blob: 6853f58c19411d4ae2fa6b24b87a0a18c90867ee [file] [log] [blame]
/*
* ARM SVE Operations
*
* Copyright (c) 2018 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "fpu/softfloat.h"
#include "tcg/tcg.h"
#include "vec_internal.h"
#include "sve_ldst_internal.h"
#include "hw/core/tcg-cpu-ops.h"
/* Return a value for NZCV as per the ARM PredTest pseudofunction.
*
* The return value has bit 31 set if N is set, bit 1 set if Z is clear,
* and bit 0 set if C is set. Compare the definitions of these variables
* within CPUARMState.
*/
/* For no G bits set, NZCV = C. */
#define PREDTEST_INIT 1
/* This is an iterative function, called for each Pd and Pg word
* moving forward.
*/
static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
{
if (likely(g)) {
/* Compute N from first D & G.
Use bit 2 to signal first G bit seen. */
if (!(flags & 4)) {
flags |= ((d & (g & -g)) != 0) << 31;
flags |= 4;
}
/* Accumulate Z from each D & G. */
flags |= ((d & g) != 0) << 1;
/* Compute C from last !(D & G). Replace previous. */
flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
}
return flags;
}
/* This is an iterative function, called for each Pd and Pg word
* moving backward.
*/
static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags)
{
if (likely(g)) {
/* Compute C from first (i.e last) !(D & G).
Use bit 2 to signal first G bit seen. */
if (!(flags & 4)) {
flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */
flags |= (d & pow2floor(g)) == 0;
}
/* Accumulate Z from each D & G. */
flags |= ((d & g) != 0) << 1;
/* Compute N from last (i.e first) D & G. Replace previous. */
flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0);
}
return flags;
}
/* The same for a single word predicate. */
uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
{
return iter_predtest_fwd(d, g, PREDTEST_INIT);
}
/* The same for a multi-word predicate. */
uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
{
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg;
uintptr_t i = 0;
do {
flags = iter_predtest_fwd(d[i], g[i], flags);
} while (++i < words);
return flags;
}
/* Similarly for single word elements. */
static inline uint64_t expand_pred_s(uint8_t byte)
{
static const uint64_t word[] = {
[0x01] = 0x00000000ffffffffull,
[0x10] = 0xffffffff00000000ull,
[0x11] = 0xffffffffffffffffull,
};
return word[byte & 0x11];
}
#define LOGICAL_PPPP(NAME, FUNC) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
uintptr_t opr_sz = simd_oprsz(desc); \
uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
uintptr_t i; \
for (i = 0; i < opr_sz / 8; ++i) { \
d[i] = FUNC(n[i], m[i], g[i]); \
} \
}
#define DO_AND(N, M, G) (((N) & (M)) & (G))
#define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
#define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
#define DO_ORR(N, M, G) (((N) | (M)) & (G))
#define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
#define DO_NOR(N, M, G) (~((N) | (M)) & (G))
#define DO_NAND(N, M, G) (~((N) & (M)) & (G))
#define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
LOGICAL_PPPP(sve_and_pppp, DO_AND)
LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
#undef DO_AND
#undef DO_BIC
#undef DO_EOR
#undef DO_ORR
#undef DO_ORN
#undef DO_NOR
#undef DO_NAND
#undef DO_SEL
#undef LOGICAL_PPPP
/* Fully general three-operand expander, controlled by a predicate.
* This is complicated by the host-endian storage of the register file.
*/
/* ??? I don't expect the compiler could ever vectorize this itself.
* With some tables we can convert bit masks to byte masks, and with
* extra care wrt byte/word ordering we could use gcc generic vectors
* and do 16 bytes at a time.
*/
#define DO_ZPZZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
TYPE mm = *(TYPE *)(vm + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZZ_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *n = vn, *m = vm; \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE nn = n[i], mm = m[i]; \
d[i] = OP(nn, mm); \
} \
} \
}
#define DO_AND(N, M) (N & M)
#define DO_EOR(N, M) (N ^ M)
#define DO_ORR(N, M) (N | M)
#define DO_BIC(N, M) (N & ~M)
#define DO_ADD(N, M) (N + M)
#define DO_SUB(N, M) (N - M)
#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
#define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
#define DO_MUL(N, M) (N * M)
/*
* We must avoid the C undefined behaviour cases: division by
* zero and signed division of INT_MIN by -1. Both of these
* have architecturally defined required results for Arm.
* We special case all signed divisions by -1 to avoid having
* to deduce the minimum integer for the type involved.
*/
#define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M)
#define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M)
DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN)
DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN)
DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN)
DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD)
DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD)
DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD)
DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
/* Because the computation type is at least twice as large as required,
these work for both signed and unsigned source types. */
static inline uint8_t do_mulh_b(int32_t n, int32_t m)
{
return (n * m) >> 8;
}
static inline uint16_t do_mulh_h(int32_t n, int32_t m)
{
return (n * m) >> 16;
}
static inline uint32_t do_mulh_s(int64_t n, int64_t m)
{
return (n * m) >> 32;
}
static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
{
uint64_t lo, hi;
muls64(&lo, &hi, n, m);
return hi;
}
static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
{
uint64_t lo, hi;
mulu64(&lo, &hi, n, m);
return hi;
}
DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV)
DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV)
DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV)
DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV)
/* Note that all bits of the shift are significant
and not modulo the element size. */
#define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1))
#define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0)
#define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0)
DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
static inline uint16_t do_sadalp_h(int16_t n, int16_t m)
{
int8_t n1 = n, n2 = n >> 8;
return m + n1 + n2;
}
static inline uint32_t do_sadalp_s(int32_t n, int32_t m)
{
int16_t n1 = n, n2 = n >> 16;
return m + n1 + n2;
}
static inline uint64_t do_sadalp_d(int64_t n, int64_t m)
{
int32_t n1 = n, n2 = n >> 32;
return m + n1 + n2;
}
DO_ZPZZ(sve2_sadalp_zpzz_h, int16_t, H1_2, do_sadalp_h)
DO_ZPZZ(sve2_sadalp_zpzz_s, int32_t, H1_4, do_sadalp_s)
DO_ZPZZ_D(sve2_sadalp_zpzz_d, int64_t, do_sadalp_d)
static inline uint16_t do_uadalp_h(uint16_t n, uint16_t m)
{
uint8_t n1 = n, n2 = n >> 8;
return m + n1 + n2;
}
static inline uint32_t do_uadalp_s(uint32_t n, uint32_t m)
{
uint16_t n1 = n, n2 = n >> 16;
return m + n1 + n2;
}
static inline uint64_t do_uadalp_d(uint64_t n, uint64_t m)
{
uint32_t n1 = n, n2 = n >> 32;
return m + n1 + n2;
}
DO_ZPZZ(sve2_uadalp_zpzz_h, uint16_t, H1_2, do_uadalp_h)
DO_ZPZZ(sve2_uadalp_zpzz_s, uint32_t, H1_4, do_uadalp_s)
DO_ZPZZ_D(sve2_uadalp_zpzz_d, uint64_t, do_uadalp_d)
#define do_srshl_b(n, m) do_sqrshl_bhs(n, m, 8, true, NULL)
#define do_srshl_h(n, m) do_sqrshl_bhs(n, m, 16, true, NULL)
#define do_srshl_s(n, m) do_sqrshl_bhs(n, m, 32, true, NULL)
#define do_srshl_d(n, m) do_sqrshl_d(n, m, true, NULL)
DO_ZPZZ(sve2_srshl_zpzz_b, int8_t, H1, do_srshl_b)
DO_ZPZZ(sve2_srshl_zpzz_h, int16_t, H1_2, do_srshl_h)
DO_ZPZZ(sve2_srshl_zpzz_s, int32_t, H1_4, do_srshl_s)
DO_ZPZZ_D(sve2_srshl_zpzz_d, int64_t, do_srshl_d)
#define do_urshl_b(n, m) do_uqrshl_bhs(n, (int8_t)m, 8, true, NULL)
#define do_urshl_h(n, m) do_uqrshl_bhs(n, (int16_t)m, 16, true, NULL)
#define do_urshl_s(n, m) do_uqrshl_bhs(n, m, 32, true, NULL)
#define do_urshl_d(n, m) do_uqrshl_d(n, m, true, NULL)
DO_ZPZZ(sve2_urshl_zpzz_b, uint8_t, H1, do_urshl_b)
DO_ZPZZ(sve2_urshl_zpzz_h, uint16_t, H1_2, do_urshl_h)
DO_ZPZZ(sve2_urshl_zpzz_s, uint32_t, H1_4, do_urshl_s)
DO_ZPZZ_D(sve2_urshl_zpzz_d, uint64_t, do_urshl_d)
/*
* Unlike the NEON and AdvSIMD versions, there is no QC bit to set.
* We pass in a pointer to a dummy saturation field to trigger
* the saturating arithmetic but discard the information about
* whether it has occurred.
*/
#define do_sqshl_b(n, m) \
({ uint32_t discard; do_sqrshl_bhs(n, m, 8, false, &discard); })
#define do_sqshl_h(n, m) \
({ uint32_t discard; do_sqrshl_bhs(n, m, 16, false, &discard); })
#define do_sqshl_s(n, m) \
({ uint32_t discard; do_sqrshl_bhs(n, m, 32, false, &discard); })
#define do_sqshl_d(n, m) \
({ uint32_t discard; do_sqrshl_d(n, m, false, &discard); })
DO_ZPZZ(sve2_sqshl_zpzz_b, int8_t, H1_2, do_sqshl_b)
DO_ZPZZ(sve2_sqshl_zpzz_h, int16_t, H1_2, do_sqshl_h)
DO_ZPZZ(sve2_sqshl_zpzz_s, int32_t, H1_4, do_sqshl_s)
DO_ZPZZ_D(sve2_sqshl_zpzz_d, int64_t, do_sqshl_d)
#define do_uqshl_b(n, m) \
({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, false, &discard); })
#define do_uqshl_h(n, m) \
({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, false, &discard); })
#define do_uqshl_s(n, m) \
({ uint32_t discard; do_uqrshl_bhs(n, m, 32, false, &discard); })
#define do_uqshl_d(n, m) \
({ uint32_t discard; do_uqrshl_d(n, m, false, &discard); })
DO_ZPZZ(sve2_uqshl_zpzz_b, uint8_t, H1_2, do_uqshl_b)
DO_ZPZZ(sve2_uqshl_zpzz_h, uint16_t, H1_2, do_uqshl_h)
DO_ZPZZ(sve2_uqshl_zpzz_s, uint32_t, H1_4, do_uqshl_s)
DO_ZPZZ_D(sve2_uqshl_zpzz_d, uint64_t, do_uqshl_d)
#define do_sqrshl_b(n, m) \
({ uint32_t discard; do_sqrshl_bhs(n, m, 8, true, &discard); })
#define do_sqrshl_h(n, m) \
({ uint32_t discard; do_sqrshl_bhs(n, m, 16, true, &discard); })
#define do_sqrshl_s(n, m) \
({ uint32_t discard; do_sqrshl_bhs(n, m, 32, true, &discard); })
#define do_sqrshl_d(n, m) \
({ uint32_t discard; do_sqrshl_d(n, m, true, &discard); })
DO_ZPZZ(sve2_sqrshl_zpzz_b, int8_t, H1_2, do_sqrshl_b)
DO_ZPZZ(sve2_sqrshl_zpzz_h, int16_t, H1_2, do_sqrshl_h)
DO_ZPZZ(sve2_sqrshl_zpzz_s, int32_t, H1_4, do_sqrshl_s)
DO_ZPZZ_D(sve2_sqrshl_zpzz_d, int64_t, do_sqrshl_d)
#undef do_sqrshl_d
#define do_uqrshl_b(n, m) \
({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, true, &discard); })
#define do_uqrshl_h(n, m) \
({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, true, &discard); })
#define do_uqrshl_s(n, m) \
({ uint32_t discard; do_uqrshl_bhs(n, m, 32, true, &discard); })
#define do_uqrshl_d(n, m) \
({ uint32_t discard; do_uqrshl_d(n, m, true, &discard); })
DO_ZPZZ(sve2_uqrshl_zpzz_b, uint8_t, H1_2, do_uqrshl_b)
DO_ZPZZ(sve2_uqrshl_zpzz_h, uint16_t, H1_2, do_uqrshl_h)
DO_ZPZZ(sve2_uqrshl_zpzz_s, uint32_t, H1_4, do_uqrshl_s)
DO_ZPZZ_D(sve2_uqrshl_zpzz_d, uint64_t, do_uqrshl_d)
#undef do_uqrshl_d
#define DO_HADD_BHS(n, m) (((int64_t)n + m) >> 1)
#define DO_HADD_D(n, m) ((n >> 1) + (m >> 1) + (n & m & 1))
DO_ZPZZ(sve2_shadd_zpzz_b, int8_t, H1, DO_HADD_BHS)
DO_ZPZZ(sve2_shadd_zpzz_h, int16_t, H1_2, DO_HADD_BHS)
DO_ZPZZ(sve2_shadd_zpzz_s, int32_t, H1_4, DO_HADD_BHS)
DO_ZPZZ_D(sve2_shadd_zpzz_d, int64_t, DO_HADD_D)
DO_ZPZZ(sve2_uhadd_zpzz_b, uint8_t, H1, DO_HADD_BHS)
DO_ZPZZ(sve2_uhadd_zpzz_h, uint16_t, H1_2, DO_HADD_BHS)
DO_ZPZZ(sve2_uhadd_zpzz_s, uint32_t, H1_4, DO_HADD_BHS)
DO_ZPZZ_D(sve2_uhadd_zpzz_d, uint64_t, DO_HADD_D)
#define DO_RHADD_BHS(n, m) (((int64_t)n + m + 1) >> 1)
#define DO_RHADD_D(n, m) ((n >> 1) + (m >> 1) + ((n | m) & 1))
DO_ZPZZ(sve2_srhadd_zpzz_b, int8_t, H1, DO_RHADD_BHS)
DO_ZPZZ(sve2_srhadd_zpzz_h, int16_t, H1_2, DO_RHADD_BHS)
DO_ZPZZ(sve2_srhadd_zpzz_s, int32_t, H1_4, DO_RHADD_BHS)
DO_ZPZZ_D(sve2_srhadd_zpzz_d, int64_t, DO_RHADD_D)
DO_ZPZZ(sve2_urhadd_zpzz_b, uint8_t, H1, DO_RHADD_BHS)
DO_ZPZZ(sve2_urhadd_zpzz_h, uint16_t, H1_2, DO_RHADD_BHS)
DO_ZPZZ(sve2_urhadd_zpzz_s, uint32_t, H1_4, DO_RHADD_BHS)
DO_ZPZZ_D(sve2_urhadd_zpzz_d, uint64_t, DO_RHADD_D)
#define DO_HSUB_BHS(n, m) (((int64_t)n - m) >> 1)
#define DO_HSUB_D(n, m) ((n >> 1) - (m >> 1) - (~n & m & 1))
DO_ZPZZ(sve2_shsub_zpzz_b, int8_t, H1, DO_HSUB_BHS)
DO_ZPZZ(sve2_shsub_zpzz_h, int16_t, H1_2, DO_HSUB_BHS)
DO_ZPZZ(sve2_shsub_zpzz_s, int32_t, H1_4, DO_HSUB_BHS)
DO_ZPZZ_D(sve2_shsub_zpzz_d, int64_t, DO_HSUB_D)
DO_ZPZZ(sve2_uhsub_zpzz_b, uint8_t, H1, DO_HSUB_BHS)
DO_ZPZZ(sve2_uhsub_zpzz_h, uint16_t, H1_2, DO_HSUB_BHS)
DO_ZPZZ(sve2_uhsub_zpzz_s, uint32_t, H1_4, DO_HSUB_BHS)
DO_ZPZZ_D(sve2_uhsub_zpzz_d, uint64_t, DO_HSUB_D)
static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max)
{
return val >= max ? max : val <= min ? min : val;
}
#define DO_SQADD_B(n, m) do_sat_bhs((int64_t)n + m, INT8_MIN, INT8_MAX)
#define DO_SQADD_H(n, m) do_sat_bhs((int64_t)n + m, INT16_MIN, INT16_MAX)
#define DO_SQADD_S(n, m) do_sat_bhs((int64_t)n + m, INT32_MIN, INT32_MAX)
static inline int64_t do_sqadd_d(int64_t n, int64_t m)
{
int64_t r = n + m;
if (((r ^ n) & ~(n ^ m)) < 0) {
/* Signed overflow. */
return r < 0 ? INT64_MAX : INT64_MIN;
}
return r;
}
DO_ZPZZ(sve2_sqadd_zpzz_b, int8_t, H1, DO_SQADD_B)
DO_ZPZZ(sve2_sqadd_zpzz_h, int16_t, H1_2, DO_SQADD_H)
DO_ZPZZ(sve2_sqadd_zpzz_s, int32_t, H1_4, DO_SQADD_S)
DO_ZPZZ_D(sve2_sqadd_zpzz_d, int64_t, do_sqadd_d)
#define DO_UQADD_B(n, m) do_sat_bhs((int64_t)n + m, 0, UINT8_MAX)
#define DO_UQADD_H(n, m) do_sat_bhs((int64_t)n + m, 0, UINT16_MAX)
#define DO_UQADD_S(n, m) do_sat_bhs((int64_t)n + m, 0, UINT32_MAX)
static inline uint64_t do_uqadd_d(uint64_t n, uint64_t m)
{
uint64_t r = n + m;
return r < n ? UINT64_MAX : r;
}
DO_ZPZZ(sve2_uqadd_zpzz_b, uint8_t, H1, DO_UQADD_B)
DO_ZPZZ(sve2_uqadd_zpzz_h, uint16_t, H1_2, DO_UQADD_H)
DO_ZPZZ(sve2_uqadd_zpzz_s, uint32_t, H1_4, DO_UQADD_S)
DO_ZPZZ_D(sve2_uqadd_zpzz_d, uint64_t, do_uqadd_d)
#define DO_SQSUB_B(n, m) do_sat_bhs((int64_t)n - m, INT8_MIN, INT8_MAX)
#define DO_SQSUB_H(n, m) do_sat_bhs((int64_t)n - m, INT16_MIN, INT16_MAX)
#define DO_SQSUB_S(n, m) do_sat_bhs((int64_t)n - m, INT32_MIN, INT32_MAX)
static inline int64_t do_sqsub_d(int64_t n, int64_t m)
{
int64_t r = n - m;
if (((r ^ n) & (n ^ m)) < 0) {
/* Signed overflow. */
return r < 0 ? INT64_MAX : INT64_MIN;
}
return r;
}
DO_ZPZZ(sve2_sqsub_zpzz_b, int8_t, H1, DO_SQSUB_B)
DO_ZPZZ(sve2_sqsub_zpzz_h, int16_t, H1_2, DO_SQSUB_H)
DO_ZPZZ(sve2_sqsub_zpzz_s, int32_t, H1_4, DO_SQSUB_S)
DO_ZPZZ_D(sve2_sqsub_zpzz_d, int64_t, do_sqsub_d)
#define DO_UQSUB_B(n, m) do_sat_bhs((int64_t)n - m, 0, UINT8_MAX)
#define DO_UQSUB_H(n, m) do_sat_bhs((int64_t)n - m, 0, UINT16_MAX)
#define DO_UQSUB_S(n, m) do_sat_bhs((int64_t)n - m, 0, UINT32_MAX)
static inline uint64_t do_uqsub_d(uint64_t n, uint64_t m)
{
return n > m ? n - m : 0;
}
DO_ZPZZ(sve2_uqsub_zpzz_b, uint8_t, H1, DO_UQSUB_B)
DO_ZPZZ(sve2_uqsub_zpzz_h, uint16_t, H1_2, DO_UQSUB_H)
DO_ZPZZ(sve2_uqsub_zpzz_s, uint32_t, H1_4, DO_UQSUB_S)
DO_ZPZZ_D(sve2_uqsub_zpzz_d, uint64_t, do_uqsub_d)
#define DO_SUQADD_B(n, m) \
do_sat_bhs((int64_t)(int8_t)n + m, INT8_MIN, INT8_MAX)
#define DO_SUQADD_H(n, m) \
do_sat_bhs((int64_t)(int16_t)n + m, INT16_MIN, INT16_MAX)
#define DO_SUQADD_S(n, m) \
do_sat_bhs((int64_t)(int32_t)n + m, INT32_MIN, INT32_MAX)
static inline int64_t do_suqadd_d(int64_t n, uint64_t m)
{
uint64_t r = n + m;
if (n < 0) {
/* Note that m - abs(n) cannot underflow. */
if (r > INT64_MAX) {
/* Result is either very large positive or negative. */
if (m > -n) {
/* m > abs(n), so r is a very large positive. */
return INT64_MAX;
}
/* Result is negative. */
}
} else {
/* Both inputs are positive: check for overflow. */
if (r < m || r > INT64_MAX) {
return INT64_MAX;
}
}
return r;
}
DO_ZPZZ(sve2_suqadd_zpzz_b, uint8_t, H1, DO_SUQADD_B)
DO_ZPZZ(sve2_suqadd_zpzz_h, uint16_t, H1_2, DO_SUQADD_H)
DO_ZPZZ(sve2_suqadd_zpzz_s, uint32_t, H1_4, DO_SUQADD_S)
DO_ZPZZ_D(sve2_suqadd_zpzz_d, uint64_t, do_suqadd_d)
#define DO_USQADD_B(n, m) \
do_sat_bhs((int64_t)n + (int8_t)m, 0, UINT8_MAX)
#define DO_USQADD_H(n, m) \
do_sat_bhs((int64_t)n + (int16_t)m, 0, UINT16_MAX)
#define DO_USQADD_S(n, m) \
do_sat_bhs((int64_t)n + (int32_t)m, 0, UINT32_MAX)
static inline uint64_t do_usqadd_d(uint64_t n, int64_t m)
{
uint64_t r = n + m;
if (m < 0) {
return n < -m ? 0 : r;
}
return r < n ? UINT64_MAX : r;
}
DO_ZPZZ(sve2_usqadd_zpzz_b, uint8_t, H1, DO_USQADD_B)
DO_ZPZZ(sve2_usqadd_zpzz_h, uint16_t, H1_2, DO_USQADD_H)
DO_ZPZZ(sve2_usqadd_zpzz_s, uint32_t, H1_4, DO_USQADD_S)
DO_ZPZZ_D(sve2_usqadd_zpzz_d, uint64_t, do_usqadd_d)
#undef DO_ZPZZ
#undef DO_ZPZZ_D
/*
* Three operand expander, operating on element pairs.
