| #include "exec.h" |
| #include "host-utils.h" |
| |
| //#define DEBUG_PCALL |
| //#define DEBUG_MMU |
| //#define DEBUG_MXCC |
| //#define DEBUG_UNALIGNED |
| //#define DEBUG_UNASSIGNED |
| |
| #ifdef DEBUG_MMU |
| #define DPRINTF_MMU(fmt, args...) \ |
| do { printf("MMU: " fmt , ##args); } while (0) |
| #else |
| #define DPRINTF_MMU(fmt, args...) |
| #endif |
| |
| #ifdef DEBUG_MXCC |
| #define DPRINTF_MXCC(fmt, args...) \ |
| do { printf("MXCC: " fmt , ##args); } while (0) |
| #else |
| #define DPRINTF_MXCC(fmt, args...) |
| #endif |
| |
| void raise_exception(int tt) |
| { |
| env->exception_index = tt; |
| cpu_loop_exit(); |
| } |
| |
| void check_ieee_exceptions() |
| { |
| T0 = get_float_exception_flags(&env->fp_status); |
| if (T0) |
| { |
| /* Copy IEEE 754 flags into FSR */ |
| if (T0 & float_flag_invalid) |
| env->fsr |= FSR_NVC; |
| if (T0 & float_flag_overflow) |
| env->fsr |= FSR_OFC; |
| if (T0 & float_flag_underflow) |
| env->fsr |= FSR_UFC; |
| if (T0 & float_flag_divbyzero) |
| env->fsr |= FSR_DZC; |
| if (T0 & float_flag_inexact) |
| env->fsr |= FSR_NXC; |
| |
| if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) |
| { |
| /* Unmasked exception, generate a trap */ |
| env->fsr |= FSR_FTT_IEEE_EXCP; |
| raise_exception(TT_FP_EXCP); |
| } |
| else |
| { |
| /* Accumulate exceptions */ |
| env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; |
| } |
| } |
| } |
| |
| #ifdef USE_INT_TO_FLOAT_HELPERS |
| void do_fitos(void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status); |
| check_ieee_exceptions(); |
| } |
| |
| void do_fitod(void) |
| { |
| DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status); |
| } |
| #ifdef TARGET_SPARC64 |
| void do_fxtos(void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status); |
| check_ieee_exceptions(); |
| } |
| |
| void do_fxtod(void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); |
| check_ieee_exceptions(); |
| } |
| #endif |
| #endif |
| |
| void do_fabss(void) |
| { |
| FT0 = float32_abs(FT1); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void do_fabsd(void) |
| { |
| DT0 = float64_abs(DT1); |
| } |
| #endif |
| |
| void do_fsqrts(void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| FT0 = float32_sqrt(FT1, &env->fp_status); |
| check_ieee_exceptions(); |
| } |
| |
| void do_fsqrtd(void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| DT0 = float64_sqrt(DT1, &env->fp_status); |
| check_ieee_exceptions(); |
| } |
| |
| #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \ |
| void glue(do_, name) (void) \ |
| { \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \ |
| case float_relation_unordered: \ |
| T0 = (FSR_FCC1 | FSR_FCC0) << FS; \ |
| if ((env->fsr & FSR_NVM) || TRAP) { \ |
| env->fsr |= T0; \ |
| env->fsr |= FSR_NVC; \ |
| env->fsr |= FSR_FTT_IEEE_EXCP; \ |
| raise_exception(TT_FP_EXCP); \ |
| } else { \ |
| env->fsr |= FSR_NVA; \ |
| } \ |
| break; \ |
| case float_relation_less: \ |
| T0 = FSR_FCC0 << FS; \ |
| break; \ |
| case float_relation_greater: \ |
| T0 = FSR_FCC1 << FS; \ |
| break; \ |
| default: \ |
| T0 = 0; \ |
| break; \ |
| } \ |
| env->fsr |= T0; \ |
| } |
| |
| GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0); |
| GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); |
| |
| GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1); |
| GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); |
| |
| #ifdef TARGET_SPARC64 |
| GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0); |
| GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); |
| |
| GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0); |
| GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); |
| |
| GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0); |
| GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); |
| |
| GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1); |
| GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); |
| |
| GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1); |
| GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); |
| |
| GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1); |
| GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| #ifndef CONFIG_USER_ONLY |
| |
| #ifdef DEBUG_MXCC |
| static void dump_mxcc(CPUState *env) |
| { |
| printf("mxccdata: %016llx %016llx %016llx %016llx\n", |
| env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]); |
