBE);
/* Adjust feature flags */
if (backing_file) {
new_header.features |= QED_F_BACKING_FILE;
if (qed_fmt_is_raw(backing_fmt)) {
new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
}
}
/* Calculate new header size */
backing_file_len = 0;
if (backing_file) {
backing_file_len = strlen(backing_file);
}
buffer_len = sizeof(new_header);
new_header.backing_filename_offset = buffer_len;
new_header.backing_filename_size = backing_file_len;
buffer_len += backing_file_len;
/* Make sure we can rewrite header without failing */
if (buffer_len > new_header.header_size * new_header.cluster_size) {
return -ENOSPC;
}
/* Prepare new header */
buffer = g_malloc(buffer_len);
qed_header_cpu_to_le(&new_header, &le_header);
memcpy(buffer, &le_header, sizeof(le_header));
buffer_len = sizeof(le_header);
if (backing_file) {
memcpy(buffer + buffer_len, backing_file, backing_file_len);
buffer_len += backing_file_len;
}
/* Write new header */
ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
g_free(buffer);
if (ret == 0) {
memcpy(&s->header, &new_header, sizeof(new_header));
}
return ret;
}
static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
Error **errp)
{
BDRVQEDState *s = bs->opaque;
int ret;
bdrv_qed_close(bs);
bdrv_qed_init_state(bs);
qemu_co_mutex_lock(&s->table_lock);
ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
qemu_co_mutex_unlock(&s->table_lock);
if (ret < 0) {
error_prepend(errp, "Could not reopen qed layer: ");
}
}
static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
BdrvCheckResult *result,
BdrvCheckMode fix)
{
BDRVQEDState *s = bs->opaque;
int ret;
qemu_co_mutex_lock(&s->table_lock);
ret = qed_check(s, result, !!fix);
qemu_co_mutex_unlock(&s->table_lock);
return ret;
}
static QemuOptsList qed_create_opts = {
.name = "qed-create-opts",
.head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
.desc = {
{
.name = BLOCK_OPT_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Virtual disk size"
},
{
.name = BLOCK_OPT_BACKING_FILE,
.type = QEMU_OPT_STRING,
.help = "File name of a base image"
},
{
.name = BLOCK_OPT_BACKING_FMT,
.type = QEMU_OPT_STRING,
.help = "Image format of the base image"
},
{
.name = BLOCK_OPT_CLUSTER_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Cluster size (in bytes)",
.def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
},
{
.name = BLOCK_OPT_TABLE_SIZE,
.type = QEMU_OPT_SIZE,
.help = "L1/L2 table size (in clusters)"
},
{ /* end of list */ }
}
};
static BlockDriver bdrv_qed = {
.format_name = "qed",
.instance_size = sizeof(BDRVQEDState),
.create_opts = &qed_create_opts,
.is_format = true,
.supports_backing = true,
.bdrv_probe = bdrv_qed_probe,
.bdrv_open = bdrv_qed_open,
.bdrv_close = bdrv_qed_close,
.bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
.bdrv_child_perm = bdrv_default_perms,
.bdrv_co_create = bdrv_qed_co_create,
.bdrv_co_create_opts = bdrv_qed_co_create_opts,
.bdrv_has_zero_init = bdrv_has_zero_init_1,
.bdrv_co_block_status = bdrv_qed_co_block_status,
.bdrv_co_readv = bdrv_qed_co_readv,
.bdrv_co_writev = bdrv_qed_co_writev,
.bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
.bdrv_co_truncate = bdrv_qed_co_truncate,
.bdrv_getlength = bdrv_qed_getlength,
.bdrv_get_info = bdrv_qed_get_info,
.bdrv_refresh_limits = bdrv_qed_refresh_limits,
.bdrv_change_backing_file = bdrv_qed_change_backing_file,
.bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
.bdrv_co_check = bdrv_qed_co_check,
.bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
.bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
.bdrv_co_drain_begin = bdrv_qed_co_drain_begin,
};
static void bdrv_qed_init(void)
{
bdrv_register(&bdrv_qed);
}
block_init(bdrv_qed_init);