* If the slot I is even, the elements from from VN {I, I+1}.
* If the slot I is odd, the elements from from VM {I-1, I}.
* Load all of the input elements in each pair before overwriting output.
*/
#define DO_ZPZZ_PAIR(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
TYPE n0 = *(TYPE *)(vn + H(i)); \
TYPE m0 = *(TYPE *)(vm + H(i)); \
TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE))); \
TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE))); \
if (pg & 1) { \
*(TYPE *)(vd + H(i)) = OP(n0, n1); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
if (pg & 1) { \
*(TYPE *)(vd + H(i)) = OP(m0, m1); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZZ_PAIR_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *n = vn, *m = vm; \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 2) { \
TYPE n0 = n[i], n1 = n[i + 1]; \
TYPE m0 = m[i], m1 = m[i + 1]; \
if (pg[H1(i)] & 1) { \
d[i] = OP(n0, n1); \
} \
if (pg[H1(i + 1)] & 1) { \
d[i + 1] = OP(m0, m1); \
} \
} \
}
DO_ZPZZ_PAIR(sve2_addp_zpzz_b, uint8_t, H1, DO_ADD)
DO_ZPZZ_PAIR(sve2_addp_zpzz_h, uint16_t, H1_2, DO_ADD)
DO_ZPZZ_PAIR(sve2_addp_zpzz_s, uint32_t, H1_4, DO_ADD)
DO_ZPZZ_PAIR_D(sve2_addp_zpzz_d, uint64_t, DO_ADD)
DO_ZPZZ_PAIR(sve2_umaxp_zpzz_b, uint8_t, H1, DO_MAX)
DO_ZPZZ_PAIR(sve2_umaxp_zpzz_h, uint16_t, H1_2, DO_MAX)
DO_ZPZZ_PAIR(sve2_umaxp_zpzz_s, uint32_t, H1_4, DO_MAX)
DO_ZPZZ_PAIR_D(sve2_umaxp_zpzz_d, uint64_t, DO_MAX)
DO_ZPZZ_PAIR(sve2_uminp_zpzz_b, uint8_t, H1, DO_MIN)
DO_ZPZZ_PAIR(sve2_uminp_zpzz_h, uint16_t, H1_2, DO_MIN)
DO_ZPZZ_PAIR(sve2_uminp_zpzz_s, uint32_t, H1_4, DO_MIN)
DO_ZPZZ_PAIR_D(sve2_uminp_zpzz_d, uint64_t, DO_MIN)
DO_ZPZZ_PAIR(sve2_smaxp_zpzz_b, int8_t, H1, DO_MAX)
DO_ZPZZ_PAIR(sve2_smaxp_zpzz_h, int16_t, H1_2, DO_MAX)
DO_ZPZZ_PAIR(sve2_smaxp_zpzz_s, int32_t, H1_4, DO_MAX)
DO_ZPZZ_PAIR_D(sve2_smaxp_zpzz_d, int64_t, DO_MAX)
DO_ZPZZ_PAIR(sve2_sminp_zpzz_b, int8_t, H1, DO_MIN)
DO_ZPZZ_PAIR(sve2_sminp_zpzz_h, int16_t, H1_2, DO_MIN)
DO_ZPZZ_PAIR(sve2_sminp_zpzz_s, int32_t, H1_4, DO_MIN)
DO_ZPZZ_PAIR_D(sve2_sminp_zpzz_d, int64_t, DO_MIN)
#undef DO_ZPZZ_PAIR
#undef DO_ZPZZ_PAIR_D
#define DO_ZPZZ_PAIR_FP(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
void *status, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
TYPE n0 = *(TYPE *)(vn + H(i)); \
TYPE m0 = *(TYPE *)(vm + H(i)); \
TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE))); \
TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE))); \
if (pg & 1) { \
*(TYPE *)(vd + H(i)) = OP(n0, n1, status); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
if (pg & 1) { \
*(TYPE *)(vd + H(i)) = OP(m0, m1, status); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_h, float16, H1_2, float16_add)
DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_s, float32, H1_4, float32_add)
DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_d, float64, H1_8, float64_add)
DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_h, float16, H1_2, float16_maxnum)
DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_s, float32, H1_4, float32_maxnum)
DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_d, float64, H1_8, float64_maxnum)
DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_h, float16, H1_2, float16_minnum)
DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_s, float32, H1_4, float32_minnum)
DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_d, float64, H1_8, float64_minnum)
DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_h, float16, H1_2, float16_max)
DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_s, float32, H1_4, float32_max)
DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_d, float64, H1_8, float64_max)
DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_h, float16, H1_2, float16_min)
DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_s, float32, H1_4, float32_min)
DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_d, float64, H1_8, float64_min)
#undef DO_ZPZZ_PAIR_FP
/* Three-operand expander, controlled by a predicate, in which the
* third operand is "wide". That is, for D = N op M, the same 64-bit
* value of M is used with all of the narrower values of N.
*/
#define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \
TYPEW mm = *(TYPEW *)(vm + i); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 7); \
} \
}
DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
#undef DO_ZPZW
/* Fully general two-operand expander, controlled by a predicate.
*/
#define DO_ZPZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZ_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *n = vn; \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE nn = n[i]; \
d[i] = OP(nn); \
} \
} \
}
#define DO_CLS_B(N) (clrsb32(N) - 24)
#define DO_CLS_H(N) (clrsb32(N) - 16)
DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
#define DO_CLZ_B(N) (clz32(N) - 24)
#define DO_CLZ_H(N) (clz32(N) - 16)
DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
#define DO_CNOT(N) (N == 0)
DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
#define DO_FABS(N) (N & ((__typeof(N))-1 >> 1))
DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
#define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1))
DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
#define DO_NOT(N) (~N)
DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
#define DO_SXTB(N) ((int8_t)N)
#define DO_SXTH(N) ((int16_t)N)
#define DO_SXTS(N) ((int32_t)N)
#define DO_UXTB(N) ((uint8_t)N)
#define DO_UXTH(N) ((uint16_t)N)
#define DO_UXTS(N) ((uint32_t)N)
DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
#define DO_ABS(N) (N < 0 ? -N : N)
DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
#define DO_NEG(N) (-N)
DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
void HELPER(sme_revd_q)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 2) {
if (pg[H1(i)] & 1) {
uint64_t n0 = n[i + 0];
uint64_t n1 = n[i + 1];
d[i + 0] = n1;
d[i + 1] = n0;
}
}
}
DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
#define DO_SQABS(X) \
({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \
x_ >= 0 ? x_ : x_ == min_ ? -min_ - 1 : -x_; })
DO_ZPZ(sve2_sqabs_b, int8_t, H1, DO_SQABS)
DO_ZPZ(sve2_sqabs_h, int16_t, H1_2, DO_SQABS)
DO_ZPZ(sve2_sqabs_s, int32_t, H1_4, DO_SQABS)
DO_ZPZ_D(sve2_sqabs_d, int64_t, DO_SQABS)
#define DO_SQNEG(X) \
({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \
x_ == min_ ? -min_ - 1 : -x_; })
DO_ZPZ(sve2_sqneg_b, uint8_t, H1, DO_SQNEG)
DO_ZPZ(sve2_sqneg_h, uint16_t, H1_2, DO_SQNEG)
DO_ZPZ(sve2_sqneg_s, uint32_t, H1_4, DO_SQNEG)
DO_ZPZ_D(sve2_sqneg_d, uint64_t, DO_SQNEG)
DO_ZPZ(sve2_urecpe_s, uint32_t, H1_4, helper_recpe_u32)
DO_ZPZ(sve2_ursqrte_s, uint32_t, H1_4, helper_rsqrte_u32)
/* Three-operand expander, unpredicated, in which the third operand is "wide".
*/
#define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
TYPEW mm = *(TYPEW *)(vm + i); \
do { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
i += sizeof(TYPE); \
} while (i & 7); \
} \
}
DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
#undef DO_ZZW
#undef DO_CLS_B
#undef DO_CLS_H
#undef DO_CLZ_B
#undef DO_CLZ_H
#undef DO_CNOT
#undef DO_FABS
#undef DO_FNEG
#undef DO_ABS
#undef DO_NEG
#undef DO_ZPZ
#undef DO_ZPZ_D
/*
* Three-operand expander, unpredicated, in which the two inputs are
* selected from the top or bottom half of the wide column.
*/
#define DO_ZZZ_TB(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \
int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \
TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \
*(TYPEW *)(vd + HW(i)) = OP(nn, mm); \
} \
}
DO_ZZZ_TB(sve2_saddl_h, int16_t, int8_t, H1_2, H1, DO_ADD)
DO_ZZZ_TB(sve2_saddl_s, int32_t, int16_t, H1_4, H1_2, DO_ADD)
DO_ZZZ_TB(sve2_saddl_d, int64_t, int32_t, H1_8, H1_4, DO_ADD)
DO_ZZZ_TB(sve2_ssubl_h, int16_t, int8_t, H1_2, H1, DO_SUB)
DO_ZZZ_TB(sve2_ssubl_s, int32_t, int16_t, H1_4, H1_2, DO_SUB)
DO_ZZZ_TB(sve2_ssubl_d, int64_t, int32_t, H1_8, H1_4, DO_SUB)
DO_ZZZ_TB(sve2_sabdl_h, int16_t, int8_t, H1_2, H1, DO_ABD)
DO_ZZZ_TB(sve2_sabdl_s, int32_t, int16_t, H1_4, H1_2, DO_ABD)
DO_ZZZ_TB(sve2_sabdl_d, int64_t, int32_t, H1_8, H1_4, DO_ABD)
DO_ZZZ_TB(sve2_uaddl_h, uint16_t, uint8_t, H1_2, H1, DO_ADD)
DO_ZZZ_TB(sve2_uaddl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD)
DO_ZZZ_TB(sve2_uaddl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD)
DO_ZZZ_TB(sve2_usubl_h, uint16_t, uint8_t, H1_2, H1, DO_SUB)
DO_ZZZ_TB(sve2_usubl_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB)
DO_ZZZ_TB(sve2_usubl_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB)
DO_ZZZ_TB(sve2_uabdl_h, uint16_t, uint8_t, H1_2, H1, DO_ABD)
DO_ZZZ_TB(sve2_uabdl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD)
DO_ZZZ_TB(sve2_uabdl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD)
DO_ZZZ_TB(sve2_smull_zzz_h, int16_t, int8_t, H1_2, H1, DO_MUL)
DO_ZZZ_TB(sve2_smull_zzz_s, int32_t, int16_t, H1_4, H1_2, DO_MUL)
DO_ZZZ_TB(sve2_smull_zzz_d, int64_t, int32_t, H1_8, H1_4, DO_MUL)
DO_ZZZ_TB(sve2_umull_zzz_h, uint16_t, uint8_t, H1_2, H1, DO_MUL)
DO_ZZZ_TB(sve2_umull_zzz_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL)
DO_ZZZ_TB(sve2_umull_zzz_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL)
/* Note that the multiply cannot overflow, but the doubling can. */
static inline int16_t do_sqdmull_h(int16_t n, int16_t m)
{
int16_t val = n * m;
return DO_SQADD_H(val, val);
}
static inline int32_t do_sqdmull_s(int32_t n, int32_t m)
{
int32_t val = n * m;
return DO_SQADD_S(val, val);
}
static inline int64_t do_sqdmull_d(int64_t n, int64_t m)
{
int64_t val = n * m;
return do_sqadd_d(val, val);
}
DO_ZZZ_TB(sve2_sqdmull_zzz_h, int16_t, int8_t, H1_2, H1, do_sqdmull_h)
DO_ZZZ_TB(sve2_sqdmull_zzz_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s)
DO_ZZZ_TB(sve2_sqdmull_zzz_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d)
#undef DO_ZZZ_TB
#define DO_ZZZ_WTB(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
int sel2 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEW *)(vn + HW(i)); \
TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \
*(TYPEW *)(vd + HW(i)) = OP(nn, mm); \
} \
}
DO_ZZZ_WTB(sve2_saddw_h, int16_t, int8_t, H1_2, H1, DO_ADD)
DO_ZZZ_WTB(sve2_saddw_s, int32_t, int16_t, H1_4, H1_2, DO_ADD)
DO_ZZZ_WTB(sve2_saddw_d, int64_t, int32_t, H1_8, H1_4, DO_ADD)
DO_ZZZ_WTB(sve2_ssubw_h, int16_t, int8_t, H1_2, H1, DO_SUB)
DO_ZZZ_WTB(sve2_ssubw_s, int32_t, int16_t, H1_4, H1_2, DO_SUB)
DO_ZZZ_WTB(sve2_ssubw_d, int64_t, int32_t, H1_8, H1_4, DO_SUB)
DO_ZZZ_WTB(sve2_uaddw_h, uint16_t, uint8_t, H1_2, H1, DO_ADD)
DO_ZZZ_WTB(sve2_uaddw_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD)
DO_ZZZ_WTB(sve2_uaddw_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD)
DO_ZZZ_WTB(sve2_usubw_h, uint16_t, uint8_t, H1_2, H1, DO_SUB)
DO_ZZZ_WTB(sve2_usubw_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB)
DO_ZZZ_WTB(sve2_usubw_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB)
#undef DO_ZZZ_WTB
#define DO_ZZZ_NTB(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
intptr_t sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPE); \
intptr_t sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPE); \
for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \
TYPE nn = *(TYPE *)(vn + H(i + sel1)); \
TYPE mm = *(TYPE *)(vm + H(i + sel2)); \
*(TYPE *)(vd + H(i + sel1)) = OP(nn, mm); \
} \
}
DO_ZZZ_NTB(sve2_eoril_b, uint8_t, H1, DO_EOR)
DO_ZZZ_NTB(sve2_eoril_h, uint16_t, H1_2, DO_EOR)
DO_ZZZ_NTB(sve2_eoril_s, uint32_t, H1_4, DO_EOR)
DO_ZZZ_NTB(sve2_eoril_d, uint64_t, H1_8, DO_EOR)
#undef DO_ZZZ_NTB
#define DO_ZZZW_ACC(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
intptr_t sel1 = simd_data(desc) * sizeof(TYPEN); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \
TYPEW mm = *(TYPEN *)(vm + HN(i + sel1)); \
TYPEW aa = *(TYPEW *)(va + HW(i)); \
*(TYPEW *)(vd + HW(i)) = OP(nn, mm) + aa; \
} \
}
DO_ZZZW_ACC(sve2_sabal_h, int16_t, int8_t, H1_2, H1, DO_ABD)
DO_ZZZW_ACC(sve2_sabal_s, int32_t, int16_t, H1_4, H1_2, DO_ABD)
DO_ZZZW_ACC(sve2_sabal_d, int64_t, int32_t, H1_8, H1_4, DO_ABD)
DO_ZZZW_ACC(sve2_uabal_h, uint16_t, uint8_t, H1_2, H1, DO_ABD)
DO_ZZZW_ACC(sve2_uabal_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD)
DO_ZZZW_ACC(sve2_uabal_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD)
DO_ZZZW_ACC(sve2_smlal_zzzw_h, int16_t, int8_t, H1_2, H1, DO_MUL)
DO_ZZZW_ACC(sve2_smlal_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_MUL)
DO_ZZZW_ACC(sve2_smlal_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_MUL)
DO_ZZZW_ACC(sve2_umlal_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_MUL)
DO_ZZZW_ACC(sve2_umlal_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL)
DO_ZZZW_ACC(sve2_umlal_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL)
#define DO_NMUL(N, M) -(N * M)
DO_ZZZW_ACC(sve2_smlsl_zzzw_h, int16_t, int8_t, H1_2, H1, DO_NMUL)
DO_ZZZW_ACC(sve2_smlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_NMUL)
DO_ZZZW_ACC(sve2_smlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_NMUL)
DO_ZZZW_ACC(sve2_umlsl_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_NMUL)
DO_ZZZW_ACC(sve2_umlsl_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_NMUL)
DO_ZZZW_ACC(sve2_umlsl_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_NMUL)
#undef DO_ZZZW_ACC
#define DO_XTNB(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
TYPE nn = *(TYPE *)(vn + i); \
nn = OP(nn) & MAKE_64BIT_MASK(0, sizeof(TYPE) * 4); \
*(TYPE *)(vd + i) = nn; \
} \
}
#define DO_XTNT(NAME, TYPE, TYPEN, H, OP) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc), odd = H(sizeof(TYPEN)); \
for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
TYPE nn = *(TYPE *)(vn + i); \
*(TYPEN *)(vd + i + odd) = OP(nn); \
} \
}
#define DO_SQXTN_H(n) do_sat_bhs(n, INT8_MIN, INT8_MAX)
#define DO_SQXTN_S(n) do_sat_bhs(n, INT16_MIN, INT16_MAX)
#define DO_SQXTN_D(n) do_sat_bhs(n, INT32_MIN, INT32_MAX)
DO_XTNB(sve2_sqxtnb_h, int16_t, DO_SQXTN_H)
DO_XTNB(sve2_sqxtnb_s, int32_t, DO_SQXTN_S)
DO_XTNB(sve2_sqxtnb_d, int64_t, DO_SQXTN_D)
DO_XTNT(sve2_sqxtnt_h, int16_t, int8_t, H1, DO_SQXTN_H)
DO_XTNT(sve2_sqxtnt_s, int32_t, int16_t, H1_2, DO_SQXTN_S)
DO_XTNT(sve2_sqxtnt_d, int64_t, int32_t, H1_4, DO_SQXTN_D)
#define DO_UQXTN_H(n) do_sat_bhs(n, 0, UINT8_MAX)
#define DO_UQXTN_S(n) do_sat_bhs(n, 0, UINT16_MAX)
#define DO_UQXTN_D(n) do_sat_bhs(n, 0, UINT32_MAX)
DO_XTNB(sve2_uqxtnb_h, uint16_t, DO_UQXTN_H)
DO_XTNB(sve2_uqxtnb_s, uint32_t, DO_UQXTN_S)
DO_XTNB(sve2_uqxtnb_d, uint64_t, DO_UQXTN_D)
DO_XTNT(sve2_uqxtnt_h, uint16_t, uint8_t, H1, DO_UQXTN_H)
DO_XTNT(sve2_uqxtnt_s, uint32_t, uint16_t, H1_2, DO_UQXTN_S)
DO_XTNT(sve2_uqxtnt_d, uint64_t, uint32_t, H1_4, DO_UQXTN_D)
DO_XTNB(sve2_sqxtunb_h, int16_t, DO_UQXTN_H)
DO_XTNB(sve2_sqxtunb_s, int32_t, DO_UQXTN_S)
DO_XTNB(sve2_sqxtunb_d, int64_t, DO_UQXTN_D)
DO_XTNT(sve2_sqxtunt_h, int16_t, int8_t, H1, DO_UQXTN_H)