| printf("mxccregs: %016llx %016llx %016llx %016llx\n" |
| " %016llx %016llx %016llx %016llx\n", |
| env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3], |
| env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]); |
| } |
| #endif |
| |
| void helper_ld_asi(int asi, int size, int sign) |
| { |
| uint32_t ret = 0; |
| uint64_t tmp; |
| #ifdef DEBUG_MXCC |
| uint32_t last_T0 = T0; |
| #endif |
| |
| switch (asi) { |
| case 2: /* SuperSparc MXCC registers */ |
| switch (T0) { |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) { |
| ret = env->mxccregs[3]; |
| T0 = env->mxccregs[3] >> 32; |
| } else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) |
| ret = env->mxccregs[3]; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00c00: /* Module reset register */ |
| if (size == 8) { |
| ret = env->mxccregs[5] >> 32; |
| T0 = env->mxccregs[5]; |
| // should we do something here? |
| } else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) { |
| ret = env->mxccregs[7]; |
| T0 = env->mxccregs[7] >> 32; |
| } else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| default: |
| DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x," |
| "T0 = %08x\n", asi, size, sign, last_T0, ret, T0); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU probe */ |
| { |
| int mmulev; |
| |
| mmulev = (T0 >> 8) & 15; |
| if (mmulev > 4) |
| ret = 0; |
| else { |
| ret = mmu_probe(env, T0, mmulev); |
| //bswap32s(&ret); |
| } |
| DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret); |
| } |
| break; |
| case 4: /* read MMU regs */ |
| { |
| int reg = (T0 >> 8) & 0xf; |
| |
| ret = env->mmuregs[reg]; |
| if (reg == 3) /* Fault status cleared on read */ |
| env->mmuregs[reg] = 0; |
| DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret); |
| } |
| break; |
| case 9: /* Supervisor code access */ |
| switch(size) { |
| case 1: |
| ret = ldub_code(T0); |
| break; |
| case 2: |
| ret = lduw_code(T0 & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_code(T0 & ~3); |
| break; |
| case 8: |
| tmp = ldq_code(T0 & ~7); |
| ret = tmp >> 32; |
| T0 = tmp; |
| break; |
| } |
| break; |
| case 0xa: /* User data access */ |
| switch(size) { |
| case 1: |
| ret = ldub_user(T0); |
| break; |
| case 2: |
| ret = lduw_user(T0 & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_user(T0 & ~3); |
| break; |
| case 8: |
| tmp = ldq_user(T0 & ~7); |
| ret = tmp >> 32; |
| T0 = tmp; |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch(size) { |
| case 1: |
| ret = ldub_kernel(T0); |
| break; |
| case 2: |
| ret = lduw_kernel(T0 & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_kernel(T0 & ~3); |
| break; |
| case 8: |
| tmp = ldq_kernel(T0 & ~7); |
| ret = tmp >> 32; |
| T0 = tmp; |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| break; |
| case 0x20: /* MMU passthrough */ |
| switch(size) { |
| case 1: |
| ret = ldub_phys(T0); |
| break; |
| case 2: |
| ret = lduw_phys(T0 & ~1); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys(T0 & ~3); |
| break; |
| case 8: |
| tmp = ldq_phys(T0 & ~7); |
| ret = tmp >> 32; |
| T0 = tmp; |
| break; |
| } |
| break; |
| case 0x2e: /* MMU passthrough, 0xexxxxxxxx */ |
| case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */ |
| switch(size) { |
| case 1: |
| ret = ldub_phys((target_phys_addr_t)T0 |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| case 2: |
| ret = lduw_phys((target_phys_addr_t)(T0 & ~1) |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys((target_phys_addr_t)(T0 & ~3) |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| case 8: |
| tmp = ldq_phys((target_phys_addr_t)(T0 & ~7) |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| ret = tmp >> 32; |
| T0 = tmp; |
| break; |
| } |
| break; |
| case 0x21 ... 0x2d: /* MMU passthrough, unassigned */ |
| default: |
| do_unassigned_access(T0, 0, 0, 1); |
| ret = 0; |
| break; |
| } |
| if (sign) { |
| switch(size) { |
| case 1: |
| T1 = (int8_t) ret; |
| break; |
| case 2: |
| T1 = (int16_t) ret; |
| break; |
| default: |
| T1 = ret; |
| break; |
| } |
| } |
| else |
| T1 = ret; |
| } |
| |
| void helper_st_asi(int asi, int size) |
| { |
| switch(asi) { |
| case 2: /* SuperSparc MXCC registers */ |
| switch (T0) { |
| case 0x01c00000: /* MXCC stream data register 0 */ |
| if (size == 8) |
| env->mxccdata[0] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00008: /* MXCC stream data register 1 */ |