DO_XTNT(sve2_sqxtunt_s, int32_t, int16_t, H1_2, DO_UQXTN_S)
DO_XTNT(sve2_sqxtunt_d, int64_t, int32_t, H1_4, DO_UQXTN_D)
#undef DO_XTNB
#undef DO_XTNT
void HELPER(sve2_adcl_s)(void *vd, void *vn, void *vm, void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int sel = H4(extract32(desc, SIMD_DATA_SHIFT, 1));
uint32_t inv = -extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint32_t *a = va, *n = vn;
uint64_t *d = vd, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
uint32_t e1 = a[2 * i + H4(0)];
uint32_t e2 = n[2 * i + sel] ^ inv;
uint64_t c = extract64(m[i], 32, 1);
/* Compute and store the entire 33-bit result at once. */
d[i] = c + e1 + e2;
}
}
void HELPER(sve2_adcl_d)(void *vd, void *vn, void *vm, void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int sel = extract32(desc, SIMD_DATA_SHIFT, 1);
uint64_t inv = -(uint64_t)extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint64_t *d = vd, *a = va, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; i += 2) {
Int128 e1 = int128_make64(a[i]);
Int128 e2 = int128_make64(n[i + sel] ^ inv);
Int128 c = int128_make64(m[i + 1] & 1);
Int128 r = int128_add(int128_add(e1, e2), c);
d[i + 0] = int128_getlo(r);
d[i + 1] = int128_gethi(r);
}
}
#define DO_SQDMLAL(NAME, TYPEW, TYPEN, HW, HN, DMUL_OP, SUM_OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \
int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEN *)(vn + HN(i + sel1)); \
TYPEW mm = *(TYPEN *)(vm + HN(i + sel2)); \
TYPEW aa = *(TYPEW *)(va + HW(i)); \
*(TYPEW *)(vd + HW(i)) = SUM_OP(aa, DMUL_OP(nn, mm)); \
} \
}
DO_SQDMLAL(sve2_sqdmlal_zzzw_h, int16_t, int8_t, H1_2, H1,
do_sqdmull_h, DO_SQADD_H)
DO_SQDMLAL(sve2_sqdmlal_zzzw_s, int32_t, int16_t, H1_4, H1_2,
do_sqdmull_s, DO_SQADD_S)
DO_SQDMLAL(sve2_sqdmlal_zzzw_d, int64_t, int32_t, H1_8, H1_4,
do_sqdmull_d, do_sqadd_d)
DO_SQDMLAL(sve2_sqdmlsl_zzzw_h, int16_t, int8_t, H1_2, H1,
do_sqdmull_h, DO_SQSUB_H)
DO_SQDMLAL(sve2_sqdmlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2,
do_sqdmull_s, DO_SQSUB_S)
DO_SQDMLAL(sve2_sqdmlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4,
do_sqdmull_d, do_sqsub_d)
#undef DO_SQDMLAL
#define DO_CMLA_FUNC(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \
int rot = simd_data(desc); \
int sel_a = rot & 1, sel_b = sel_a ^ 1; \
bool sub_r = rot == 1 || rot == 2; \
bool sub_i = rot >= 2; \
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
for (i = 0; i < opr_sz; i += 2) { \
TYPE elt1_a = n[H(i + sel_a)]; \
TYPE elt2_a = m[H(i + sel_a)]; \
TYPE elt2_b = m[H(i + sel_b)]; \
d[H(i)] = OP(elt1_a, elt2_a, a[H(i)], sub_r); \
d[H(i + 1)] = OP(elt1_a, elt2_b, a[H(i + 1)], sub_i); \
} \
}
#define DO_CMLA(N, M, A, S) (A + (N * M) * (S ? -1 : 1))
DO_CMLA_FUNC(sve2_cmla_zzzz_b, uint8_t, H1, DO_CMLA)
DO_CMLA_FUNC(sve2_cmla_zzzz_h, uint16_t, H2, DO_CMLA)
DO_CMLA_FUNC(sve2_cmla_zzzz_s, uint32_t, H4, DO_CMLA)
DO_CMLA_FUNC(sve2_cmla_zzzz_d, uint64_t, H8, DO_CMLA)
#define DO_SQRDMLAH_B(N, M, A, S) \
do_sqrdmlah_b(N, M, A, S, true)
#define DO_SQRDMLAH_H(N, M, A, S) \
({ uint32_t discard; do_sqrdmlah_h(N, M, A, S, true, &discard); })
#define DO_SQRDMLAH_S(N, M, A, S) \
({ uint32_t discard; do_sqrdmlah_s(N, M, A, S, true, &discard); })
#define DO_SQRDMLAH_D(N, M, A, S) \
do_sqrdmlah_d(N, M, A, S, true)
DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_b, int8_t, H1, DO_SQRDMLAH_B)
DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_h, int16_t, H2, DO_SQRDMLAH_H)
DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_s, int32_t, H4, DO_SQRDMLAH_S)
DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_d, int64_t, H8, DO_SQRDMLAH_D)
#define DO_CMLA_IDX_FUNC(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
int rot = extract32(desc, SIMD_DATA_SHIFT, 2); \
int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2) * 2; \
int sel_a = rot & 1, sel_b = sel_a ^ 1; \
bool sub_r = rot == 1 || rot == 2; \
bool sub_i = rot >= 2; \
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
for (i = 0; i < oprsz / sizeof(TYPE); i += 16 / sizeof(TYPE)) { \
TYPE elt2_a = m[H(i + idx + sel_a)]; \
TYPE elt2_b = m[H(i + idx + sel_b)]; \
for (j = 0; j < 16 / sizeof(TYPE); j += 2) { \
TYPE elt1_a = n[H(i + j + sel_a)]; \
d[H2(i + j)] = OP(elt1_a, elt2_a, a[H(i + j)], sub_r); \
d[H2(i + j + 1)] = OP(elt1_a, elt2_b, a[H(i + j + 1)], sub_i); \
} \
} \
}
DO_CMLA_IDX_FUNC(sve2_cmla_idx_h, int16_t, H2, DO_CMLA)
DO_CMLA_IDX_FUNC(sve2_cmla_idx_s, int32_t, H4, DO_CMLA)
DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H)
DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S)
#undef DO_CMLA
#undef DO_CMLA_FUNC
#undef DO_CMLA_IDX_FUNC
#undef DO_SQRDMLAH_B
#undef DO_SQRDMLAH_H
#undef DO_SQRDMLAH_S
#undef DO_SQRDMLAH_D
/* Note N and M are 4 elements bundled into one unit. */
static int32_t do_cdot_s(uint32_t n, uint32_t m, int32_t a,
int sel_a, int sel_b, int sub_i)
{
for (int i = 0; i <= 1; i++) {
int32_t elt1_r = (int8_t)(n >> (16 * i));
int32_t elt1_i = (int8_t)(n >> (16 * i + 8));
int32_t elt2_a = (int8_t)(m >> (16 * i + 8 * sel_a));
int32_t elt2_b = (int8_t)(m >> (16 * i + 8 * sel_b));
a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i;
}
return a;
}
static int64_t do_cdot_d(uint64_t n, uint64_t m, int64_t a,
int sel_a, int sel_b, int sub_i)
{
for (int i = 0; i <= 1; i++) {
int64_t elt1_r = (int16_t)(n >> (32 * i + 0));
int64_t elt1_i = (int16_t)(n >> (32 * i + 16));
int64_t elt2_a = (int16_t)(m >> (32 * i + 16 * sel_a));
int64_t elt2_b = (int16_t)(m >> (32 * i + 16 * sel_b));
a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i;
}
return a;
}
void HELPER(sve2_cdot_zzzz_s)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
int opr_sz = simd_oprsz(desc);
int rot = simd_data(desc);
int sel_a = rot & 1;
int sel_b = sel_a ^ 1;
int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
uint32_t *d = vd, *n = vn, *m = vm, *a = va;
for (int e = 0; e < opr_sz / 4; e++) {
d[e] = do_cdot_s(n[e], m[e], a[e], sel_a, sel_b, sub_i);
}
}
void HELPER(sve2_cdot_zzzz_d)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
int opr_sz = simd_oprsz(desc);
int rot = simd_data(desc);
int sel_a = rot & 1;
int sel_b = sel_a ^ 1;
int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
uint64_t *d = vd, *n = vn, *m = vm, *a = va;
for (int e = 0; e < opr_sz / 8; e++) {
d[e] = do_cdot_d(n[e], m[e], a[e], sel_a, sel_b, sub_i);
}
}
void HELPER(sve2_cdot_idx_s)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
int opr_sz = simd_oprsz(desc);
int rot = extract32(desc, SIMD_DATA_SHIFT, 2);
int idx = H4(extract32(desc, SIMD_DATA_SHIFT + 2, 2));
int sel_a = rot & 1;
int sel_b = sel_a ^ 1;
int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
uint32_t *d = vd, *n = vn, *m = vm, *a = va;
for (int seg = 0; seg < opr_sz / 4; seg += 4) {
uint32_t seg_m = m[seg + idx];
for (int e = 0; e < 4; e++) {
d[seg + e] = do_cdot_s(n[seg + e], seg_m, a[seg + e],
sel_a, sel_b, sub_i);
}
}
}
void HELPER(sve2_cdot_idx_d)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
int seg, opr_sz = simd_oprsz(desc);
int rot = extract32(desc, SIMD_DATA_SHIFT, 2);
int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
int sel_a = rot & 1;
int sel_b = sel_a ^ 1;
int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
uint64_t *d = vd, *n = vn, *m = vm, *a = va;
for (seg = 0; seg < opr_sz / 8; seg += 2) {
uint64_t seg_m = m[seg + idx];
for (int e = 0; e < 2; e++) {
d[seg + e] = do_cdot_d(n[seg + e], seg_m, a[seg + e],
sel_a, sel_b, sub_i);
}
}
}
#define DO_ZZXZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE); \
intptr_t i, j, idx = simd_data(desc); \
TYPE *d = vd, *a = va, *n = vn, *m = (TYPE *)vm + H(idx); \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[i]; \
for (j = 0; j < segment; j++) { \
d[i + j] = OP(n[i + j], mm, a[i + j]); \
} \
} \
}
#define DO_SQRDMLAH_H(N, M, A) \
({ uint32_t discard; do_sqrdmlah_h(N, M, A, false, true, &discard); })
#define DO_SQRDMLAH_S(N, M, A) \
({ uint32_t discard; do_sqrdmlah_s(N, M, A, false, true, &discard); })
#define DO_SQRDMLAH_D(N, M, A) do_sqrdmlah_d(N, M, A, false, true)
DO_ZZXZ(sve2_sqrdmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H)
DO_ZZXZ(sve2_sqrdmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S)
DO_ZZXZ(sve2_sqrdmlah_idx_d, int64_t, H8, DO_SQRDMLAH_D)
#define DO_SQRDMLSH_H(N, M, A) \
({ uint32_t discard; do_sqrdmlah_h(N, M, A, true, true, &discard); })
#define DO_SQRDMLSH_S(N, M, A) \
({ uint32_t discard; do_sqrdmlah_s(N, M, A, true, true, &discard); })
#define DO_SQRDMLSH_D(N, M, A) do_sqrdmlah_d(N, M, A, true, true)
DO_ZZXZ(sve2_sqrdmlsh_idx_h, int16_t, H2, DO_SQRDMLSH_H)
DO_ZZXZ(sve2_sqrdmlsh_idx_s, int32_t, H4, DO_SQRDMLSH_S)
DO_ZZXZ(sve2_sqrdmlsh_idx_d, int64_t, H8, DO_SQRDMLSH_D)
#undef DO_ZZXZ
#define DO_ZZXW(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \
intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \
for (i = 0; i < oprsz; i += 16) { \
TYPEW mm = *(TYPEN *)(vm + HN(i + idx)); \
for (j = 0; j < 16; j += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel)); \
TYPEW aa = *(TYPEW *)(va + HW(i + j)); \
*(TYPEW *)(vd + HW(i + j)) = OP(nn, mm, aa); \
} \
} \
}
#define DO_MLA(N, M, A) (A + N * M)
DO_ZZXW(sve2_smlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLA)
DO_ZZXW(sve2_smlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLA)
DO_ZZXW(sve2_umlal_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLA)
DO_ZZXW(sve2_umlal_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLA)
#define DO_MLS(N, M, A) (A - N * M)
DO_ZZXW(sve2_smlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLS)
DO_ZZXW(sve2_smlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLS)
DO_ZZXW(sve2_umlsl_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLS)
DO_ZZXW(sve2_umlsl_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLS)
#define DO_SQDMLAL_S(N, M, A) DO_SQADD_S(A, do_sqdmull_s(N, M))
#define DO_SQDMLAL_D(N, M, A) do_sqadd_d(A, do_sqdmull_d(N, M))
DO_ZZXW(sve2_sqdmlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLAL_S)
DO_ZZXW(sve2_sqdmlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLAL_D)
#define DO_SQDMLSL_S(N, M, A) DO_SQSUB_S(A, do_sqdmull_s(N, M))
#define DO_SQDMLSL_D(N, M, A) do_sqsub_d(A, do_sqdmull_d(N, M))
DO_ZZXW(sve2_sqdmlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLSL_S)
DO_ZZXW(sve2_sqdmlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLSL_D)
#undef DO_MLA
#undef DO_MLS
#undef DO_ZZXW
#define DO_ZZX(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \
intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \
for (i = 0; i < oprsz; i += 16) { \
TYPEW mm = *(TYPEN *)(vm + HN(i + idx)); \
for (j = 0; j < 16; j += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel)); \
*(TYPEW *)(vd + HW(i + j)) = OP(nn, mm); \
} \
} \
}
DO_ZZX(sve2_sqdmull_idx_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s)
DO_ZZX(sve2_sqdmull_idx_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d)
DO_ZZX(sve2_smull_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MUL)
DO_ZZX(sve2_smull_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MUL)
DO_ZZX(sve2_umull_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL)
DO_ZZX(sve2_umull_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL)
#undef DO_ZZX
#define DO_BITPERM(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
TYPE nn = *(TYPE *)(vn + i); \
TYPE mm = *(TYPE *)(vm + i); \
*(TYPE *)(vd + i) = OP(nn, mm, sizeof(TYPE) * 8); \
} \
}
static uint64_t bitextract(uint64_t data, uint64_t mask, int n)
{
uint64_t res = 0;
int db, rb = 0;
for (db = 0; db < n; ++db) {
if ((mask >> db) & 1) {
res |= ((data >> db) & 1) << rb;
++rb;
}
}
return res;
}
DO_BITPERM(sve2_bext_b, uint8_t, bitextract)
DO_BITPERM(sve2_bext_h, uint16_t, bitextract)
DO_BITPERM(sve2_bext_s, uint32_t, bitextract)
DO_BITPERM(sve2_bext_d, uint64_t, bitextract)
static uint64_t bitdeposit(uint64_t data, uint64_t mask, int n)
{
uint64_t res = 0;
int rb, db = 0;
for (rb = 0; rb < n; ++rb) {
if ((mask >> rb) & 1) {
res |= ((data >> db) & 1) << rb;
++db;
}
}
return res;
}
DO_BITPERM(sve2_bdep_b, uint8_t, bitdeposit)
DO_BITPERM(sve2_bdep_h, uint16_t, bitdeposit)
DO_BITPERM(sve2_bdep_s, uint32_t, bitdeposit)
DO_BITPERM(sve2_bdep_d, uint64_t, bitdeposit)
static uint64_t bitgroup(uint64_t data, uint64_t mask, int n)
{
uint64_t resm = 0, resu = 0;
int db, rbm = 0, rbu = 0;
for (db = 0; db < n; ++db) {
uint64_t val = (data >> db) & 1;
if ((mask >> db) & 1) {
resm |= val << rbm++;
} else {
resu |= val << rbu++;
}
}
return resm | (resu << rbm);
}
DO_BITPERM(sve2_bgrp_b, uint8_t, bitgroup)
DO_BITPERM(sve2_bgrp_h, uint16_t, bitgroup)
DO_BITPERM(sve2_bgrp_s, uint32_t, bitgroup)
DO_BITPERM(sve2_bgrp_d, uint64_t, bitgroup)
#undef DO_BITPERM
#define DO_CADD(NAME, TYPE, H, ADD_OP, SUB_OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
int sub_r = simd_data(desc); \
if (sub_r) { \
for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \
TYPE acc_r = *(TYPE *)(vn + H(i)); \
TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE))); \
TYPE el2_r = *(TYPE *)(vm + H(i)); \
TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE))); \
acc_r = ADD_OP(acc_r, el2_i); \
acc_i = SUB_OP(acc_i, el2_r); \
*(TYPE *)(vd + H(i)) = acc_r; \
*(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i; \
} \
} else { \
for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) { \
TYPE acc_r = *(TYPE *)(vn + H(i)); \
TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE))); \
TYPE el2_r = *(TYPE *)(vm + H(i)); \
TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE))); \
acc_r = SUB_OP(acc_r, el2_i); \
acc_i = ADD_OP(acc_i, el2_r); \
*(TYPE *)(vd + H(i)) = acc_r; \
*(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i; \
} \
} \
}
DO_CADD(sve2_cadd_b, int8_t, H1, DO_ADD, DO_SUB)
DO_CADD(sve2_cadd_h, int16_t, H1_2, DO_ADD, DO_SUB)
DO_CADD(sve2_cadd_s, int32_t, H1_4, DO_ADD, DO_SUB)
DO_CADD(sve2_cadd_d, int64_t, H1_8, DO_ADD, DO_SUB)
DO_CADD(sve2_sqcadd_b, int8_t, H1, DO_SQADD_B, DO_SQSUB_B)
DO_CADD(sve2_sqcadd_h, int16_t, H1_2, DO_SQADD_H, DO_SQSUB_H)
DO_CADD(sve2_sqcadd_s, int32_t, H1_4, DO_SQADD_S, DO_SQSUB_S)
DO_CADD(sve2_sqcadd_d, int64_t, H1_8, do_sqadd_d, do_sqsub_d)
#undef DO_CADD
#define DO_ZZI_SHLL(NAME, TYPEW, TYPEN, HW, HN) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
intptr_t sel = (simd_data(desc) & 1) * sizeof(TYPEN); \
int shift = simd_data(desc) >> 1; \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEN *)(vn + HN(i + sel)); \
*(TYPEW *)(vd + HW(i)) = nn << shift; \
} \
}
DO_ZZI_SHLL(sve2_sshll_h, int16_t, int8_t, H1_2, H1)
DO_ZZI_SHLL(sve2_sshll_s, int32_t, int16_t, H1_4, H1_2)
DO_ZZI_SHLL(sve2_sshll_d, int64_t, int32_t, H1_8, H1_4)
DO_ZZI_SHLL(sve2_ushll_h, uint16_t, uint8_t, H1_2, H1)
DO_ZZI_SHLL(sve2_ushll_s, uint32_t, uint16_t, H1_4, H1_2)
DO_ZZI_SHLL(sve2_ushll_d, uint64_t, uint32_t, H1_8, H1_4)
#undef DO_ZZI_SHLL
/* Two-operand reduction expander, controlled by a predicate.
* The difference between TYPERED and TYPERET has to do with
* sign-extension. E.g. for SMAX, TYPERED must be signed,
* but TYPERET must be unsigned so that e.g. a 32-bit value
* is not sign-extended to the ABI uint64_t return type.
*/
/* ??? If we were to vectorize this by hand the reduction ordering
* would change. For integer operands, this is perfectly fine.
*/
#define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPERED ret = INIT; \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPEELT nn = *(TYPEELT *)(vn + H(i)); \
ret = OP(ret, nn); \
} \
i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \
} while (i & 15); \
} \
return (TYPERET)ret; \
}
#define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPEE *n = vn; \
uint8_t *pg = vg; \
TYPER ret = INIT; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPEE nn = n[i]; \
ret = OP(ret, nn); \
} \
} \
return ret; \
}
DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
#undef DO_VPZ
#undef DO_VPZ_D
/* Two vector operand, one scalar operand, unpredicated. */
#define DO_ZZI(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \
TYPE s = s64, *d = vd, *n = vn; \
for (i = 0; i < opr_sz; ++i) { \
d[i] = OP(n[i], s); \
} \
}
#define DO_SUBR(X, Y) (Y - X)
DO_ZZI(sve_subri_b, uint8_t, DO_SUBR)
DO_ZZI(sve_subri_h, uint16_t, DO_SUBR)
DO_ZZI(sve_subri_s, uint32_t, DO_SUBR)
DO_ZZI(sve_subri_d, uint64_t, DO_SUBR)
DO_ZZI(sve_smaxi_b, int8_t, DO_MAX)
DO_ZZI(sve_smaxi_h, int16_t, DO_MAX)
DO_ZZI(sve_smaxi_s, int32_t, DO_MAX)
DO_ZZI(sve_smaxi_d, int64_t, DO_MAX)
DO_ZZI(sve_smini_b, int8_t, DO_MIN)
DO_ZZI(sve_smini_h, int16_t, DO_MIN)
DO_ZZI(sve_smini_s, int32_t, DO_MIN)
DO_ZZI(sve_smini_d, int64_t, DO_MIN)
DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX)
DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX)
DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX)
DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX)
DO_ZZI(sve_umini_b, uint8_t, DO_MIN)
DO_ZZI(sve_umini_h, uint16_t, DO_MIN)
DO_ZZI(sve_umini_s, uint32_t, DO_MIN)
DO_ZZI(sve_umini_d, uint64_t, DO_MIN)
#undef DO_ZZI
#undef DO_AND
#undef DO_ORR
#undef DO_EOR
#undef DO_BIC
#undef DO_ADD
#undef DO_SUB
#undef DO_MAX
#undef DO_MIN
#undef DO_ABD
#undef DO_MUL
#undef DO_DIV
#undef DO_ASR
#undef DO_LSR
#undef DO_LSL
#undef DO_SUBR
/* Similar to the ARM LastActiveElement pseudocode function, except the
result is multiplied by the element size. This includes the not found
indication; e.g. not found for esz=3 is -8. */
static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
{
uint64_t mask = pred_esz_masks[esz];
intptr_t i = words;
do {
uint64_t this_g = g[--i] & mask;
if (this_g) {
return i * 64 + (63 - clz64(this_g));
}
} while (i > 0);
return (intptr_t)-1 << esz;
}
uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t pred_desc)
{
intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg;
intptr_t i = 0;
do {
uint64_t this_d = d[i];
uint64_t this_g = g[i];
if (this_g) {
if (!(flags & 4)) {
/* Set in D the first bit of G. */
this_d |= this_g & -this_g;
d[i] = this_d;
}
flags = iter_predtest_fwd(this_d, this_g, flags);
}
} while (++i < words);
return flags;
}
uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
{
intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg, esz_mask;
intptr_t i, next;
next = last_active_element(vd, words, esz) + (1 << esz);
esz_mask = pred_esz_masks[esz];
/* Similar to the pseudocode for pnext, but scaled by ESZ
so that we find the correct bit. */
if (next < words * 64) {
uint64_t mask = -1;
if (next & 63) {
mask = ~((1ull << (next & 63)) - 1);
next &= -64;
}
do {
uint64_t this_g = g[next / 64] & esz_mask & mask;
if (this_g != 0) {
next = (next & -64) + ctz64(this_g);
break;
}
next += 64;
mask = -1;
} while (next < words * 64);
}
i = 0;
do {
uint64_t this_d = 0;
if (i == next / 64) {
this_d = 1ull << (next & 63);
}
d[i] = this_d;
flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
} while (++i < words);
return flags;
}
/*
* Copy Zn into Zd, and store zero into inactive elements.
* If inv, store zeros into the active elements.
*/
void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] & (expand_pred_b(pg[H1(i)]) ^ inv);
}
}
void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] & (expand_pred_h(pg[H1(i)]) ^ inv);
}
}
void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] & (expand_pred_s(pg[H1(i)]) ^ inv);
}
}
void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
uint8_t inv = simd_data(desc);
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] & -(uint64_t)((pg[H1(i)] ^ inv) & 1);
}
}
/* Three-operand expander, immediate operand, controlled by a predicate.
*/
#define DO_ZPZI(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPE imm = simd_data(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, imm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZI_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *n = vn; \
TYPE imm = simd_data(desc); \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE nn = n[i]; \
d[i] = OP(nn, imm); \
} \
} \
}
#define DO_SHR(N, M) (N >> M)
#define DO_SHL(N, M) (N << M)
/* Arithmetic shift right for division. This rounds negative numbers
toward zero as per signed division. Therefore before shifting,
when N is negative, add 2**M-1. */
#define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
static inline uint64_t do_urshr(uint64_t x, unsigned sh)
{
if (likely(sh < 64)) {
return (x >> sh) + ((x >> (sh - 1)) & 1);
} else if (sh == 64) {
return x >> 63;
} else {
return 0;
}
}
static inline int64_t do_srshr(int64_t x, unsigned sh)
{
if (likely(sh < 64)) {
return (x >> sh) + ((x >> (sh - 1)) & 1);
} else {
/* Rounding the sign bit always produces 0. */
return 0;
}
}
DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
/* SVE2 bitwise shift by immediate */
DO_ZPZI(sve2_sqshl_zpzi_b, int8_t, H1, do_sqshl_b)
DO_ZPZI(sve2_sqshl_zpzi_h, int16_t, H1_2, do_sqshl_h)
DO_ZPZI(sve2_sqshl_zpzi_s, int32_t, H1_4, do_sqshl_s)
DO_ZPZI_D(sve2_sqshl_zpzi_d, int64_t, do_sqshl_d)
DO_ZPZI(sve2_uqshl_zpzi_b, uint8_t, H1, do_uqshl_b)
DO_ZPZI(sve2_uqshl_zpzi_h, uint16_t, H1_2, do_uqshl_h)
DO_ZPZI(sve2_uqshl_zpzi_s, uint32_t, H1_4, do_uqshl_s)
DO_ZPZI_D(sve2_uqshl_zpzi_d, uint64_t, do_uqshl_d)
DO_ZPZI(sve2_srshr_b, int8_t, H1, do_srshr)
DO_ZPZI(sve2_srshr_h, int16_t, H1_2, do_srshr)
DO_ZPZI(sve2_srshr_s, int32_t, H1_4, do_srshr)
DO_ZPZI_D(sve2_srshr_d, int64_t, do_srshr)
DO_ZPZI(sve2_urshr_b, uint8_t, H1, do_urshr)
DO_ZPZI(sve2_urshr_h, uint16_t, H1_2, do_urshr)
DO_ZPZI(sve2_urshr_s, uint32_t, H1_4, do_urshr)
DO_ZPZI_D(sve2_urshr_d, uint64_t, do_urshr)
#define do_suqrshl_b(n, m) \
({ uint32_t discard; do_suqrshl_bhs(n, (int8_t)m, 8, false, &discard); })
#define do_suqrshl_h(n, m) \
({ uint32_t discard; do_suqrshl_bhs(n, (int16_t)m, 16, false, &discard); })
#define do_suqrshl_s(n, m) \
({ uint32_t discard; do_suqrshl_bhs(n, m, 32, false, &discard); })
#define do_suqrshl_d(n, m) \
({ uint32_t discard; do_suqrshl_d(n, m, false, &discard); })
DO_ZPZI(sve2_sqshlu_b, int8_t, H1, do_suqrshl_b)
DO_ZPZI(sve2_sqshlu_h, int16_t, H1_2, do_suqrshl_h)
DO_ZPZI(sve2_sqshlu_s, int32_t, H1_4, do_suqrshl_s)
DO_ZPZI_D(sve2_sqshlu_d, int64_t, do_suqrshl_d)
#undef DO_ASRD
#undef DO_ZPZI
#undef DO_ZPZI_D
#define DO_SHRNB(NAME, TYPEW, TYPEN, OP) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
int shift = simd_data(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEW *)(vn + i); \
*(TYPEW *)(vd + i) = (TYPEN)OP(nn, shift); \
} \
}
#define DO_SHRNT(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
int shift = simd_data(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEW *)(vn + HW(i)); \
*(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, shift); \
} \
}
DO_SHRNB(sve2_shrnb_h, uint16_t, uint8_t, DO_SHR)
DO_SHRNB(sve2_shrnb_s, uint32_t, uint16_t, DO_SHR)
DO_SHRNB(sve2_shrnb_d, uint64_t, uint32_t, DO_SHR)
DO_SHRNT(sve2_shrnt_h, uint16_t, uint8_t, H1_2, H1, DO_SHR)
DO_SHRNT(sve2_shrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_SHR)
DO_SHRNT(sve2_shrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_SHR)
DO_SHRNB(sve2_rshrnb_h, uint16_t, uint8_t, do_urshr)
DO_SHRNB(sve2_rshrnb_s, uint32_t, uint16_t, do_urshr)
DO_SHRNB(sve2_rshrnb_d, uint64_t, uint32_t, do_urshr)
DO_SHRNT(sve2_rshrnt_h, uint16_t, uint8_t, H1_2, H1, do_urshr)
DO_SHRNT(sve2_rshrnt_s, uint32_t, uint16_t, H1_4, H1_2, do_urshr)
DO_SHRNT(sve2_rshrnt_d, uint64_t, uint32_t, H1_8, H1_4, do_urshr)
#define DO_SQSHRUN_H(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT8_MAX)
#define DO_SQSHRUN_S(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT16_MAX)
#define DO_SQSHRUN_D(x, sh) \
do_sat_bhs((int64_t)(x) >> (sh < 64 ? sh : 63), 0, UINT32_MAX)
DO_SHRNB(sve2_sqshrunb_h, int16_t, uint8_t, DO_SQSHRUN_H)
DO_SHRNB(sve2_sqshrunb_s, int32_t, uint16_t, DO_SQSHRUN_S)
DO_SHRNB(sve2_sqshrunb_d, int64_t, uint32_t, DO_SQSHRUN_D)
DO_SHRNT(sve2_sqshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRUN_H)
DO_SHRNT(sve2_sqshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRUN_S)
DO_SHRNT(sve2_sqshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRUN_D)
#define DO_SQRSHRUN_H(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT8_MAX)
#define DO_SQRSHRUN_S(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT16_MAX)
#define DO_SQRSHRUN_D(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT32_MAX)
DO_SHRNB(sve2_sqrshrunb_h, int16_t, uint8_t, DO_SQRSHRUN_H)
DO_SHRNB(sve2_sqrshrunb_s, int32_t, uint16_t, DO_SQRSHRUN_S)
DO_SHRNB(sve2_sqrshrunb_d, int64_t, uint32_t, DO_SQRSHRUN_D)
DO_SHRNT(sve2_sqrshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRUN_H)
DO_SHRNT(sve2_sqrshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRUN_S)
DO_SHRNT(sve2_sqrshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRUN_D)
#define DO_SQSHRN_H(x, sh) do_sat_bhs(x >> sh, INT8_MIN, INT8_MAX)
#define DO_SQSHRN_S(x, sh) do_sat_bhs(x >> sh, INT16_MIN, INT16_MAX)
#define DO_SQSHRN_D(x, sh) do_sat_bhs(x >> sh, INT32_MIN, INT32_MAX)
DO_SHRNB(sve2_sqshrnb_h, int16_t, uint8_t, DO_SQSHRN_H)
DO_SHRNB(sve2_sqshrnb_s, int32_t, uint16_t, DO_SQSHRN_S)
DO_SHRNB(sve2_sqshrnb_d, int64_t, uint32_t, DO_SQSHRN_D)
DO_SHRNT(sve2_sqshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRN_H)
DO_SHRNT(sve2_sqshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRN_S)
DO_SHRNT(sve2_sqshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRN_D)
#define DO_SQRSHRN_H(x, sh) do_sat_bhs(do_srshr(x, sh), INT8_MIN, INT8_MAX)
#define DO_SQRSHRN_S(x, sh) do_sat_bhs(do_srshr(x, sh), INT16_MIN, INT16_MAX)
#define DO_SQRSHRN_D(x, sh) do_sat_bhs(do_srshr(x, sh), INT32_MIN, INT32_MAX)
DO_SHRNB(sve2_sqrshrnb_h, int16_t, uint8_t, DO_SQRSHRN_H)
DO_SHRNB(sve2_sqrshrnb_s, int32_t, uint16_t, DO_SQRSHRN_S)
DO_SHRNB(sve2_sqrshrnb_d, int64_t, uint32_t, DO_SQRSHRN_D)
DO_SHRNT(sve2_sqrshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRN_H)
DO_SHRNT(sve2_sqrshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRN_S)
DO_SHRNT(sve2_sqrshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRN_D)
#define DO_UQSHRN_H(x, sh) MIN(x >> sh, UINT8_MAX)
#define DO_UQSHRN_S(x, sh) MIN(x >> sh, UINT16_MAX)
#define DO_UQSHRN_D(x, sh) MIN(x >> sh, UINT32_MAX)
DO_SHRNB(sve2_uqshrnb_h, uint16_t, uint8_t, DO_UQSHRN_H)
DO_SHRNB(sve2_uqshrnb_s, uint32_t, uint16_t, DO_UQSHRN_S)
DO_SHRNB(sve2_uqshrnb_d, uint64_t, uint32_t, DO_UQSHRN_D)
DO_SHRNT(sve2_uqshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQSHRN_H)
DO_SHRNT(sve2_uqshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQSHRN_S)
DO_SHRNT(sve2_uqshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQSHRN_D)
#define DO_UQRSHRN_H(x, sh) MIN(do_urshr(x, sh), UINT8_MAX)
#define DO_UQRSHRN_S(x, sh) MIN(do_urshr(x, sh), UINT16_MAX)
#define DO_UQRSHRN_D(x, sh) MIN(do_urshr(x, sh), UINT32_MAX)
DO_SHRNB(sve2_uqrshrnb_h, uint16_t, uint8_t, DO_UQRSHRN_H)
DO_SHRNB(sve2_uqrshrnb_s, uint32_t, uint16_t, DO_UQRSHRN_S)
DO_SHRNB(sve2_uqrshrnb_d, uint64_t, uint32_t, DO_UQRSHRN_D)
DO_SHRNT(sve2_uqrshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQRSHRN_H)
DO_SHRNT(sve2_uqrshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQRSHRN_S)
DO_SHRNT(sve2_uqrshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQRSHRN_D)
#undef DO_SHRNB
#undef DO_SHRNT
#define DO_BINOPNB(NAME, TYPEW, TYPEN, SHIFT, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEW *)(vn + i); \
TYPEW mm = *(TYPEW *)(vm + i); \
*(TYPEW *)(vd + i) = (TYPEN)OP(nn, mm, SHIFT); \
} \
}
#define DO_BINOPNT(NAME, TYPEW, TYPEN, SHIFT, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPEW)) { \
TYPEW nn = *(TYPEW *)(vn + HW(i)); \
TYPEW mm = *(TYPEW *)(vm + HW(i)); \
*(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, mm, SHIFT); \
} \
}
#define DO_ADDHN(N, M, SH) ((N + M) >> SH)
#define DO_RADDHN(N, M, SH) ((N + M + ((__typeof(N))1 << (SH - 1))) >> SH)
#define DO_SUBHN(N, M, SH) ((N - M) >> SH)
#define DO_RSUBHN(N, M, SH) ((N - M + ((__typeof(N))1 << (SH - 1))) >> SH)
DO_BINOPNB(sve2_addhnb_h, uint16_t, uint8_t, 8, DO_ADDHN)
DO_BINOPNB(sve2_addhnb_s, uint32_t, uint16_t, 16, DO_ADDHN)
DO_BINOPNB(sve2_addhnb_d, uint64_t, uint32_t, 32, DO_ADDHN)
DO_BINOPNT(sve2_addhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_ADDHN)
DO_BINOPNT(sve2_addhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_ADDHN)
DO_BINOPNT(sve2_addhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_ADDHN)
DO_BINOPNB(sve2_raddhnb_h, uint16_t, uint8_t, 8, DO_RADDHN)
DO_BINOPNB(sve2_raddhnb_s, uint32_t, uint16_t, 16, DO_RADDHN)
DO_BINOPNB(sve2_raddhnb_d, uint64_t, uint32_t, 32, DO_RADDHN)
DO_BINOPNT(sve2_raddhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RADDHN)
DO_BINOPNT(sve2_raddhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RADDHN)
DO_BINOPNT(sve2_raddhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RADDHN)
DO_BINOPNB(sve2_subhnb_h, uint16_t, uint8_t, 8, DO_SUBHN)
DO_BINOPNB(sve2_subhnb_s, uint32_t, uint16_t, 16, DO_SUBHN)
DO_BINOPNB(sve2_subhnb_d, uint64_t, uint32_t, 32, DO_SUBHN)
DO_BINOPNT(sve2_subhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_SUBHN)
DO_BINOPNT(sve2_subhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_SUBHN)
DO_BINOPNT(sve2_subhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_SUBHN)
DO_BINOPNB(sve2_rsubhnb_h, uint16_t, uint8_t, 8, DO_RSUBHN)
DO_BINOPNB(sve2_rsubhnb_s, uint32_t, uint16_t, 16, DO_RSUBHN)
DO_BINOPNB(sve2_rsubhnb_d, uint64_t, uint32_t, 32, DO_RSUBHN)
DO_BINOPNT(sve2_rsubhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RSUBHN)
DO_BINOPNT(sve2_rsubhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RSUBHN)
DO_BINOPNT(sve2_rsubhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RSUBHN)
#undef DO_RSUBHN
#undef DO_SUBHN
#undef DO_RADDHN
#undef DO_ADDHN
#undef DO_BINOPNB
/* Fully general four-operand expander, controlled by a predicate.