| if (size == 8) |
| env->mxccdata[1] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00010: /* MXCC stream data register 2 */ |
| if (size == 8) |
| env->mxccdata[2] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00018: /* MXCC stream data register 3 */ |
| if (size == 8) |
| env->mxccdata[3] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00100: /* MXCC stream source */ |
| if (size == 8) |
| env->mxccregs[0] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0); |
| env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8); |
| env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16); |
| env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24); |
| break; |
| case 0x01c00200: /* MXCC stream destination */ |
| if (size == 8) |
| env->mxccregs[1] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]); |
| break; |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) |
| env->mxccregs[3] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) |
| env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | T1; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00e00: /* MXCC error register */ |
| // writing a 1 bit clears the error |
| if (size == 8) |
| env->mxccregs[6] &= ~(((uint64_t)T1 << 32) | T2); |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) |
| env->mxccregs[7] = ((uint64_t)T1 << 32) | T2; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size); |
| break; |
| default: |
| DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU flush */ |
| { |
| int mmulev; |
| |
| mmulev = (T0 >> 8) & 15; |
| DPRINTF_MMU("mmu flush level %d\n", mmulev); |
| switch (mmulev) { |
| case 0: // flush page |
| tlb_flush_page(env, T0 & 0xfffff000); |
| break; |
| case 1: // flush segment (256k) |
| case 2: // flush region (16M) |
| case 3: // flush context (4G) |
| case 4: // flush entire |
| tlb_flush(env, 1); |
| break; |
| default: |
| break; |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 4: /* write MMU regs */ |
| { |
| int reg = (T0 >> 8) & 0xf; |
| uint32_t oldreg; |
| |
| oldreg = env->mmuregs[reg]; |
| switch(reg) { |
| case 0: |
| env->mmuregs[reg] &= ~(MMU_E | MMU_NF | env->mmu_bm); |
| env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | env->mmu_bm); |
| // Mappings generated during no-fault mode or MMU |
| // disabled mode are invalid in normal mode |
| if (oldreg != env->mmuregs[reg]) |
| tlb_flush(env, 1); |
| break; |
| case 2: |
| env->mmuregs[reg] = T1; |
| if (oldreg != env->mmuregs[reg]) { |
| /* we flush when the MMU context changes because |
| QEMU has no MMU context support */ |
| tlb_flush(env, 1); |
| } |
| break; |
| case 3: |
| case 4: |
| break; |
| default: |
| env->mmuregs[reg] = T1; |
| break; |
| } |
| if (oldreg != env->mmuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0xa: /* User data access */ |
| switch(size) { |
| case 1: |
| stb_user(T0, T1); |
| break; |
| case 2: |
| stw_user(T0 & ~1, T1); |
| break; |
| default: |
| case 4: |
| stl_user(T0 & ~3, T1); |
| break; |
| case 8: |
| stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2); |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch(size) { |
| case 1: |
| stb_kernel(T0, T1); |
| break; |
| case 2: |
| stw_kernel(T0 & ~1, T1); |
| break; |
| default: |
| case 4: |
| stl_kernel(T0 & ~3, T1); |
| break; |
| case 8: |
| stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2); |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| case 0x10: /* I/D-cache flush page */ |
| case 0x11: /* I/D-cache flush segment */ |
| case 0x12: /* I/D-cache flush region */ |
| case 0x13: /* I/D-cache flush context */ |
| case 0x14: /* I/D-cache flush user */ |
| break; |
| case 0x17: /* Block copy, sta access */ |
| { |
| // value (T1) = src |
| // address (T0) = dst |
| // copy 32 bytes |
| unsigned int i; |
| uint32_t src = T1 & ~3, dst = T0 & ~3, temp; |
| |
| for (i = 0; i < 32; i += 4, src += 4, dst += 4) { |
| temp = ldl_kernel(src); |
| stl_kernel(dst, temp); |
| } |
| } |
| return; |
| case 0x1f: /* Block fill, stda access */ |
| { |
| // value (T1, T2) |
| // address (T0) = dst |
| // fill 32 bytes |
| unsigned int i; |
| uint32_t dst = T0 & 7; |
| uint64_t val; |
| |
| val = (((uint64_t)T1) << 32) | T2; |
| |
| for (i = 0; i < 32; i += 8, dst += 8) |
| stq_kernel(dst, val); |
| } |
| return; |
| case 0x20: /* MMU passthrough */ |
| { |
| switch(size) { |
| case 1: |