*/
#define DO_ZPZZZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
TYPE mm = *(TYPE *)(vm + H(i)); \
TYPE aa = *(TYPE *)(va + H(i)); \
*(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZZZ_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *a = va, *n = vn, *m = vm; \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE aa = a[i], nn = n[i], mm = m[i]; \
d[i] = OP(aa, nn, mm); \
} \
} \
}
#define DO_MLA(A, N, M) (A + N * M)
#define DO_MLS(A, N, M) (A - N * M)
DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
#undef DO_MLA
#undef DO_MLS
#undef DO_ZPZZZ
#undef DO_ZPZZZ_D
void HELPER(sve_index_b)(void *vd, uint32_t start,
uint32_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint8_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[H1(i)] = start + i * incr;
}
}
void HELPER(sve_index_h)(void *vd, uint32_t start,
uint32_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
uint16_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[H2(i)] = start + i * incr;
}
}
void HELPER(sve_index_s)(void *vd, uint32_t start,
uint32_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[H4(i)] = start + i * incr;
}
}
void HELPER(sve_index_d)(void *vd, uint64_t start,
uint64_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[i] = start + i * incr;
}
}
void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t sh = simd_data(desc);
uint32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + (m[i] << sh);
}
}
void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t sh = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + (m[i] << sh);
}
}
void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t sh = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
}
}
void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t sh = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
}
}
void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
{
/* These constants are cut-and-paste directly from the ARM pseudocode. */
static const uint16_t coeff[] = {
0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
};
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
uint16_t *d = vd, *n = vn;
for (i = 0; i < opr_sz; i++) {
uint16_t nn = n[i];
intptr_t idx = extract32(nn, 0, 5);
uint16_t exp = extract32(nn, 5, 5);
d[i] = coeff[idx] | (exp << 10);
}
}
void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
{
/* These constants are cut-and-paste directly from the ARM pseudocode. */
static const uint32_t coeff[] = {
0x000000, 0x0164d2, 0x02cd87, 0x043a29,
0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
0x1ef532, 0x20b051, 0x227043, 0x243516,
0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
};
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd, *n = vn;
for (i = 0; i < opr_sz; i++) {
uint32_t nn = n[i];
intptr_t idx = extract32(nn, 0, 6);
uint32_t exp = extract32(nn, 6, 8);
d[i] = coeff[idx] | (exp << 23);
}
}
void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
{
/* These constants are cut-and-paste directly from the ARM pseudocode. */
static const uint64_t coeff[] = {
0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
0xFA7C1819E90D8ull,
};
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
for (i = 0; i < opr_sz; i++) {
uint64_t nn = n[i];
intptr_t idx = extract32(nn, 0, 6);
uint64_t exp = extract32(nn, 6, 11);
d[i] = coeff[idx] | (exp << 52);
}
}
void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
uint16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
uint16_t nn = n[i];
uint16_t mm = m[i];
if (mm & 1) {
nn = float16_one;
}
d[i] = nn ^ (mm & 2) << 14;
}
}
void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
uint32_t nn = n[i];
uint32_t mm = m[i];
if (mm & 1) {
nn = float32_one;
}
d[i] = nn ^ (mm & 2) << 30;
}
}
void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t mm = m[i];
if (mm & 1) {
nn = float64_one;
}
d[i] = nn ^ (mm & 2) << 62;
}
}
/*
* Signed saturating addition with scalar operand.
*/
void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int8_t)) {
*(int8_t *)(d + i) = DO_SQADD_B(b, *(int8_t *)(a + i));
}
}
void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int16_t)) {
*(int16_t *)(d + i) = DO_SQADD_H(b, *(int16_t *)(a + i));
}
}
void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int32_t)) {
*(int32_t *)(d + i) = DO_SQADD_S(b, *(int32_t *)(a + i));
}
}
void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int64_t)) {
*(int64_t *)(d + i) = do_sqadd_d(b, *(int64_t *)(a + i));
}
}
/*
* Unsigned saturating addition with scalar operand.
*/
void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
*(uint8_t *)(d + i) = DO_UQADD_B(b, *(uint8_t *)(a + i));
}
}
void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
*(uint16_t *)(d + i) = DO_UQADD_H(b, *(uint16_t *)(a + i));
}
}
void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
*(uint32_t *)(d + i) = DO_UQADD_S(b, *(uint32_t *)(a + i));
}
}
void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
*(uint64_t *)(d + i) = do_uqadd_d(b, *(uint64_t *)(a + i));
}
}
void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
*(uint64_t *)(d + i) = do_uqsub_d(*(uint64_t *)(a + i), b);
}
}
/* Two operand predicated copy immediate with merge. All valid immediates
* can fit within 17 signed bits in the simd_data field.
*/
void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
mm = dup_const(MO_8, mm);
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t pp = expand_pred_b(pg[H1(i)]);
d[i] = (mm & pp) | (nn & ~pp);
}
}
void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
mm = dup_const(MO_16, mm);
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t pp = expand_pred_h(pg[H1(i)]);
d[i] = (mm & pp) | (nn & ~pp);
}
}
void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
mm = dup_const(MO_32, mm);
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t pp = expand_pred_s(pg[H1(i)]);
d[i] = (mm & pp) | (nn & ~pp);
}
}
void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
d[i] = (pg[H1(i)] & 1 ? mm : nn);
}
}
void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
val = dup_const(MO_8, val);
for (i = 0; i < opr_sz; i += 1) {
d[i] = val & expand_pred_b(pg[H1(i)]);
}
}
void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
val = dup_const(MO_16, val);
for (i = 0; i < opr_sz; i += 1) {
d[i] = val & expand_pred_h(pg[H1(i)]);
}
}
void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
val = dup_const(MO_32, val);
for (i = 0; i < opr_sz; i += 1) {
d[i] = val & expand_pred_s(pg[H1(i)]);
}
}
void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] = (pg[H1(i)] & 1 ? val : 0);
}
}
/* Big-endian hosts need to frob the byte indices. If the copy
* happens to be 8-byte aligned, then no frobbing necessary.
*/
static void swap_memmove(void *vd, void *vs, size_t n)
{
uintptr_t d = (uintptr_t)vd;
uintptr_t s = (uintptr_t)vs;
uintptr_t o = (d | s | n) & 7;
size_t i;
#if !HOST_BIG_ENDIAN
o = 0;
#endif
switch (o) {
case 0:
memmove(vd, vs, n);
break;
case 4:
if (d < s || d >= s + n) {
for (i = 0; i < n; i += 4) {
*(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
}
} else {
for (i = n; i > 0; ) {
i -= 4;
*(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
}
}
break;
case 2:
case 6:
if (d < s || d >= s + n) {
for (i = 0; i < n; i += 2) {
*(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
}
} else {
for (i = n; i > 0; ) {
i -= 2;
*(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
}
}
break;
default:
if (d < s || d >= s + n) {
for (i = 0; i < n; i++) {
*(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
}
} else {
for (i = n; i > 0; ) {
i -= 1;
*(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
}
}
break;
}
}
/* Similarly for memset of 0. */
static void swap_memzero(void *vd, size_t n)
{
uintptr_t d = (uintptr_t)vd;
uintptr_t o = (d | n) & 7;
size_t i;
/* Usually, the first bit of a predicate is set, so N is 0. */
if (likely(n == 0)) {
return;
}
#if !HOST_BIG_ENDIAN
o = 0;
#endif
switch (o) {
case 0:
memset(vd, 0, n);
break;
case 4:
for (i = 0; i < n; i += 4) {
*(uint32_t *)H1_4(d + i) = 0;
}
break;
case 2:
case 6:
for (i = 0; i < n; i += 2) {
*(uint16_t *)H1_2(d + i) = 0;
}
break;
default:
for (i = 0; i < n; i++) {
*(uint8_t *)H1(d + i) = 0;
}
break;
}
}
void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t opr_sz = simd_oprsz(desc);
size_t n_ofs = simd_data(desc);
size_t n_siz = opr_sz - n_ofs;
if (vd != vm) {
swap_memmove(vd, vn + n_ofs, n_siz);
swap_memmove(vd + n_siz, vm, n_ofs);
} else if (vd != vn) {
swap_memmove(vd + n_siz, vd, n_ofs);
swap_memmove(vd, vn + n_ofs, n_siz);
} else {
/* vd == vn == vm. Need temp space. */
ARMVectorReg tmp;
swap_memmove(&tmp, vm, n_ofs);
swap_memmove(vd, vd + n_ofs, n_siz);
memcpy(vd + n_siz, &tmp, n_ofs);
}
}
#define DO_INSR(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
{ \
intptr_t opr_sz = simd_oprsz(desc); \
swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \
*(TYPE *)(vd + H(0)) = val; \
}
DO_INSR(sve_insr_b, uint8_t, H1)
DO_INSR(sve_insr_h, uint16_t, H1_2)
DO_INSR(sve_insr_s, uint32_t, H1_4)
DO_INSR(sve_insr_d, uint64_t, H1_8)
#undef DO_INSR
void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = bswap64(b);
*(uint64_t *)(vd + j) = bswap64(f);
}
}
void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = hswap64(b);
*(uint64_t *)(vd + j) = hswap64(f);
}
}
void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = rol64(b, 32);
*(uint64_t *)(vd + j) = rol64(f, 32);
}
}
void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = b;
*(uint64_t *)(vd + j) = f;
}
}
typedef void tb_impl_fn(void *, void *, void *, void *, uintptr_t, bool);
static inline void do_tbl1(void *vd, void *vn, void *vm, uint32_t desc,
bool is_tbx, tb_impl_fn *fn)
{
ARMVectorReg scratch;
uintptr_t oprsz = simd_oprsz(desc);
if (unlikely(vd == vn)) {
vn = memcpy(&scratch, vn, oprsz);
}
fn(vd, vn, NULL, vm, oprsz, is_tbx);
}
static inline void do_tbl2(void *vd, void *vn0, void *vn1, void *vm,
uint32_t desc, bool is_tbx, tb_impl_fn *fn)
{
ARMVectorReg scratch;
uintptr_t oprsz = simd_oprsz(desc);
if (unlikely(vd == vn0)) {
vn0 = memcpy(&scratch, vn0, oprsz);
if (vd == vn1) {
vn1 = vn0;
}
} else if (unlikely(vd == vn1)) {
vn1 = memcpy(&scratch, vn1, oprsz);
}
fn(vd, vn0, vn1, vm, oprsz, is_tbx);
}
#define DO_TB(SUFF, TYPE, H) \
static inline void do_tb_##SUFF(void *vd, void *vt0, void *vt1, \
void *vm, uintptr_t oprsz, bool is_tbx) \
{ \
TYPE *d = vd, *tbl0 = vt0, *tbl1 = vt1, *indexes = vm; \
uintptr_t i, nelem = oprsz / sizeof(TYPE); \
for (i = 0; i < nelem; ++i) { \
TYPE index = indexes[H1(i)], val = 0; \
if (index < nelem) { \
val = tbl0[H(index)]; \
} else { \
index -= nelem; \
if (tbl1 && index < nelem) { \
val = tbl1[H(index)]; \
} else if (is_tbx) { \
continue; \
} \
} \
d[H(i)] = val; \
} \
} \
void HELPER(sve_tbl_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
do_tbl1(vd, vn, vm, desc, false, do_tb_##SUFF); \
} \
void HELPER(sve2_tbl_##SUFF)(void *vd, void *vn0, void *vn1, \
void *vm, uint32_t desc) \
{ \
do_tbl2(vd, vn0, vn1, vm, desc, false, do_tb_##SUFF); \
} \
void HELPER(sve2_tbx_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
do_tbl1(vd, vn, vm, desc, true, do_tb_##SUFF); \
}
DO_TB(b, uint8_t, H1)
DO_TB(h, uint16_t, H2)
DO_TB(s, uint32_t, H4)
DO_TB(d, uint64_t, H8)
#undef DO_TB
#define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPED *d = vd; \
TYPES *n = vn; \
ARMVectorReg tmp; \
if (unlikely(vn - vd < opr_sz)) { \
n = memcpy(&tmp, n, opr_sz / 2); \
} \
for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \
d[HD(i)] = n[HS(i)]; \
} \
}
DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
DO_UNPK(sve_sunpk_d, int64_t, int32_t, H8, H4)
DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, H8, H4)
#undef DO_UNPK
/* Mask of bits included in the even numbered predicates of width esz.
* We also use this for expand_bits/compress_bits, and so extend the
* same pattern out to 16-bit units.
*/
static const uint64_t even_bit_esz_masks[5] = {
0x5555555555555555ull,
0x3333333333333333ull,
0x0f0f0f0f0f0f0f0full,
0x00ff00ff00ff00ffull,
0x0000ffff0000ffffull,
};
/* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
* For N==0, this corresponds to the operation that in qemu/bitops.h
* we call half_shuffle64; this algorithm is from Hacker's Delight,
* section 7-2 Shuffling Bits.
*/
static uint64_t expand_bits(uint64_t x, int n)
{
int i;
x &= 0xffffffffu;
for (i = 4; i >= n; i--) {
int sh = 1 << i;
x = ((x << sh) | x) & even_bit_esz_masks[i];
}
return x;
}
/* Compress units of 2**(N+1) bits to units of 2**N bits.
* For N==0, this corresponds to the operation that in qemu/bitops.h
* we call half_unshuffle64; this algorithm is from Hacker's Delight,
* section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
*/
static uint64_t compress_bits(uint64_t x, int n)
{
int i;
for (i = n; i <= 4; i++) {
int sh = 1 << i;
x &= even_bit_esz_masks[i];
x = (x >> sh) | x;
}
return x & 0xffffffffu;
}
void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA);
int esize = 1 << esz;
uint64_t *d = vd;
intptr_t i;
if (oprsz <= 8) {
uint64_t nn = *(uint64_t *)vn;
uint64_t mm = *(uint64_t *)vm;
int half = 4 * oprsz;
nn = extract64(nn, high * half, half);
mm = extract64(mm, high * half, half);
nn = expand_bits(nn, esz);
mm = expand_bits(mm, esz);
d[0] = nn | (mm << esize);
} else {
ARMPredicateReg tmp;
/* We produce output faster than we consume input.
Therefore we must be mindful of possible overlap. */
if (vd == vn) {
vn = memcpy(&tmp, vn, oprsz);
if (vd == vm) {
vm = vn;
}
} else if (vd == vm) {
vm = memcpy(&tmp, vm, oprsz);
}
if (high) {
high = oprsz >> 1;
}
if ((oprsz & 7) == 0) {
uint32_t *n = vn, *m = vm;
high >>= 2;
for (i = 0; i < oprsz / 8; i++) {
uint64_t nn = n[H4(high + i)];
uint64_t mm = m[H4(high + i)];
nn = expand_bits(nn, esz);
mm = expand_bits(mm, esz);
d[i] = nn | (mm << esize);
}
} else {
uint8_t *n = vn, *m = vm;
uint16_t *d16 = vd;
for (i = 0; i < oprsz / 2; i++) {
uint16_t nn = n[H1(high + i)];
uint16_t mm = m[H1(high + i)];
nn = expand_bits(nn, esz);
mm = expand_bits(mm, esz);
d16[H2(i)] = nn | (mm << esize);
}
}
}
}
void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
int odd = FIELD_EX32(pred_desc, PREDDESC, DATA) << esz;
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t l, h;
intptr_t i;
if (oprsz <= 8) {
l = compress_bits(n[0] >> odd, esz);
h = compress_bits(m[0] >> odd, esz);
d[0] = l | (h << (4 * oprsz));
} else {
ARMPredicateReg tmp_m;
intptr_t oprsz_16 = oprsz / 16;
if ((vm - vd) < (uintptr_t)oprsz) {
m = memcpy(&tmp_m, vm, oprsz);
}
for (i = 0; i < oprsz_16; i++) {
l = n[2 * i + 0];
h = n[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
d[i] = l | (h << 32);
}
/*
* For VL which is not a multiple of 512, the results from M do not
* align nicely with the uint64_t for D. Put the aligned results
* from M into TMP_M and then copy it into place afterward.
*/
if (oprsz & 15) {
int final_shift = (oprsz & 15) * 2;
l = n[2 * i + 0];
h = n[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
d[i] = l | (h << final_shift);
for (i = 0; i < oprsz_16; i++) {
l = m[2 * i + 0];
h = m[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
tmp_m.p[i] = l | (h << 32);
}
l = m[2 * i + 0];
h = m[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
tmp_m.p[i] = l | (h << final_shift);
swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
} else {
for (i = 0; i < oprsz_16; i++) {
l = m[2 * i + 0];
h = m[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
d[oprsz_16 + i] = l | (h << 32);
}
}
}
}
void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
int odd = FIELD_EX32(pred_desc, PREDDESC, DATA);
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t mask;
int shr, shl;
intptr_t i;
shl = 1 << esz;
shr = 0;
mask = even_bit_esz_masks[esz];
if (odd) {
mask <<= shl;
shr = shl;
shl = 0;
}
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
uint64_t nn = (n[i] & mask) >> shr;
uint64_t mm = (m[i] & mask) << shl;
d[i] = nn + mm;
}
}
/* Reverse units of 2**N bits. */
static uint64_t reverse_bits_64(uint64_t x, int n)
{
int i, sh;
x = bswap64(x);
for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
uint64_t mask = even_bit_esz_masks[i];
x = ((x & mask) << sh) | ((x >> sh) & mask);
}
return x;
}
static uint8_t reverse_bits_8(uint8_t x, int n)
{
static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
int i, sh;
for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
}
return x;
}
void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
intptr_t i, oprsz_2 = oprsz / 2;
if (oprsz <= 8) {
uint64_t l = *(uint64_t *)vn;
l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
*(uint64_t *)vd = l;
} else if ((oprsz & 15) == 0) {
for (i = 0; i < oprsz_2; i += 8) {
intptr_t ih = oprsz - 8 - i;
uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
*(uint64_t *)(vd + i) = h;
*(uint64_t *)(vd + ih) = l;
}
} else {
for (i = 0; i < oprsz_2; i += 1) {
intptr_t il = H1(i);
intptr_t ih = H1(oprsz - 1 - i);
uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
*(uint8_t *)(vd + il) = h;
*(uint8_t *)(vd + ih) = l;
}
}
}
void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA);
uint64_t *d = vd;
intptr_t i;
if (oprsz <= 8) {
uint64_t nn = *(uint64_t *)vn;
int half = 4 * oprsz;
nn = extract64(nn, high * half, half);
nn = expand_bits(nn, 0);
d[0] = nn;
} else {
ARMPredicateReg tmp_n;
/* We produce output faster than we consume input.
Therefore we must be mindful of possible overlap. */
if ((vn - vd) < (uintptr_t)oprsz) {
vn = memcpy(&tmp_n, vn, oprsz);
}
if (high) {
high = oprsz >> 1;
}
if ((oprsz & 7) == 0) {
uint32_t *n = vn;
high >>= 2;
for (i = 0; i < oprsz / 8; i++) {
uint64_t nn = n[H4(high + i)];
d[i] = expand_bits(nn, 0);
}
} else {
uint16_t *d16 = vd;
uint8_t *n = vn;
for (i = 0; i < oprsz / 2; i++) {
uint16_t nn = n[H1(high + i)];
d16[H2(i)] = expand_bits(nn, 0);
}
}
}
}
#define DO_ZIP(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t oprsz = simd_oprsz(desc); \
intptr_t odd_ofs = simd_data(desc); \
intptr_t i, oprsz_2 = oprsz / 2; \
ARMVectorReg tmp_n, tmp_m; \
/* We produce output faster than we consume input. \
Therefore we must be mindful of possible overlap. */ \
if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \
vn = memcpy(&tmp_n, vn, oprsz); \
} \
if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
vm = memcpy(&tmp_m, vm, oprsz); \
} \
for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
*(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + odd_ofs + H(i)); \
*(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = \
*(TYPE *)(vm + odd_ofs + H(i)); \
} \
if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) { \
memset(vd + oprsz - 16, 0, 16); \
} \
}
DO_ZIP(sve_zip_b, uint8_t, H1)
DO_ZIP(sve_zip_h, uint16_t, H1_2)
DO_ZIP(sve_zip_s, uint32_t, H1_4)
DO_ZIP(sve_zip_d, uint64_t, H1_8)
DO_ZIP(sve2_zip_q, Int128, )
#define DO_UZP(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t oprsz = simd_oprsz(desc); \
intptr_t odd_ofs = simd_data(desc); \
intptr_t i, p; \
ARMVectorReg tmp_m; \
if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
vm = memcpy(&tmp_m, vm, oprsz); \
} \
i = 0, p = odd_ofs; \
do { \
*(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(p)); \
i += sizeof(TYPE), p += 2 * sizeof(TYPE); \
} while (p < oprsz); \
p -= oprsz; \
do { \
*(TYPE *)(vd + H(i)) = *(TYPE *)(vm + H(p)); \
i += sizeof(TYPE), p += 2 * sizeof(TYPE); \
} while (p < oprsz); \
tcg_debug_assert(i == oprsz); \
}
DO_UZP(sve_uzp_b, uint8_t, H1)
DO_UZP(sve_uzp_h, uint16_t, H1_2)
DO_UZP(sve_uzp_s, uint32_t, H1_4)
DO_UZP(sve_uzp_d, uint64_t, H1_8)
DO_UZP(sve2_uzp_q, Int128, )
#define DO_TRN(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t oprsz = simd_oprsz(desc); \
intptr_t odd_ofs = simd_data(desc); \
intptr_t i; \
for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \
TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \
TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \
*(TYPE *)(vd + H(i + 0)) = ae; \
*(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \
} \
if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) { \
memset(vd + oprsz - 16, 0, 16); \
} \
}
DO_TRN(sve_trn_b, uint8_t, H1)
DO_TRN(sve_trn_h, uint16_t, H1_2)
DO_TRN(sve_trn_s, uint32_t, H1_4)
DO_TRN(sve_trn_d, uint64_t, H1_8)
DO_TRN(sve2_trn_q, Int128, )
#undef DO_ZIP
#undef DO_UZP
#undef DO_TRN
void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = j = 0; i < opr_sz; i++) {
if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
d[H4(j)] = n[H4(i)];
j++;
}
}
for (; j < opr_sz; j++) {
d[H4(j)] = 0;
}
}
void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = j = 0; i < opr_sz; i++) {
if (pg[H1(i)] & 1) {
d[j] = n[i];
j++;
}
}
for (; j < opr_sz; j++) {
d[j] = 0;
}
}
/* Similar to the ARM LastActiveElement pseudocode function, except the
* result is multiplied by the element size. This includes the not found
* indication; e.g. not found for esz=3 is -8.
*/
int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
{
intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
return last_active_element(vg, words, esz);
}
void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
{
intptr_t opr_sz = simd_oprsz(desc) / 8;
int esz = simd_data(desc);
uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
intptr_t i, first_i, last_i;
ARMVectorReg tmp;
first_i = last_i = 0;
first_g = last_g = 0;
/* Find the extent of the active elements within VG. */
for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
pg = *(uint64_t *)(vg + i) & mask;
if (pg) {
if (last_g == 0) {
last_g = pg;
last_i = i;
}
first_g = pg;
first_i = i;
}
}
len = 0;
if (first_g != 0) {
first_i = first_i * 8 + ctz64(first_g);
last_i = last_i * 8 + 63 - clz64(last_g);
len = last_i - first_i + (1 << esz);
if (vd == vm) {
vm = memcpy(&tmp, vm, opr_sz * 8);
}
swap_memmove(vd, vn + first_i, len);
}
swap_memmove(vd + len, vm, opr_sz * 8 - len);
}
void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
uint64_t pp = expand_pred_b(pg[H1(i)]);
d[i] = (nn & pp) | (mm & ~pp);
}
}
void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
uint64_t pp = expand_pred_h(pg[H1(i)]);
d[i] = (nn & pp) | (mm & ~pp);
}
}
void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
uint64_t pp = expand_pred_s(pg[H1(i)]);
d[i] = (nn & pp) | (mm & ~pp);
}
}
void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
d[i] = (pg[H1(i)] & 1 ? nn : mm);
}
}
void HELPER(sve_sel_zpzz_q)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 16;
Int128 *d = vd, *n = vn, *m = vm;
uint16_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] = (pg[H2(i)] & 1 ? n : m)[i];
}
}
/* Two operand comparison controlled by a predicate.
* ??? It is very tempting to want to be able to expand this inline
* with x86 instructions, e.g.
*
* vcmpeqw zm, zn, %ymm0
* vpmovmskb %ymm0, %eax
* and $0x5555, %eax
* and pg, %eax
*
* or even aarch64, e.g.
*
* // mask = 4000 1000 0400 0100 0040 0010 0004 0001
* cmeq v0.8h, zn, zm
* and v0.8h, v0.8h, mask
* addv h0, v0.8h
* and v0.8b, pg
*
* However, coming up with an abstraction that allows vector inputs and
* a scalar output, and also handles the byte-ordering of sub-uint64_t
* scalar outputs, is tricky.
*/
#define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \
uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t opr_sz = simd_oprsz(desc); \
uint32_t flags = PREDTEST_INIT; \
intptr_t i = opr_sz; \
do { \
uint64_t out = 0, pg; \
do { \
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
TYPE nn = *(TYPE *)(vn + H(i)); \
TYPE mm = *(TYPE *)(vm + H(i)); \
out |= nn OP mm; \
} while (i & 63); \
pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
out &= pg; \
*(uint64_t *)(vd + (i >> 3)) = out; \
flags = iter_predtest_bwd(out, pg, flags); \
} while (i > 0); \
return flags; \
}
#define DO_CMP_PPZZ_B(NAME, TYPE, OP) \
DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
#define DO_CMP_PPZZ_H(NAME, TYPE, OP) \
DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
#define DO_CMP_PPZZ_S(NAME, TYPE, OP) \
DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
#define DO_CMP_PPZZ_D(NAME, TYPE, OP) \
DO_CMP_PPZZ(NAME, TYPE, OP, H1_8, 0x0101010101010101ull)
DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==)
DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==)
DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==)
DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==)
DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=)
DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=)
DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=)
DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=)
DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >)
DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >)
DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >)
DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >)
DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=)
DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=)
DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=)
DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=)
DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >)
DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >)
DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >)
DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >)
DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=)
DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=)
DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=)
DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=)
#undef DO_CMP_PPZZ_B
#undef DO_CMP_PPZZ_H
#undef DO_CMP_PPZZ_S
#undef DO_CMP_PPZZ_D
#undef DO_CMP_PPZZ
/* Similar, but the second source is "wide". */
#define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \
uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t opr_sz = simd_oprsz(desc); \
uint32_t flags = PREDTEST_INIT; \
intptr_t i = opr_sz; \
do { \
uint64_t out = 0, pg; \
do { \
TYPEW mm = *(TYPEW *)(vm + i - 8); \
do { \
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
TYPE nn = *(TYPE *)(vn + H(i)); \
out |= nn OP mm; \
} while (i & 7); \
} while (i & 63); \
pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
out &= pg; \
*(uint64_t *)(vd + (i >> 3)) = out; \
flags = iter_predtest_bwd(out, pg, flags); \
} while (i > 0); \
return flags; \
}
#define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \
DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull)
#define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \
DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull)
#define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==)
DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==)
DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==)
DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=)
DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=)
DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=)
DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >)
DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >)
DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >)
DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=)
DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=)
DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=)
DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >)
DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >)
DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >)
DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=)
DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=)
DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=)
DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <)
DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <)
DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <)
DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=)
DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=)
DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=)
DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <)
DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <)
DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <)
DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=)
DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=)
DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=)
#undef DO_CMP_PPZW_B
#undef DO_CMP_PPZW_H
#undef DO_CMP_PPZW_S
#undef DO_CMP_PPZW
/* Similar, but the second source is immediate. */
#define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \
uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t opr_sz = simd_oprsz(desc); \
uint32_t flags = PREDTEST_INIT; \
TYPE mm = simd_data(desc); \
intptr_t i = opr_sz; \
do { \
uint64_t out = 0, pg; \
do { \
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
TYPE nn = *(TYPE *)(vn + H(i)); \
out |= nn OP mm; \
} while (i & 63); \
pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
out &= pg; \
*(uint64_t *)(vd + (i >> 3)) = out; \
flags = iter_predtest_bwd(out, pg, flags); \
} while (i > 0); \
return flags; \
}
#define DO_CMP_PPZI_B(NAME, TYPE, OP) \
DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
#define DO_CMP_PPZI_H(NAME, TYPE, OP) \
DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
#define DO_CMP_PPZI_S(NAME, TYPE, OP) \
DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
#define DO_CMP_PPZI_D(NAME, TYPE, OP) \
DO_CMP_PPZI(NAME, TYPE, OP, H1_8, 0x0101010101010101ull)
DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==)
DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==)
DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==)
DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==)
DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=)
DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=)
DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=)
DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=)
DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >)
DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >)
DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >)
DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >)
DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=)
DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=)
DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=)
DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=)
DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >)
DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >)
DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >)
DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >)
DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=)
DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=)
DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=)
DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=)
DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <)
DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <)
DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <)
DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <)
DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=)
DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=)
DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=)
DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=)
DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <)
DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <)
DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <)
DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <)
DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=)
DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=)
DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=)
DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=)
#undef DO_CMP_PPZI_B
#undef DO_CMP_PPZI_H
#undef DO_CMP_PPZI_S
#undef DO_CMP_PPZI_D
#undef DO_CMP_PPZI
/* Similar to the ARM LastActive pseudocode function. */
static bool last_active_pred(void *vd, void *vg, intptr_t oprsz)
{
intptr_t i;
for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) {
uint64_t pg = *(uint64_t *)(vg + i);
if (pg) {
return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0;
}
}
return 0;
}
/* Compute a mask into RETB that is true for all G, up to and including
* (if after) or excluding (if !after) the first G & N.
* Return true if BRK found.
*/
static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g,
bool brk, bool after)
{
uint64_t b;
if (brk) {
b = 0;
} else if ((g & n) == 0) {
/* For all G, no N are set; break not found. */
b = g;
} else {
/* Break somewhere in N. Locate it. */
b = g & n; /* guard true, pred true */
b = b & -b; /* first such */
if (after) {
b = b | (b - 1); /* break after same */
} else {
b = b - 1; /* break before same */
}
brk = true;
}
*retb = b;
return brk;
}
/* Compute a zeroing BRK. */
static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g,
intptr_t oprsz, bool after)
{
bool brk = false;
intptr_t i;
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
uint64_t this_b, this_g = g[i];
brk = compute_brk(&this_b, n[i], this_g, brk, after);
d[i] = this_b & this_g;
}
}
/* Likewise, but also compute flags. */
static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g,
intptr_t oprsz, bool after)
{
uint32_t flags = PREDTEST_INIT;
bool brk = false;
intptr_t i;
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
uint64_t this_b, this_d, this_g = g[i];
brk = compute_brk(&this_b, n[i], this_g, brk, after);
d[i] = this_d = this_b & this_g;
flags = iter_predtest_fwd(this_d, this_g, flags);
}
return flags;
}
/* Compute a merging BRK. */
static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g,
intptr_t oprsz, bool after)
{
bool brk = false;
intptr_t i;
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
uint64_t this_b, this_g = g[i];
brk = compute_brk(&this_b, n[i], this_g, brk, after);
d[i] = (this_b & this_g) | (d[i] & ~this_g);
}
}
/* Likewise, but also compute flags. */
static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g,
intptr_t oprsz, bool after)
{
uint32_t flags = PREDTEST_INIT;
bool brk = false;
intptr_t i;
for (i = 0; i < oprsz / 8; ++i) {
uint64_t this_b, this_d = d[i], this_g = g[i];
brk = compute_brk(&this_b, n[i], this_g, brk, after);
d[i] = this_d = (this_b & this_g) | (this_d & ~this_g);
flags = iter_predtest_fwd(this_d, this_g, flags);
}
return flags;
}
static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz)
{
/* It is quicker to zero the whole predicate than loop on OPRSZ.
* The compiler should turn this into 4 64-bit integer stores.
*/
memset(d, 0, sizeof(ARMPredicateReg));
return PREDTEST_INIT;
}
void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg,
uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
if (last_active_pred(vn, vg, oprsz)) {
compute_brk_z(vd, vm, vg, oprsz, true);
} else {
do_zero(vd, oprsz);
}
}
uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg,
uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
if (last_active_pred(vn, vg, oprsz)) {
return compute_brks_z(vd, vm, vg, oprsz, true);
} else {
return do_zero(vd, oprsz);
}
}
void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg,
uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
if (last_active_pred(vn, vg, oprsz)) {
compute_brk_z(vd, vm, vg, oprsz, false);
} else {
do_zero(vd, oprsz);
}
}
uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg,
uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
if (last_active_pred(vn, vg, oprsz)) {
return compute_brks_z(vd, vm, vg, oprsz, false);
} else {
return do_zero(vd, oprsz);
}
}
void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
compute_brk_z(vd, vn, vg, oprsz, true);
}
uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
return compute_brks_z(vd, vn, vg, oprsz, true);
}
void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
compute_brk_z(vd, vn, vg, oprsz, false);
}
uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
return compute_brks_z(vd, vn, vg, oprsz, false);
}
void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
compute_brk_m(vd, vn, vg, oprsz, true);
}
uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
return compute_brks_m(vd, vn, vg, oprsz, true);
}
void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
compute_brk_m(vd, vn, vg, oprsz, false);
}
uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
return compute_brks_m(vd, vn, vg, oprsz, false);
}
void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
if (!last_active_pred(vn, vg, oprsz)) {
do_zero(vd, oprsz);
}
}
/* As if PredTest(Ones(PL), D, esz). */
static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz,
uint64_t esz_mask)
{
uint32_t flags = PREDTEST_INIT;
intptr_t i;
for (i = 0; i < oprsz / 8; i++) {
flags = iter_predtest_fwd(d->p[i], esz_mask, flags);
}
if (oprsz & 7) {
uint64_t mask = ~(-1ULL << (8 * (oprsz & 7)));
flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags);
}
return flags;
}
uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
if (last_active_pred(vn, vg, oprsz)) {
return predtest_ones(vd, oprsz, -1);
} else {
return do_zero(vd, oprsz);
}
}
uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc)
{
intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz];
intptr_t i;
for (i = 0; i < words; ++i) {
uint64_t t = n[i] & g[i] & mask;
sum += ctpop64(t);
}
return sum;
}
uint32_t HELPER(sve_whilel)(void *vd, uint32_t count, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
uint64_t esz_mask = pred_esz_masks[esz];
ARMPredicateReg *d = vd;
uint32_t flags;
intptr_t i;
/* Begin with a zero predicate register. */
flags = do_zero(d, oprsz);
if (count == 0) {
return flags;
}
/* Set all of the requested bits. */
for (i = 0; i < count / 64; ++i) {
d->p[i] = esz_mask;
}
if (count & 63) {
d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask;
}
return predtest_ones(d, oprsz, esz_mask);
}
uint32_t HELPER(sve_whileg)(void *vd, uint32_t count, uint32_t pred_desc)
{
intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
uint64_t esz_mask = pred_esz_masks[esz];
ARMPredicateReg *d = vd;
intptr_t i, invcount, oprbits;
uint64_t bits;
if (count == 0) {
return do_zero(d, oprsz);
}
oprbits = oprsz * 8;
tcg_debug_assert(count <= oprbits);
bits = esz_mask;
if (oprbits & 63) {
bits &= MAKE_64BIT_MASK(0, oprbits & 63);
}
invcount = oprbits - count;
for (i = (oprsz - 1) / 8; i > invcount / 64; --i) {
d->p[i] = bits;
bits = esz_mask;
}
d->p[i] = bits & MAKE_64BIT_MASK(invcount & 63, 64);
while (--i >= 0) {
d->p[i] = 0;
}
return predtest_ones(d, oprsz, esz_mask);
}
/* Recursive reduction on a function;
* C.f. the ARM ARM function ReducePredicated.
*
* While it would be possible to write this without the DATA temporary,
* it is much simpler to process the predicate register this way.
* The recursion is bounded to depth 7 (128 fp16 elements), so there's
* little to gain with a more complex non-recursive form.
*/
#define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \
static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \
{ \
if (n == 1) { \
return *data; \
} else { \
uintptr_t half = n / 2; \
TYPE lo = NAME##_reduce(data, status, half); \
TYPE hi = NAME##_reduce(data + half, status, half); \
return TYPE##_##FUNC(lo, hi, status); \
} \
} \
uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \
{ \
uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_data(desc); \
TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \
for (i = 0; i < oprsz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
for (; i < maxsz; i += sizeof(TYPE)) { \
*(TYPE *)((void *)data + i) = IDENT; \
} \
return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \
}
DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero)
DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero)
DO_REDUCE(sve_faddv_d, float64, H1_8, add, float64_zero)
/* Identity is floatN_default_nan, without the function call. */
DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00)
DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000)
DO_REDUCE(sve_fminnmv_d, float64, H1_8, minnum, 0x7FF8000000000000ULL)
DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00)
DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000)
DO_REDUCE(sve_fmaxnmv_d, float64, H1_8, maxnum, 0x7FF8000000000000ULL)
DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity)
DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity)
DO_REDUCE(sve_fminv_d, float64, H1_8, min, float64_infinity)
DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity))
DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity))
DO_REDUCE(sve_fmaxv_d, float64, H1_8, max, float64_chs(float64_infinity))
#undef DO_REDUCE
uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg,
void *status, uint32_t desc)
{
intptr_t i = 0, opr_sz = simd_oprsz(desc);
float16 result = nn;
do {
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
do {
if (pg & 1) {
float16 mm = *(float16 *)(vm + H1_2(i));
result = float16_add(result, mm, status);
}
i += sizeof(float16), pg >>= sizeof(float16);
} while (i & 15);
} while (i < opr_sz);
return result;
}
uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg,
void *status, uint32_t desc)
{
intptr_t i = 0, opr_sz = simd_oprsz(desc);
float32 result = nn;
do {
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
do {
if (pg & 1) {
float32 mm = *(float32 *)(vm + H1_2(i));
result = float32_add(result, mm, status);
}
i += sizeof(float32), pg >>= sizeof(float32);
} while (i & 15);
} while (i < opr_sz);
return result;
}
uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg,
void *status, uint32_t desc)
{
intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8;
uint64_t *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i++) {
if (pg[H1(i)] & 1) {
nn = float64_add(nn, m[i], status);
}
}
return nn;
}
/* Fully general three-operand expander, controlled by a predicate,
* With the extra float_status parameter.
*/
#define DO_ZPZZ_FP(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
void *status, uint32_t desc) \
{ \
intptr_t i = simd_oprsz(desc); \
uint64_t *g = vg; \
do { \
uint64_t pg = g[(i - 1) >> 6]; \
do { \
i -= sizeof(TYPE); \
if (likely((pg >> (i & 63)) & 1)) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
TYPE mm = *(TYPE *)(vm + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
} \
} while (i & 63); \
} while (i != 0); \
}
DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add)
DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add)
DO_ZPZZ_FP(sve_fadd_d, uint64_t, H1_8, float64_add)
DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub)
DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub)
DO_ZPZZ_FP(sve_fsub_d, uint64_t, H1_8, float64_sub)
DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul)
DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul)
DO_ZPZZ_FP(sve_fmul_d, uint64_t, H1_8, float64_mul)
DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div)
DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div)
DO_ZPZZ_FP(sve_fdiv_d, uint64_t, H1_8, float64_div)
DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min)
DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min)
DO_ZPZZ_FP(sve_fmin_d, uint64_t, H1_8, float64_min)
DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max)
DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max)
DO_ZPZZ_FP(sve_fmax_d, uint64_t, H1_8, float64_max)
DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum)
DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum)
DO_ZPZZ_FP(sve_fminnum_d, uint64_t, H1_8, float64_minnum)
DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum)
DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum)
DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, H1_8, float64_maxnum)
static inline float16 abd_h(float16 a, float16 b, float_status *s)
{
return float16_abs(float16_sub(a, b, s));
}
static inline float32 abd_s(float32 a, float32 b, float_status *s)
{
return float32_abs(float32_sub(a, b, s));
}
static inline float64 abd_d(float64 a, float64 b, float_status *s)
{
return float64_abs(float64_sub(a, b, s));
}
DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h)
DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s)
DO_ZPZZ_FP(sve_fabd_d, uint64_t, H1_8, abd_d)
static inline float64 scalbn_d(float64 a, int64_t b, float_status *s)
{
int b_int = MIN(MAX(b, INT_MIN), INT_MAX);
return float64_scalbn(a, b_int, s);
}
DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn)
DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn)
DO_ZPZZ_FP(sve_fscalbn_d, int64_t, H1_8, scalbn_d)
DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh)
DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs)
DO_ZPZZ_FP(sve_fmulx_d, uint64_t, H1_8, helper_vfp_mulxd)
#undef DO_ZPZZ_FP
/* Three-operand expander, with one scalar operand, controlled by
* a predicate, with the extra float_status parameter.