| stb_phys(T0, T1); |
| break; |
| case 2: |
| stw_phys(T0 & ~1, T1); |
| break; |
| case 4: |
| default: |
| stl_phys(T0 & ~3, T1); |
| break; |
| case 8: |
| stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2); |
| break; |
| } |
| } |
| return; |
| case 0x2e: /* MMU passthrough, 0xexxxxxxxx */ |
| case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */ |
| { |
| switch(size) { |
| case 1: |
| stb_phys((target_phys_addr_t)T0 |
| | ((target_phys_addr_t)(asi & 0xf) << 32), T1); |
| break; |
| case 2: |
| stw_phys((target_phys_addr_t)(T0 & ~1) |
| | ((target_phys_addr_t)(asi & 0xf) << 32), T1); |
| break; |
| case 4: |
| default: |
| stl_phys((target_phys_addr_t)(T0 & ~3) |
| | ((target_phys_addr_t)(asi & 0xf) << 32), T1); |
| break; |
| case 8: |
| stq_phys((target_phys_addr_t)(T0 & ~7) |
| | ((target_phys_addr_t)(asi & 0xf) << 32), |
| ((uint64_t)T1 << 32) | T2); |
| break; |
| } |
| } |
| return; |
| case 0x31: /* Ross RT620 I-cache flush */ |
| case 0x36: /* I-cache flash clear */ |
| case 0x37: /* D-cache flash clear */ |
| break; |
| case 9: /* Supervisor code access, XXX */ |
| case 0x21 ... 0x2d: /* MMU passthrough, unassigned */ |
| default: |
| do_unassigned_access(T0, 1, 0, 1); |
| return; |
| } |
| } |
| |
| #endif /* CONFIG_USER_ONLY */ |
| #else /* TARGET_SPARC64 */ |
| |
| #ifdef CONFIG_USER_ONLY |
| void helper_ld_asi(int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| |
| if (asi < 0x80) |
| raise_exception(TT_PRIV_ACT); |
| |
| switch (asi) { |
| case 0x80: // Primary |
| case 0x82: // Primary no-fault |
| case 0x88: // Primary LE |
| case 0x8a: // Primary no-fault LE |
| { |
| switch(size) { |
| case 1: |
| ret = ldub_raw(T0); |
| break; |
| case 2: |
| ret = lduw_raw(T0 & ~1); |
| break; |
| case 4: |
| ret = ldl_raw(T0 & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_raw(T0 & ~7); |
| break; |
| } |
| } |
| break; |
| case 0x81: // Secondary |
| case 0x83: // Secondary no-fault |
| case 0x89: // Secondary LE |
| case 0x8b: // Secondary no-fault LE |
| // XXX |
| break; |
| default: |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0x8a: // Primary no-fault LE |
| case 0x8b: // Secondary no-fault LE |
| switch(size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| T1 = ret; |
| } |
| |
| void helper_st_asi(int asi, int size) |
| { |
| if (asi < 0x80) |
| raise_exception(TT_PRIV_ACT); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| switch(size) { |
| case 2: |
| T0 = bswap16(T0); |
| break; |
| case 4: |
| T0 = bswap32(T0); |
| break; |
| case 8: |
| T0 = bswap64(T0); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch(asi) { |
| case 0x80: // Primary |
| case 0x88: // Primary LE |
| { |
| switch(size) { |
| case 1: |
| stb_raw(T0, T1); |
| break; |
| case 2: |
| stw_raw(T0 & ~1, T1); |
| break; |
| case 4: |
| stl_raw(T0 & ~3, T1); |
| break; |
| case 8: |
| default: |
| stq_raw(T0 & ~7, T1); |
| break; |
| } |
| } |
| break; |
| case 0x81: // Secondary |
| case 0x89: // Secondary LE |
| // XXX |
| return; |
| |
| case 0x82: // Primary no-fault, RO |
| case 0x83: // Secondary no-fault, RO |
| case 0x8a: // Primary no-fault LE, RO |
| case 0x8b: // Secondary no-fault LE, RO |
| default: |
| do_unassigned_access(T0, 1, 0, 1); |
| return; |
| } |
| } |
| |
| #else /* CONFIG_USER_ONLY */ |
| |
| void helper_ld_asi(int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) |
| raise_exception(TT_PRIV_ACT); |
| |
| switch (asi) { |
| case 0x10: // As if user primary |
| case 0x18: // As if user primary LE |
| case 0x80: // Primary |
| case 0x82: // Primary no-fault |
| case 0x88: // Primary LE |
| case 0x8a: // Primary no-fault LE |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (env->hpstate & HS_PRIV) { |
| switch(size) { |
| case 1: |
| ret = ldub_hypv(T0); |
| break; |
| case 2: |
| ret = lduw_hypv(T0 & ~1); |
| break; |
| case 4: |
| ret = ldl_hypv(T0 & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_hypv(T0 & ~7); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| ret = ldub_kernel(T0); |
| break; |
| case 2: |
| ret = lduw_kernel(T0 & ~1); |
| break; |
| case 4: |
| ret = ldl_kernel(T0 & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_kernel(T0 & ~7); |
| break; |
| } |
| } |
| } else { |
| switch(size) { |
| case 1: |
| ret = ldub_user(T0); |
| break; |
| case 2: |
| ret = lduw_user(T0 & ~1); |
| break; |
| case 4: |