*/
#define DO_ZPZS_FP(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \
void *status, uint32_t desc) \
{ \
intptr_t i = simd_oprsz(desc); \
uint64_t *g = vg; \
TYPE mm = scalar; \
do { \
uint64_t pg = g[(i - 1) >> 6]; \
do { \
i -= sizeof(TYPE); \
if (likely((pg >> (i & 63)) & 1)) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
} \
} while (i & 63); \
} while (i != 0); \
}
DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add)
DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add)
DO_ZPZS_FP(sve_fadds_d, float64, H1_8, float64_add)
DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub)
DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub)
DO_ZPZS_FP(sve_fsubs_d, float64, H1_8, float64_sub)
DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul)
DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul)
DO_ZPZS_FP(sve_fmuls_d, float64, H1_8, float64_mul)
static inline float16 subr_h(float16 a, float16 b, float_status *s)
{
return float16_sub(b, a, s);
}
static inline float32 subr_s(float32 a, float32 b, float_status *s)
{
return float32_sub(b, a, s);
}
static inline float64 subr_d(float64 a, float64 b, float_status *s)
{
return float64_sub(b, a, s);
}
DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h)
DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s)
DO_ZPZS_FP(sve_fsubrs_d, float64, H1_8, subr_d)
DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum)
DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum)
DO_ZPZS_FP(sve_fmaxnms_d, float64, H1_8, float64_maxnum)
DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum)
DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum)
DO_ZPZS_FP(sve_fminnms_d, float64, H1_8, float64_minnum)
DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max)
DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max)
DO_ZPZS_FP(sve_fmaxs_d, float64, H1_8, float64_max)
DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min)
DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min)
DO_ZPZS_FP(sve_fmins_d, float64, H1_8, float64_min)
/* Fully general two-operand expander, controlled by a predicate,
* With the extra float_status parameter.
*/
#define DO_ZPZ_FP(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
{ \
intptr_t i = simd_oprsz(desc); \
uint64_t *g = vg; \
do { \
uint64_t pg = g[(i - 1) >> 6]; \
do { \
i -= sizeof(TYPE); \
if (likely((pg >> (i & 63)) & 1)) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, status); \
} \
} while (i & 63); \
} while (i != 0); \
}
/* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore
* FZ16. When converting from fp16, this affects flushing input denormals;
* when converting to fp16, this affects flushing output denormals.
*/
static inline float32 sve_f16_to_f32(float16 f, float_status *fpst)
{
bool save = get_flush_inputs_to_zero(fpst);
float32 ret;
set_flush_inputs_to_zero(false, fpst);
ret = float16_to_float32(f, true, fpst);
set_flush_inputs_to_zero(save, fpst);
return ret;
}
static inline float64 sve_f16_to_f64(float16 f, float_status *fpst)
{
bool save = get_flush_inputs_to_zero(fpst);
float64 ret;
set_flush_inputs_to_zero(false, fpst);
ret = float16_to_float64(f, true, fpst);
set_flush_inputs_to_zero(save, fpst);
return ret;
}
static inline float16 sve_f32_to_f16(float32 f, float_status *fpst)
{
bool save = get_flush_to_zero(fpst);
float16 ret;
set_flush_to_zero(false, fpst);
ret = float32_to_float16(f, true, fpst);
set_flush_to_zero(save, fpst);
return ret;
}
static inline float16 sve_f64_to_f16(float64 f, float_status *fpst)
{
bool save = get_flush_to_zero(fpst);
float16 ret;
set_flush_to_zero(false, fpst);
ret = float64_to_float16(f, true, fpst);
set_flush_to_zero(save, fpst);
return ret;
}
static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s)
{
if (float16_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float16_to_int16_round_to_zero(f, s);
}
static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s)
{
if (float16_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float16_to_int64_round_to_zero(f, s);
}
static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s)
{
if (float32_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float32_to_int64_round_to_zero(f, s);
}
static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s)
{
if (float64_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float64_to_int64_round_to_zero(f, s);
}
static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s)
{
if (float16_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float16_to_uint16_round_to_zero(f, s);
}
static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s)
{
if (float16_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float16_to_uint64_round_to_zero(f, s);
}
static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s)
{
if (float32_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float32_to_uint64_round_to_zero(f, s);
}
static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s)
{
if (float64_is_any_nan(f)) {
float_raise(float_flag_invalid, s);
return 0;
}
return float64_to_uint64_round_to_zero(f, s);
}
DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16)
DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32)
DO_ZPZ_FP(sve_bfcvt, uint32_t, H1_4, float32_to_bfloat16)
DO_ZPZ_FP(sve_fcvt_dh, uint64_t, H1_8, sve_f64_to_f16)
DO_ZPZ_FP(sve_fcvt_hd, uint64_t, H1_8, sve_f16_to_f64)
DO_ZPZ_FP(sve_fcvt_ds, uint64_t, H1_8, float64_to_float32)
DO_ZPZ_FP(sve_fcvt_sd, uint64_t, H1_8, float32_to_float64)
DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz)
DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh)
DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs)
DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, H1_8, vfp_float16_to_int64_rtz)
DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, H1_8, vfp_float32_to_int64_rtz)
DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, H1_8, helper_vfp_tosizd)
DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, H1_8, vfp_float64_to_int64_rtz)
DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz)
DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh)
DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs)
DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, H1_8, vfp_float16_to_uint64_rtz)
DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, H1_8, vfp_float32_to_uint64_rtz)
DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, H1_8, helper_vfp_touizd)
DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, H1_8, vfp_float64_to_uint64_rtz)
DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth)
DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints)
DO_ZPZ_FP(sve_frint_d, uint64_t, H1_8, helper_rintd)
DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int)
DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int)
DO_ZPZ_FP(sve_frintx_d, uint64_t, H1_8, float64_round_to_int)
DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16)
DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32)
DO_ZPZ_FP(sve_frecpx_d, uint64_t, H1_8, helper_frecpx_f64)
DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt)
DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt)
DO_ZPZ_FP(sve_fsqrt_d, uint64_t, H1_8, float64_sqrt)
DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16)
DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16)
DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32)
DO_ZPZ_FP(sve_scvt_sd, uint64_t, H1_8, int32_to_float64)
DO_ZPZ_FP(sve_scvt_dh, uint64_t, H1_8, int64_to_float16)
DO_ZPZ_FP(sve_scvt_ds, uint64_t, H1_8, int64_to_float32)
DO_ZPZ_FP(sve_scvt_dd, uint64_t, H1_8, int64_to_float64)
DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16)
DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16)
DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32)
DO_ZPZ_FP(sve_ucvt_sd, uint64_t, H1_8, uint32_to_float64)
DO_ZPZ_FP(sve_ucvt_dh, uint64_t, H1_8, uint64_to_float16)
DO_ZPZ_FP(sve_ucvt_ds, uint64_t, H1_8, uint64_to_float32)
DO_ZPZ_FP(sve_ucvt_dd, uint64_t, H1_8, uint64_to_float64)
static int16_t do_float16_logb_as_int(float16 a, float_status *s)
{
/* Extract frac to the top of the uint32_t. */
uint32_t frac = (uint32_t)a << (16 + 6);
int16_t exp = extract32(a, 10, 5);
if (unlikely(exp == 0)) {
if (frac != 0) {
if (!get_flush_inputs_to_zero(s)) {
/* denormal: bias - fractional_zeros */
return -15 - clz32(frac);
}
/* flush to zero */
float_raise(float_flag_input_denormal, s);
}
} else if (unlikely(exp == 0x1f)) {
if (frac == 0) {
return INT16_MAX; /* infinity */
}
} else {
/* normal: exp - bias */
return exp - 15;
}
/* nan or zero */
float_raise(float_flag_invalid, s);
return INT16_MIN;
}
static int32_t do_float32_logb_as_int(float32 a, float_status *s)
{
/* Extract frac to the top of the uint32_t. */
uint32_t frac = a << 9;
int32_t exp = extract32(a, 23, 8);
if (unlikely(exp == 0)) {
if (frac != 0) {
if (!get_flush_inputs_to_zero(s)) {
/* denormal: bias - fractional_zeros */
return -127 - clz32(frac);
}
/* flush to zero */
float_raise(float_flag_input_denormal, s);
}
} else if (unlikely(exp == 0xff)) {
if (frac == 0) {
return INT32_MAX; /* infinity */
}
} else {
/* normal: exp - bias */
return exp - 127;
}
/* nan or zero */
float_raise(float_flag_invalid, s);
return INT32_MIN;
}
static int64_t do_float64_logb_as_int(float64 a, float_status *s)
{
/* Extract frac to the top of the uint64_t. */
uint64_t frac = a << 12;
int64_t exp = extract64(a, 52, 11);
if (unlikely(exp == 0)) {
if (frac != 0) {
if (!get_flush_inputs_to_zero(s)) {
/* denormal: bias - fractional_zeros */
return -1023 - clz64(frac);
}
/* flush to zero */
float_raise(float_flag_input_denormal, s);
}
} else if (unlikely(exp == 0x7ff)) {
if (frac == 0) {
return INT64_MAX; /* infinity */
}
} else {
/* normal: exp - bias */
return exp - 1023;
}
/* nan or zero */
float_raise(float_flag_invalid, s);
return INT64_MIN;
}
DO_ZPZ_FP(flogb_h, float16, H1_2, do_float16_logb_as_int)
DO_ZPZ_FP(flogb_s, float32, H1_4, do_float32_logb_as_int)
DO_ZPZ_FP(flogb_d, float64, H1_8, do_float64_logb_as_int)
#undef DO_ZPZ_FP
static void do_fmla_zpzzz_h(void *vd, void *vn, void *vm, void *va, void *vg,
float_status *status, uint32_t desc,
uint16_t neg1, uint16_t neg3)
{
intptr_t i = simd_oprsz(desc);
uint64_t *g = vg;
do {
uint64_t pg = g[(i - 1) >> 6];
do {
i -= 2;
if (likely((pg >> (i & 63)) & 1)) {
float16 e1, e2, e3, r;
e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1;
e2 = *(uint16_t *)(vm + H1_2(i));
e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3;
r = float16_muladd(e1, e2, e3, 0, status);
*(uint16_t *)(vd + H1_2(i)) = r;
}
} while (i & 63);
} while (i != 0);
}
void HELPER(sve_fmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0);
}
void HELPER(sve_fmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0);
}
void HELPER(sve_fnmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0x8000);
}
void HELPER(sve_fnmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0x8000);
}
static void do_fmla_zpzzz_s(void *vd, void *vn, void *vm, void *va, void *vg,
float_status *status, uint32_t desc,
uint32_t neg1, uint32_t neg3)
{
intptr_t i = simd_oprsz(desc);
uint64_t *g = vg;
do {
uint64_t pg = g[(i - 1) >> 6];
do {
i -= 4;
if (likely((pg >> (i & 63)) & 1)) {
float32 e1, e2, e3, r;
e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1;
e2 = *(uint32_t *)(vm + H1_4(i));
e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3;
r = float32_muladd(e1, e2, e3, 0, status);
*(uint32_t *)(vd + H1_4(i)) = r;
}
} while (i & 63);
} while (i != 0);
}
void HELPER(sve_fmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0);
}
void HELPER(sve_fmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0);
}
void HELPER(sve_fnmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0x80000000);
}
void HELPER(sve_fnmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0x80000000);
}
static void do_fmla_zpzzz_d(void *vd, void *vn, void *vm, void *va, void *vg,
float_status *status, uint32_t desc,
uint64_t neg1, uint64_t neg3)
{
intptr_t i = simd_oprsz(desc);
uint64_t *g = vg;
do {
uint64_t pg = g[(i - 1) >> 6];
do {
i -= 8;
if (likely((pg >> (i & 63)) & 1)) {
float64 e1, e2, e3, r;
e1 = *(uint64_t *)(vn + i) ^ neg1;
e2 = *(uint64_t *)(vm + i);
e3 = *(uint64_t *)(va + i) ^ neg3;
r = float64_muladd(e1, e2, e3, 0, status);
*(uint64_t *)(vd + i) = r;
}
} while (i & 63);
} while (i != 0);
}
void HELPER(sve_fmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, 0);
}
void HELPER(sve_fmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, 0);
}
void HELPER(sve_fnmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, INT64_MIN);
}
void HELPER(sve_fnmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, INT64_MIN);
}
/* Two operand floating-point comparison controlled by a predicate.
* Unlike the integer version, we are not allowed to optimistically
* compare operands, since the comparison may have side effects wrt
* the FPSR.
*/
#define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
void *status, uint32_t desc) \
{ \
intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
uint64_t *d = vd, *g = vg; \
do { \
uint64_t out = 0, pg = g[j]; \
do { \
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
if (likely((pg >> (i & 63)) & 1)) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
TYPE mm = *(TYPE *)(vm + H(i)); \
out |= OP(TYPE, nn, mm, status); \
} \
} while (i & 63); \
d[j--] = out; \
} while (i > 0); \
}
#define DO_FPCMP_PPZZ_H(NAME, OP) \
DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP)
#define DO_FPCMP_PPZZ_S(NAME, OP) \
DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP)
#define DO_FPCMP_PPZZ_D(NAME, OP) \
DO_FPCMP_PPZZ(NAME##_d, float64, H1_8, OP)
#define DO_FPCMP_PPZZ_ALL(NAME, OP) \
DO_FPCMP_PPZZ_H(NAME, OP) \
DO_FPCMP_PPZZ_S(NAME, OP) \
DO_FPCMP_PPZZ_D(NAME, OP)
#define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0
#define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0
#define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0
#define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0
#define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0
#define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0
#define DO_FCMUO(TYPE, X, Y, ST) \
TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered
#define DO_FACGE(TYPE, X, Y, ST) \
TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0
#define DO_FACGT(TYPE, X, Y, ST) \
TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0
DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE)
DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT)
DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ)
DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE)
DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO)
DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE)
DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT)
#undef DO_FPCMP_PPZZ_ALL
#undef DO_FPCMP_PPZZ_D
#undef DO_FPCMP_PPZZ_S
#undef DO_FPCMP_PPZZ_H
#undef DO_FPCMP_PPZZ
/* One operand floating-point comparison against zero, controlled
* by a predicate.
*/
#define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, \
void *status, uint32_t desc) \
{ \
intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
uint64_t *d = vd, *g = vg; \
do { \
uint64_t out = 0, pg = g[j]; \
do { \
i -= sizeof(TYPE), out <<= sizeof(TYPE); \
if ((pg >> (i & 63)) & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
out |= OP(TYPE, nn, 0, status); \
} \
} while (i & 63); \
d[j--] = out; \
} while (i > 0); \
}
#define DO_FPCMP_PPZ0_H(NAME, OP) \
DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP)
#define DO_FPCMP_PPZ0_S(NAME, OP) \
DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP)
#define DO_FPCMP_PPZ0_D(NAME, OP) \
DO_FPCMP_PPZ0(NAME##_d, float64, H1_8, OP)
#define DO_FPCMP_PPZ0_ALL(NAME, OP) \
DO_FPCMP_PPZ0_H(NAME, OP) \
DO_FPCMP_PPZ0_S(NAME, OP) \
DO_FPCMP_PPZ0_D(NAME, OP)
DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE)
DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT)
DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE)
DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT)
DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ)
DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE)
/* FP Trig Multiply-Add. */
void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
{
static const float16 coeff[16] = {
0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16);
intptr_t x = simd_data(desc);
float16 *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i++) {
float16 mm = m[i];
intptr_t xx = x;
if (float16_is_neg(mm)) {
mm = float16_abs(mm);
xx += 8;
}
d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs);
}
}
void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
{
static const float32 coeff[16] = {
0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9,
0x36369d6d, 0x00000000, 0x00000000, 0x00000000,
0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705,
0x37cd37cc, 0x00000000, 0x00000000, 0x00000000,
};
intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32);
intptr_t x = simd_data(desc);
float32 *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i++) {
float32 mm = m[i];
intptr_t xx = x;
if (float32_is_neg(mm)) {
mm = float32_abs(mm);
xx += 8;
}
d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs);
}
}
void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
{
static const float64 coeff[16] = {
0x3ff0000000000000ull, 0xbfc5555555555543ull,
0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull,
0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull,
0x3de5d8408868552full, 0x0000000000000000ull,
0x3ff0000000000000ull, 0xbfe0000000000000ull,
0x3fa5555555555536ull, 0xbf56c16c16c13a0bull,
0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull,
0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull,
};
intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64);
intptr_t x = simd_data(desc);
float64 *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i++) {
float64 mm = m[i];
intptr_t xx = x;
if (float64_is_neg(mm)) {
mm = float64_abs(mm);
xx += 8;
}
d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs);
}
}
/*
* FP Complex Add
*/
void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg,
void *vs, uint32_t desc)
{
intptr_t j, i = simd_oprsz(desc);
uint64_t *g = vg;
float16 neg_imag = float16_set_sign(0, simd_data(desc));
float16 neg_real = float16_chs(neg_imag);
do {
uint64_t pg = g[(i - 1) >> 6];
do {
float16 e0, e1, e2, e3;
/* I holds the real index; J holds the imag index. */
j = i - sizeof(float16);
i -= 2 * sizeof(float16);
e0 = *(float16 *)(vn + H1_2(i));
e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real;
e2 = *(float16 *)(vn + H1_2(j));
e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag;
if (likely((pg >> (i & 63)) & 1)) {
*(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs);
}
if (likely((pg >> (j & 63)) & 1)) {
*(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs);
}
} while (i & 63);
} while (i != 0);
}
void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg,
void *vs, uint32_t desc)
{
intptr_t j, i = simd_oprsz(desc);
uint64_t *g = vg;
float32 neg_imag = float32_set_sign(0, simd_data(desc));
float32 neg_real = float32_chs(neg_imag);
do {
uint64_t pg = g[(i - 1) >> 6];
do {
float32 e0, e1, e2, e3;
/* I holds the real index; J holds the imag index. */
j = i - sizeof(float32);
i -= 2 * sizeof(float32);
e0 = *(float32 *)(vn + H1_2(i));
e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real;
e2 = *(float32 *)(vn + H1_2(j));
e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag;
if (likely((pg >> (i & 63)) & 1)) {
*(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs);
}
if (likely((pg >> (j & 63)) & 1)) {
*(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs);
}
} while (i & 63);
} while (i != 0);
}
void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg,
void *vs, uint32_t desc)
{
intptr_t j, i = simd_oprsz(desc);
uint64_t *g = vg;
float64 neg_imag = float64_set_sign(0, simd_data(desc));
float64 neg_real = float64_chs(neg_imag);
do {
uint64_t pg = g[(i - 1) >> 6];
do {
float64 e0, e1, e2, e3;
/* I holds the real index; J holds the imag index. */
j = i - sizeof(float64);
i -= 2 * sizeof(float64);
e0 = *(float64 *)(vn + H1_2(i));
e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real;
e2 = *(float64 *)(vn + H1_2(j));
e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag;
if (likely((pg >> (i & 63)) & 1)) {
*(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs);
}
if (likely((pg >> (j & 63)) & 1)) {
*(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs);
}
} while (i & 63);
} while (i != 0);
}
/*
* FP Complex Multiply
*/
void HELPER(sve_fcmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
intptr_t j, i = simd_oprsz(desc);
unsigned rot = simd_data(desc);
bool flip = rot & 1;
float16 neg_imag, neg_real;
uint64_t *g = vg;
neg_imag = float16_set_sign(0, (rot & 2) != 0);
neg_real = float16_set_sign(0, rot == 1 || rot == 2);
do {
uint64_t pg = g[(i - 1) >> 6];
do {
float16 e1, e2, e3, e4, nr, ni, mr, mi, d;
/* I holds the real index; J holds the imag index. */
j = i - sizeof(float16);
i -= 2 * sizeof(float16);
nr = *(float16 *)(vn + H1_2(i));
ni = *(float16 *)(vn + H1_2(j));
mr = *(float16 *)(vm + H1_2(i));
mi = *(float16 *)(vm + H1_2(j));
e2 = (flip ? ni : nr);
e1 = (flip ? mi : mr) ^ neg_real;
e4 = e2;
e3 = (flip ? mr : mi) ^ neg_imag;
if (likely((pg >> (i & 63)) & 1)) {
d = *(float16 *)(va + H1_2(i));
d = float16_muladd(e2, e1, d, 0, status);
*(float16 *)(vd + H1_2(i)) = d;
}
if (likely((pg >> (j & 63)) & 1)) {
d = *(float16 *)(va + H1_2(j));
d = float16_muladd(e4, e3, d, 0, status);
*(float16 *)(vd + H1_2(j)) = d;
}
} while (i & 63);
} while (i != 0);
}
void HELPER(sve_fcmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
intptr_t j, i = simd_oprsz(desc);
unsigned rot = simd_data(desc);
bool flip = rot & 1;
float32 neg_imag, neg_real;
uint64_t *g = vg;
neg_imag = float32_set_sign(0, (rot & 2) != 0);
neg_real = float32_set_sign(0, rot == 1 || rot == 2);
do {
uint64_t pg = g[(i - 1) >> 6];
do {
float32 e1, e2, e3, e4, nr, ni, mr, mi, d;
/* I holds the real index; J holds the imag index. */
j = i - sizeof(float32);
i -= 2 * sizeof(float32);
nr = *(float32 *)(vn + H1_2(i));
ni = *(float32 *)(vn + H1_2(j));
mr = *(float32 *)(vm + H1_2(i));
mi = *(float32 *)(vm + H1_2(j));
e2 = (flip ? ni : nr);
e1 = (flip ? mi : mr) ^ neg_real;
e4 = e2;
e3 = (flip ? mr : mi) ^ neg_imag;
if (likely((pg >> (i & 63)) & 1)) {
d = *(float32 *)(va + H1_2(i));
d = float32_muladd(e2, e1, d, 0, status);
*(float32 *)(vd + H1_2(i)) = d;
}
if (likely((pg >> (j & 63)) & 1)) {
d = *(float32 *)(va + H1_2(j));
d = float32_muladd(e4, e3, d, 0, status);
*(float32 *)(vd + H1_2(j)) = d;
}
} while (i & 63);
} while (i != 0);
}
void HELPER(sve_fcmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
void *vg, void *status, uint32_t desc)
{
intptr_t j, i = simd_oprsz(desc);
unsigned rot = simd_data(desc);
bool flip = rot & 1;
float64 neg_imag, neg_real;
uint64_t *g = vg;
neg_imag = float64_set_sign(0, (rot & 2) != 0);
neg_real = float64_set_sign(0, rot == 1 || rot == 2);
do {
uint64_t pg = g[(i - 1) >> 6];
do {
float64 e1, e2, e3, e4, nr, ni, mr, mi, d;
/* I holds the real index; J holds the imag index. */
j = i - sizeof(float64);
i -= 2 * sizeof(float64);
nr = *(float64 *)(vn + H1_2(i));
ni = *(float64 *)(vn + H1_2(j));
mr = *(float64 *)(vm + H1_2(i));
mi = *(float64 *)(vm + H1_2(j));
e2 = (flip ? ni : nr);
e1 = (flip ? mi : mr) ^ neg_real;
e4 = e2;
e3 = (flip ? mr : mi) ^ neg_imag;
if (likely((pg >> (i & 63)) & 1)) {
d = *(float64 *)(va + H1_2(i));
d = float64_muladd(e2, e1, d, 0, status);
*(float64 *)(vd + H1_2(i)) = d;
}
if (likely((pg >> (j & 63)) & 1)) {
d = *(float64 *)(va + H1_2(j));
d = float64_muladd(e4, e3, d, 0, status);
*(float64 *)(vd + H1_2(j)) = d;
}
} while (i & 63);
} while (i != 0);
}
/*
* Load contiguous data, protected by a governing predicate.