| ret = ldl_user(T0 & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_user(T0 & ~7); |
| break; |
| } |
| } |
| break; |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| { |
| switch(size) { |
| case 1: |
| ret = ldub_phys(T0); |
| break; |
| case 2: |
| ret = lduw_phys(T0 & ~1); |
| break; |
| case 4: |
| ret = ldl_phys(T0 & ~3); |
| break; |
| default: |
| case 8: |
| ret = ldq_phys(T0 & ~7); |
| break; |
| } |
| break; |
| } |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x11: // As if user secondary |
| case 0x19: // As if user secondary LE |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic |
| case 0x4a: // UPA config |
| case 0x81: // Secondary |
| case 0x83: // Secondary no-fault |
| case 0x89: // Secondary LE |
| case 0x8b: // Secondary no-fault LE |
| // XXX |
| break; |
| case 0x45: // LSU |
| ret = env->lsu; |
| break; |
| case 0x50: // I-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| |
| ret = env->immuregs[reg]; |
| break; |
| } |
| case 0x51: // I-MMU 8k TSB pointer |
| case 0x52: // I-MMU 64k TSB pointer |
| case 0x55: // I-MMU data access |
| // XXX |
| break; |
| case 0x56: // I-MMU tag read |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 64; i++) { |
| // Valid, ctx match, vaddr match |
| if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 && |
| env->itlb_tag[i] == T0) { |
| ret = env->itlb_tag[i]; |
| break; |
| } |
| } |
| break; |
| } |
| case 0x58: // D-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| |
| ret = env->dmmuregs[reg]; |
| break; |
| } |
| case 0x5e: // D-MMU tag read |
| { |
| unsigned int i; |
| |
| for (i = 0; i < 64; i++) { |
| // Valid, ctx match, vaddr match |
| if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 && |
| env->dtlb_tag[i] == T0) { |
| ret = env->dtlb_tag[i]; |
| break; |
| } |
| } |
| break; |
| } |
| case 0x59: // D-MMU 8k TSB pointer |
| case 0x5a: // D-MMU 64k TSB pointer |
| case 0x5b: // D-MMU data pointer |
| case 0x5d: // D-MMU data access |
| case 0x48: // Interrupt dispatch, RO |
| case 0x49: // Interrupt data receive |
| case 0x7f: // Incoming interrupt vector, RO |
| // XXX |
| break; |
| case 0x54: // I-MMU data in, WO |
| case 0x57: // I-MMU demap, WO |
| case 0x5c: // D-MMU data in, WO |
| case 0x5f: // D-MMU demap, WO |
| case 0x77: // Interrupt vector, WO |
| default: |
| do_unassigned_access(T0, 0, 0, 1); |
| ret = 0; |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0x8a: // Primary no-fault LE |
| case 0x8b: // Secondary no-fault LE |
| switch(size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| T1 = ret; |
| } |
| |
| void helper_st_asi(int asi, int size) |
| { |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) |
| raise_exception(TT_PRIV_ACT); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| switch(size) { |
| case 2: |
| T0 = bswap16(T0); |
| break; |
| case 4: |
| T0 = bswap32(T0); |
| break; |
| case 8: |
| T0 = bswap64(T0); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch(asi) { |
| case 0x10: // As if user primary |
| case 0x18: // As if user primary LE |
| case 0x80: // Primary |
| case 0x88: // Primary LE |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (env->hpstate & HS_PRIV) { |
| switch(size) { |
| case 1: |
| stb_hypv(T0, T1); |
| break; |
| case 2: |
| stw_hypv(T0 & ~1, T1); |
| break; |
| case 4: |
| stl_hypv(T0 & ~3, T1); |
| break; |
| case 8: |
| default: |
| stq_hypv(T0 & ~7, T1); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| stb_kernel(T0, T1); |
| break; |
| case 2: |
| stw_kernel(T0 & ~1, T1); |
| break; |
| case 4: |
| stl_kernel(T0 & ~3, T1); |
| break; |
| case 8: |
| default: |
| stq_kernel(T0 & ~7, T1); |
| break; |
| } |
| } |
| } else { |
| switch(size) { |
| case 1: |
| stb_user(T0, T1); |
| break; |
| case 2: |
| stw_user(T0 & ~1, T1); |
| break; |
| case 4: |
| stl_user(T0 & ~3, T1); |
| break; |
| case 8: |
| default: |
| stq_user(T0 & ~7, T1); |
| break; |
| } |
| } |
| break; |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| { |
| switch(size) { |
| case 1: |
| stb_phys(T0, T1); |
| break; |
| case 2: |
| stw_phys(T0 & ~1, T1); |
| break; |
| case 4: |
| stl_phys(T0 & ~3, T1); |
| break; |
| case 8: |
| default: |
| stq_phys(T0 & ~7, T1); |
| break; |
| } |
| } |
| return; |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x11: // As if user secondary |
| case 0x19: // As if user secondary LE |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic |
| case 0x4a: // UPA config |
| case 0x81: // Secondary |
| case 0x89: // Secondary LE |
| // XXX |
| return; |
| case 0x45: // LSU |
| { |
| uint64_t oldreg; |
| |
| oldreg = env->lsu; |
| env->lsu = T1 & (DMMU_E | IMMU_E); |
| // Mappings generated during D/I MMU disabled mode are |
| // invalid in normal mode |
| if (oldreg != env->lsu) { |
| DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu); |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| tlb_flush(env, 1); |
| } |
| return; |
| } |
| case 0x50: // I-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->immuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| case 4: |
| return; |
| case 1: // Not in I-MMU |
| case 2: |
| case 7: |
| case 8: |
| return; |
| case 3: // SFSR |
| if ((T1 & 1) == 0) |
| T1 = 0; // Clear SFSR |
| break; |
| case 5: // TSB access |
| case 6: // Tag access |
| default: |
| break; |
| } |
| env->immuregs[reg] = T1; |
| if (oldreg != env->immuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0x54: // I-MMU data in |
| { |
| unsigned int i; |
| |
| // Try finding an invalid entry |
| for (i = 0; i < 64; i++) { |
| if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) { |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = T1; |
| return; |
| } |
| } |
| // Try finding an unlocked entry |
| for (i = 0; i < 64; i++) { |
| if ((env->itlb_tte[i] & 0x40) == 0) { |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = T1; |
| return; |
| } |
| } |
| // error state? |
| return; |
| } |
| case 0x55: // I-MMU data access |
| { |
| unsigned int i = (T0 >> 3) & 0x3f; |
| |
| env->itlb_tag[i] = env->immuregs[6]; |
| env->itlb_tte[i] = T1; |
| return; |
| } |
| case 0x57: // I-MMU demap |
| // XXX |
| return; |
| case 0x58: // D-MMU regs |
| { |
| int reg = (T0 >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->dmmuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| case 4: |
| return; |
| case 3: // SFSR |
| if ((T1 & 1) == 0) { |
| T1 = 0; // Clear SFSR, Fault address |
| env->dmmuregs[4] = 0; |
| } |
| env->dmmuregs[reg] = T1; |
| break; |
| case 1: // Primary context |
| case 2: // Secondary context |
| case 5: // TSB access |
| case 6: // Tag access |
| case 7: // Virtual Watchpoint |
| case 8: // Physical Watchpoint |
| default: |
| break; |
| } |
| env->dmmuregs[reg] = T1; |
| if (oldreg != env->dmmuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(env); |
| #endif |
| return; |
| } |
| case 0x5c: // D-MMU data in |
| { |
| unsigned int i; |
| |
| // Try finding an invalid entry |
| for (i = 0; i < 64; i++) { |
| if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) { |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = T1; |
| return; |
| } |
| } |
| // Try finding an unlocked entry |
| for (i = 0; i < 64; i++) { |
| if ((env->dtlb_tte[i] & 0x40) == 0) { |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = T1; |
| return; |
| } |
| } |
| // error state? |
| return; |
| } |
| case 0x5d: // D-MMU data access |
| { |
| unsigned int i = (T0 >> 3) & 0x3f; |
| |
| env->dtlb_tag[i] = env->dmmuregs[6]; |
| env->dtlb_tte[i] = T1; |
| return; |
| } |
| case 0x5f: // D-MMU demap |
| case 0x49: // Interrupt data receive |
| // XXX |
| return; |
| case 0x51: // I-MMU 8k TSB pointer, RO |
| case 0x52: // I-MMU 64k TSB pointer, RO |
| case 0x56: // I-MMU tag read, RO |
| case 0x59: // D-MMU 8k TSB pointer, RO |
| case 0x5a: // D-MMU 64k TSB pointer, RO |
| case 0x5b: // D-MMU data pointer, RO |
| case 0x5e: // D-MMU tag read, RO |
| case 0x48: // Interrupt dispatch, RO |
| case 0x7f: // Incoming interrupt vector, RO |
| case 0x82: // Primary no-fault, RO |
| case 0x83: // Secondary no-fault, RO |
| case 0x8a: // Primary no-fault LE, RO |
| case 0x8b: // Secondary no-fault LE, RO |
| default: |
| do_unassigned_access(T0, 1, 0, 1); |
| return; |
| } |
| } |
| #endif /* CONFIG_USER_ONLY */ |
| |
| void helper_ldf_asi(int asi, int size, int rd) |
| { |
| target_ulong tmp_T0 = T0, tmp_T1 = T1; |
| unsigned int i; |
| |
| switch (asi) { |
| case 0xf0: // Block load primary |
| case 0xf1: // Block load secondary |
| case 0xf8: // Block load primary LE |
| case 0xf9: // Block load secondary LE |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| if (T0 & 0x3f) { |
| raise_exception(TT_UNALIGNED); |
| return; |
| } |
| for (i = 0; i < 16; i++) { |
| helper_ld_asi(asi & 0x8f, 4, 0); |
| *(uint32_t *)&env->fpr[rd++] = T1; |
| T0 += 4; |
| } |
| T0 = tmp_T0; |
| T1 = tmp_T1; |
| |
| return; |
| default: |
| break; |
| } |
| |
| helper_ld_asi(asi, size, 0); |
| switch(size) { |
| default: |
| case 4: |
| *((uint32_t *)&FT0) = T1; |
| break; |
| case 8: |
| *((int64_t *)&DT0) = T1; |
| break; |
| } |
| T1 = tmp_T1; |
| } |
| |
| void helper_stf_asi(int asi, int size, int rd) |
| { |
| target_ulong tmp_T0 = T0, tmp_T1 = T1; |
| unsigned int i; |
| |
| switch (asi) { |
| case 0xf0: // Block store primary |
| case 0xf1: // Block store secondary |
| case 0xf8: // Block store primary LE |
| case 0xf9: // Block store secondary LE |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| if (T0 & 0x3f) { |
| raise_exception(TT_UNALIGNED); |
| return; |
| } |
| for (i = 0; i < 16; i++) { |
| T1 = *(uint32_t *)&env->fpr[rd++]; |
| helper_st_asi(asi & 0x8f, 4); |
| T0 += 4; |
| } |
| T0 = tmp_T0; |
| T1 = tmp_T1; |
| |
| return; |
| default: |
| break; |
| } |
| |
| switch(size) { |
| default: |
| case 4: |
| T1 = *((uint32_t *)&FT0); |
| break; |
| case 8: |
| T1 = *((int64_t *)&DT0); |
| break; |
| } |
| helper_st_asi(asi, size); |
| T1 = tmp_T1; |
| } |
| |
| #endif /* TARGET_SPARC64 */ |
| |
| #ifndef TARGET_SPARC64 |
| void helper_rett() |
| { |
| unsigned int cwp; |
| |
| if (env->psret == 1) |
| raise_exception(TT_ILL_INSN); |
| |
| env->psret = 1; |
| cwp = (env->cwp + 1) & (NWINDOWS - 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_UNF); |
| } |
| set_cwp(cwp); |
| env->psrs = env->psrps; |
| } |
| #endif |
| |
| void helper_ldfsr(void) |
| { |
| int rnd_mode; |
| switch (env->fsr & FSR_RD_MASK) { |
| case FSR_RD_NEAREST: |
| rnd_mode = float_round_nearest_even; |
| break; |
| default: |
| case FSR_RD_ZERO: |
| rnd_mode = float_round_to_zero; |
| break; |
| case FSR_RD_POS: |
| rnd_mode = float_round_up; |
| break; |
| case FSR_RD_NEG: |
| rnd_mode = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_mode, &env->fp_status); |
| } |
| |
| void helper_debug() |
| { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |
| |
| #ifndef TARGET_SPARC64 |
| void do_wrpsr() |
| { |
| if ((T0 & PSR_CWP) >= NWINDOWS) |
| raise_exception(TT_ILL_INSN); |
| else |
| PUT_PSR(env, T0); |
| } |
| |
| void do_rdpsr() |
| { |
| T0 = GET_PSR(env); |
| } |
| |
| #else |
| |
| void do_popc() |
| { |
| T0 = ctpop64(T1); |
| } |
| |
| static inline uint64_t *get_gregset(uint64_t pstate) |
| { |
| switch (pstate) { |
| default: |
| case 0: |
| return env->bgregs; |
| case PS_AG: |
| return env->agregs; |
| case PS_MG: |
| return env->mgregs; |
| case PS_IG: |
| return env->igregs; |
| } |
| } |
| |
| static inline void change_pstate(uint64_t new_pstate) |
| { |
| uint64_t pstate_regs, new_pstate_regs; |
| uint64_t *src, *dst; |
| |
| pstate_regs = env->pstate & 0xc01; |
| new_pstate_regs = new_pstate & 0xc01; |
| if (new_pstate_regs != pstate_regs) { |
| // Switch global register bank |
| src = get_gregset(new_pstate_regs); |
| dst = get_gregset(pstate_regs); |
| memcpy32(dst, env->gregs); |
| memcpy32(env->gregs, src); |
| } |
| env->pstate = new_pstate; |
| } |
| |
| void do_wrpstate(void) |
| { |
| change_pstate(T0 & 0xf3f); |
| } |
| |
| void do_done(void) |
| { |
| env->tl--; |
| env->pc = env->tnpc[env->tl]; |
| env->npc = env->tnpc[env->tl] + 4; |
| PUT_CCR(env, env->tstate[env->tl] >> 32); |
| env->asi = (env->tstate[env->tl] >> 24) & 0xff; |
| change_pstate((env->tstate[env->tl] >> 8) & 0xf3f); |
| PUT_CWP64(env, env->tstate[env->tl] & 0xff); |
| } |
| |
| void do_retry(void) |
| { |
| env->tl--; |
| env->pc = env->tpc[env->tl]; |
| env->npc = env->tnpc[env->tl]; |
| PUT_CCR(env, env->tstate[env->tl] >> 32); |
| env->asi = (env->tstate[env->tl] >> 24) & 0xff; |
| change_pstate((env->tstate[env->tl] >> 8) & 0xf3f); |
| PUT_CWP64(env, env->tstate[env->tl] & 0xff); |
| } |
| #endif |
| |
| void set_cwp(int new_cwp) |
| { |
| /* put the modified wrap registers at their proper location */ |
| if (env->cwp == (NWINDOWS - 1)) |
| memcpy32(env->regbase, env->regbase + NWINDOWS * 16); |
| env->cwp = new_cwp; |
| /* put the wrap registers at their temporary location */ |
| if (new_cwp == (NWINDOWS - 1)) |
| memcpy32(env->regbase + NWINDOWS * 16, env->regbase); |
| env->regwptr = env->regbase + (new_cwp * 16); |
| REGWPTR = env->regwptr; |
| } |
| |
| void cpu_set_cwp(CPUState *env1, int new_cwp) |
| { |
| CPUState *saved_env; |
| #ifdef reg_REGWPTR |
| target_ulong *saved_regwptr; |
| #endif |
| |
| saved_env = env; |
| #ifdef reg_REGWPTR |
| saved_regwptr = REGWPTR; |
| #endif |
| env = env1; |
| set_cwp(new_cwp); |
| env = saved_env; |
| #ifdef reg_REGWPTR |
| REGWPTR = saved_regwptr; |
| #endif |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void do_interrupt(int intno) |
| { |
| #ifdef DEBUG_PCALL |
| if (loglevel & CPU_LOG_INT) { |
| static int count; |
| fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n", |
| count, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| fprintf(logfile, " code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| fprintf(logfile, " %02x", ldub(ptr + i)); |
| } |
| fprintf(logfile, "\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->tl == MAXTL) { |
| cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index); |
| return; |
| } |
| #endif |
| env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) | |
| ((env->pstate & 0xf3f) << 8) | GET_CWP64(env); |
| env->tpc[env->tl] = env->pc; |
| env->tnpc[env->tl] = env->npc; |
| env->tt[env->tl] = intno; |
| change_pstate(PS_PEF | PS_PRIV | PS_AG); |
| |
| if (intno == TT_CLRWIN) |
| set_cwp((env->cwp - 1) & (NWINDOWS - 1)); |
| else if ((intno & 0x1c0) == TT_SPILL) |
| set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1)); |
| else if ((intno & 0x1c0) == TT_FILL) |
| set_cwp((env->cwp + 1) & (NWINDOWS - 1)); |
| env->tbr &= ~0x7fffULL; |
| env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); |
| if (env->tl < MAXTL - 1) { |
| env->tl++; |
| } else { |
| env->pstate |= PS_RED; |
| if (env->tl != MAXTL) |
| env->tl++; |
| } |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = 0; |
| } |
| #else |
| void do_interrupt(int intno) |
| { |
| int cwp; |
| |
| #ifdef DEBUG_PCALL |
| if (loglevel & CPU_LOG_INT) { |
| static int count; |
| fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n", |
| count, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| fprintf(logfile, " code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| fprintf(logfile, " %02x", ldub(ptr + i)); |
| } |
| fprintf(logfile, "\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->psret == 0) { |
| cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index); |
| return; |
| } |
| #endif |
| env->psret = 0; |
| cwp = (env->cwp - 1) & (NWINDOWS - 1); |
| set_cwp(cwp); |
| env->regwptr[9] = env->pc; |
| env->regwptr[10] = env->npc; |
| env->psrps = env->psrs; |
| env->psrs = 1; |
| env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = 0; |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user, |
| void *retaddr); |
| |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| #ifdef __s390__ |
| # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) |
| #else |
| # define GETPC() (__builtin_return_address(0)) |
| #endif |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user, |
| void *retaddr) |
| { |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc); |
| #endif |
| raise_exception(TT_UNALIGNED); |
| } |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| int ret; |
| unsigned long pc; |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| |
| ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (ret) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, (void *)T2); |
| } |
| } |
| cpu_loop_exit(); |
| } |
| env = saved_env; |
| } |
| |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int is_asi) |
| { |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| if (env->mmuregs[3]) /* Fault status register */ |
| env->mmuregs[3] = 1; /* overflow (not read before another fault) */ |
| if (is_asi) |
| env->mmuregs[3] |= 1 << 16; |
| if (env->psrs) |
| env->mmuregs[3] |= 1 << 5; |
| if (is_exec) |
| env->mmuregs[3] |= 1 << 6; |
| if (is_write) |
| env->mmuregs[3] |= 1 << 7; |
| env->mmuregs[3] |= (5 << 2) | 2; |
| env->mmuregs[4] = addr; /* Fault address register */ |
| if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| if (is_exec) |
| raise_exception(TT_CODE_ACCESS); |
| else |
| raise_exception(TT_DATA_ACCESS); |
| } |
| env = saved_env; |
| } |
| #else |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int is_asi) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", |
| addr, env->pc); |
| env = saved_env; |
| #endif |
| if (is_exec) |
| raise_exception(TT_CODE_ACCESS); |
| else |
| raise_exception(TT_DATA_ACCESS); |
| } |
| #endif |
| |