*/
/*
* Skip through a sequence of inactive elements in the guarding predicate @vg,
* beginning at @reg_off bounded by @reg_max. Return the offset of the active
* element >= @reg_off, or @reg_max if there were no active elements at all.
*/
static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off,
intptr_t reg_max, int esz)
{
uint64_t pg_mask = pred_esz_masks[esz];
uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63);
/* In normal usage, the first element is active. */
if (likely(pg & 1)) {
return reg_off;
}
if (pg == 0) {
reg_off &= -64;
do {
reg_off += 64;
if (unlikely(reg_off >= reg_max)) {
/* The entire predicate was false. */
return reg_max;
}
pg = vg[reg_off >> 6] & pg_mask;
} while (pg == 0);
}
reg_off += ctz64(pg);
/* We should never see an out of range predicate bit set. */
tcg_debug_assert(reg_off < reg_max);
return reg_off;
}
/*
* Resolve the guest virtual address to info->host and info->flags.
* If @nofault, return false if the page is invalid, otherwise
* exit via page fault exception.
*/
bool sve_probe_page(SVEHostPage *info, bool nofault, CPUARMState *env,
target_ulong addr, int mem_off, MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
int flags;
addr += mem_off;
/*
* User-only currently always issues with TBI. See the comment
* above useronly_clean_ptr. Usually we clean this top byte away
* during translation, but we can't do that for e.g. vector + imm
* addressing modes.
*
* We currently always enable TBI for user-only, and do not provide
* a way to turn it off. So clean the pointer unconditionally here,
* rather than look it up here, or pass it down from above.
*/
addr = useronly_clean_ptr(addr);
#ifdef CONFIG_USER_ONLY
flags = probe_access_flags(env, addr, 0, access_type, mmu_idx, nofault,
&info->host, retaddr);
#else
CPUTLBEntryFull *full;
flags = probe_access_full(env, addr, 0, access_type, mmu_idx, nofault,
&info->host, &full, retaddr);
#endif
info->flags = flags;
if (flags & TLB_INVALID_MASK) {
g_assert(nofault);
return false;
}
#ifdef CONFIG_USER_ONLY
memset(&info->attrs, 0, sizeof(info->attrs));
/* Require both ANON and MTE; see allocation_tag_mem(). */
info->tagged = (flags & PAGE_ANON) && (flags & PAGE_MTE);
#else
info->attrs = full->attrs;
info->tagged = full->extra.arm.pte_attrs == 0xf0;
#endif
/* Ensure that info->host[] is relative to addr, not addr + mem_off. */
info->host -= mem_off;
return true;
}
/*
* Find first active element on each page, and a loose bound for the
* final element on each page. Identify any single element that spans
* the page boundary. Return true if there are any active elements.
*/
bool sve_cont_ldst_elements(SVEContLdSt *info, target_ulong addr, uint64_t *vg,
intptr_t reg_max, int esz, int msize)
{
const int esize = 1 << esz;
const uint64_t pg_mask = pred_esz_masks[esz];
intptr_t reg_off_first = -1, reg_off_last = -1, reg_off_split;
intptr_t mem_off_last, mem_off_split;
intptr_t page_split, elt_split;
intptr_t i;
/* Set all of the element indices to -1, and the TLB data to 0. */
memset(info, -1, offsetof(SVEContLdSt, page));
memset(info->page, 0, sizeof(info->page));
/* Gross scan over the entire predicate to find bounds. */
i = 0;
do {
uint64_t pg = vg[i] & pg_mask;
if (pg) {
reg_off_last = i * 64 + 63 - clz64(pg);
if (reg_off_first < 0) {
reg_off_first = i * 64 + ctz64(pg);
}
}
} while (++i * 64 < reg_max);
if (unlikely(reg_off_first < 0)) {
/* No active elements, no pages touched. */
return false;
}
tcg_debug_assert(reg_off_last >= 0 && reg_off_last < reg_max);
info->reg_off_first[0] = reg_off_first;
info->mem_off_first[0] = (reg_off_first >> esz) * msize;
mem_off_last = (reg_off_last >> esz) * msize;
page_split = -(addr | TARGET_PAGE_MASK);
if (likely(mem_off_last + msize <= page_split)) {
/* The entire operation fits within a single page. */
info->reg_off_last[0] = reg_off_last;
return true;
}
info->page_split = page_split;
elt_split = page_split / msize;
reg_off_split = elt_split << esz;
mem_off_split = elt_split * msize;
/*
* This is the last full element on the first page, but it is not
* necessarily active. If there is no full element, i.e. the first
* active element is the one that's split, this value remains -1.
* It is useful as iteration bounds.
*/
if (elt_split != 0) {
info->reg_off_last[0] = reg_off_split - esize;
}
/* Determine if an unaligned element spans the pages. */
if (page_split % msize != 0) {
/* It is helpful to know if the split element is active. */
if ((vg[reg_off_split >> 6] >> (reg_off_split & 63)) & 1) {
info->reg_off_split = reg_off_split;
info->mem_off_split = mem_off_split;
if (reg_off_split == reg_off_last) {
/* The page crossing element is last. */
return true;
}
}
reg_off_split += esize;
mem_off_split += msize;
}
/*
* We do want the first active element on the second page, because
* this may affect the address reported in an exception.
*/
reg_off_split = find_next_active(vg, reg_off_split, reg_max, esz);
tcg_debug_assert(reg_off_split <= reg_off_last);
info->reg_off_first[1] = reg_off_split;
info->mem_off_first[1] = (reg_off_split >> esz) * msize;
info->reg_off_last[1] = reg_off_last;
return true;
}
/*
* Resolve the guest virtual addresses to info->page[].
* Control the generation of page faults with @fault. Return false if
* there is no work to do, which can only happen with @fault == FAULT_NO.
*/
bool sve_cont_ldst_pages(SVEContLdSt *info, SVEContFault fault,
CPUARMState *env, target_ulong addr,
MMUAccessType access_type, uintptr_t retaddr)
{
int mmu_idx = arm_env_mmu_index(env);
int mem_off = info->mem_off_first[0];
bool nofault = fault == FAULT_NO;
bool have_work = true;
if (!sve_probe_page(&info->page[0], nofault, env, addr, mem_off,
access_type, mmu_idx, retaddr)) {
/* No work to be done. */
return false;
}
if (likely(info->page_split < 0)) {
/* The entire operation was on the one page. */
return true;
}
/*
* If the second page is invalid, then we want the fault address to be
* the first byte on that page which is accessed.
*/
if (info->mem_off_split >= 0) {
/*
* There is an element split across the pages. The fault address
* should be the first byte of the second page.
*/
mem_off = info->page_split;
/*
* If the split element is also the first active element
* of the vector, then: For first-fault we should continue
* to generate faults for the second page. For no-fault,
* we have work only if the second page is valid.
*/
if (info->mem_off_first[0] < info->mem_off_split) {
nofault = FAULT_FIRST;
have_work = false;
}
} else {
/*
* There is no element split across the pages. The fault address
* should be the first active element on the second page.
*/
mem_off = info->mem_off_first[1];
/*
* There must have been one active element on the first page,
* so we're out of first-fault territory.
*/
nofault = fault != FAULT_ALL;
}
have_work |= sve_probe_page(&info->page[1], nofault, env, addr, mem_off,
access_type, mmu_idx, retaddr);
return have_work;
}
#ifndef CONFIG_USER_ONLY
void sve_cont_ldst_watchpoints(SVEContLdSt *info, CPUARMState *env,
uint64_t *vg, target_ulong addr,
int esize, int msize, int wp_access,
uintptr_t retaddr)
{
intptr_t mem_off, reg_off, reg_last;
int flags0 = info->page[0].flags;
int flags1 = info->page[1].flags;
if (likely(!((flags0 | flags1) & TLB_WATCHPOINT))) {
return;
}
/* Indicate that watchpoints are handled. */
info->page[0].flags = flags0 & ~TLB_WATCHPOINT;
info->page[1].flags = flags1 & ~TLB_WATCHPOINT;
if (flags0 & TLB_WATCHPOINT) {
mem_off = info->mem_off_first[0];
reg_off = info->reg_off_first[0];
reg_last = info->reg_off_last[0];
while (reg_off <= reg_last) {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
cpu_check_watchpoint(env_cpu(env), addr + mem_off,
msize, info->page[0].attrs,
wp_access, retaddr);
}
reg_off += esize;
mem_off += msize;
} while (reg_off <= reg_last && (reg_off & 63));
}
}
mem_off = info->mem_off_split;
if (mem_off >= 0) {
cpu_check_watchpoint(env_cpu(env), addr + mem_off, msize,
info->page[0].attrs, wp_access, retaddr);
}
mem_off = info->mem_off_first[1];
if ((flags1 & TLB_WATCHPOINT) && mem_off >= 0) {
reg_off = info->reg_off_first[1];
reg_last = info->reg_off_last[1];
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
cpu_check_watchpoint(env_cpu(env), addr + mem_off,
msize, info->page[1].attrs,
wp_access, retaddr);
}
reg_off += esize;
mem_off += msize;
} while (reg_off & 63);
} while (reg_off <= reg_last);
}
}
#endif
void sve_cont_ldst_mte_check(SVEContLdSt *info, CPUARMState *env,
uint64_t *vg, target_ulong addr, int esize,
int msize, uint32_t mtedesc, uintptr_t ra)
{
intptr_t mem_off, reg_off, reg_last;
/* Process the page only if MemAttr == Tagged. */
if (info->page[0].tagged) {
mem_off = info->mem_off_first[0];
reg_off = info->reg_off_first[0];
reg_last = info->reg_off_split;
if (reg_last < 0) {
reg_last = info->reg_off_last[0];
}
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
mte_check(env, mtedesc, addr, ra);
}
reg_off += esize;
mem_off += msize;
} while (reg_off <= reg_last && (reg_off & 63));
} while (reg_off <= reg_last);
}
mem_off = info->mem_off_first[1];
if (mem_off >= 0 && info->page[1].tagged) {
reg_off = info->reg_off_first[1];
reg_last = info->reg_off_last[1];
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
mte_check(env, mtedesc, addr, ra);
}
reg_off += esize;
mem_off += msize;
} while (reg_off & 63);
} while (reg_off <= reg_last);
}
}
/*
* Common helper for all contiguous 1,2,3,4-register predicated stores.
*/
static inline QEMU_ALWAYS_INLINE
void sve_ldN_r(CPUARMState *env, uint64_t *vg, const target_ulong addr,
uint32_t desc, const uintptr_t retaddr,
const int esz, const int msz, const int N, uint32_t mtedesc,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
const unsigned rd = simd_data(desc);
const intptr_t reg_max = simd_oprsz(desc);
intptr_t reg_off, reg_last, mem_off;
SVEContLdSt info;
void *host;
int flags, i;
/* Find the active elements. */
if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
/* The entire predicate was false; no load occurs. */
for (i = 0; i < N; ++i) {
memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
}
return;
}
/* Probe the page(s). Exit with exception for any invalid page. */
sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, retaddr);
/* Handle watchpoints for all active elements. */
sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
BP_MEM_READ, retaddr);
/*
* Handle mte checks for all active elements.
* Since TBI must be set for MTE, !mtedesc => !mte_active.
*/
if (mtedesc) {
sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz,
mtedesc, retaddr);
}
flags = info.page[0].flags | info.page[1].flags;
if (unlikely(flags != 0)) {
/*
* At least one page includes MMIO.
* Any bus operation can fail with cpu_transaction_failed,
* which for ARM will raise SyncExternal. Perform the load
* into scratch memory to preserve register state until the end.
*/
ARMVectorReg scratch[4] = { };
mem_off = info.mem_off_first[0];
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[1];
if (reg_last < 0) {
reg_last = info.reg_off_split;
if (reg_last < 0) {
reg_last = info.reg_off_last[0];
}
}
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
for (i = 0; i < N; ++i) {
tlb_fn(env, &scratch[i], reg_off,
addr + mem_off + (i << msz), retaddr);
}
}
reg_off += 1 << esz;
mem_off += N << msz;
} while (reg_off & 63);
} while (reg_off <= reg_last);
for (i = 0; i < N; ++i) {
memcpy(&env->vfp.zregs[(rd + i) & 31], &scratch[i], reg_max);
}
return;
}
/* The entire operation is in RAM, on valid pages. */
for (i = 0; i < N; ++i) {
memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
}
mem_off = info.mem_off_first[0];
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[0];
host = info.page[0].host;
while (reg_off <= reg_last) {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
for (i = 0; i < N; ++i) {
host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
host + mem_off + (i << msz));
}
}
reg_off += 1 << esz;
mem_off += N << msz;
} while (reg_off <= reg_last && (reg_off & 63));
}
/*
* Use the slow path to manage the cross-page misalignment.
* But we know this is RAM and cannot trap.
*/
mem_off = info.mem_off_split;
if (unlikely(mem_off >= 0)) {
reg_off = info.reg_off_split;
for (i = 0; i < N; ++i) {
tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
addr + mem_off + (i << msz), retaddr);
}
}
mem_off = info.mem_off_first[1];
if (unlikely(mem_off >= 0)) {
reg_off = info.reg_off_first[1];
reg_last = info.reg_off_last[1];
host = info.page[1].host;
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
for (i = 0; i < N; ++i) {
host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
host + mem_off + (i << msz));
}
}
reg_off += 1 << esz;
mem_off += N << msz;
} while (reg_off & 63);
} while (reg_off <= reg_last);
}
}
static inline QEMU_ALWAYS_INLINE
void sve_ldN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr,
uint32_t desc, const uintptr_t ra,
const int esz, const int msz, const int N,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
int bit55 = extract64(addr, 55, 1);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Perform gross MTE suppression early. */
if (!tbi_check(mtedesc, bit55) ||
tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) {
mtedesc = 0;
}
sve_ldN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn);
}
#define DO_LD1_1(NAME, ESZ) \
void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, 0, \
sve_##NAME##_host, sve_##NAME##_tlb); \
} \
void HELPER(sve_##NAME##_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, \
sve_##NAME##_host, sve_##NAME##_tlb); \
}
#define DO_LD1_2(NAME, ESZ, MSZ) \
void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \
sve_##NAME##_le_host, sve_##NAME##_le_tlb); \
} \
void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0, \
sve_##NAME##_be_host, sve_##NAME##_be_tlb); \
} \
void HELPER(sve_##NAME##_le_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \
sve_##NAME##_le_host, sve_##NAME##_le_tlb); \
} \
void HELPER(sve_##NAME##_be_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \
sve_##NAME##_be_host, sve_##NAME##_be_tlb); \
}
DO_LD1_1(ld1bb, MO_8)
DO_LD1_1(ld1bhu, MO_16)
DO_LD1_1(ld1bhs, MO_16)
DO_LD1_1(ld1bsu, MO_32)
DO_LD1_1(ld1bss, MO_32)
DO_LD1_1(ld1bdu, MO_64)
DO_LD1_1(ld1bds, MO_64)
DO_LD1_2(ld1hh, MO_16, MO_16)
DO_LD1_2(ld1hsu, MO_32, MO_16)
DO_LD1_2(ld1hss, MO_32, MO_16)
DO_LD1_2(ld1hdu, MO_64, MO_16)
DO_LD1_2(ld1hds, MO_64, MO_16)
DO_LD1_2(ld1ss, MO_32, MO_32)
DO_LD1_2(ld1sdu, MO_64, MO_32)
DO_LD1_2(ld1sds, MO_64, MO_32)
DO_LD1_2(ld1dd, MO_64, MO_64)
#undef DO_LD1_1
#undef DO_LD1_2
#define DO_LDN_1(N) \
void HELPER(sve_ld##N##bb_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, 0, \
sve_ld1bb_host, sve_ld1bb_tlb); \
} \
void HELPER(sve_ld##N##bb_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r_mte(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, \
sve_ld1bb_host, sve_ld1bb_tlb); \
}
#define DO_LDN_2(N, SUFF, ESZ) \
void HELPER(sve_ld##N##SUFF##_le_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \
sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \
} \
void HELPER(sve_ld##N##SUFF##_be_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0, \
sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \
} \
void HELPER(sve_ld##N##SUFF##_le_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \
sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \
} \
void HELPER(sve_ld##N##SUFF##_be_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \
sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \
}
DO_LDN_1(2)
DO_LDN_1(3)
DO_LDN_1(4)
DO_LDN_2(2, hh, MO_16)
DO_LDN_2(3, hh, MO_16)
DO_LDN_2(4, hh, MO_16)
DO_LDN_2(2, ss, MO_32)
DO_LDN_2(3, ss, MO_32)
DO_LDN_2(4, ss, MO_32)
DO_LDN_2(2, dd, MO_64)
DO_LDN_2(3, dd, MO_64)
DO_LDN_2(4, dd, MO_64)
#undef DO_LDN_1
#undef DO_LDN_2
/*
* Load contiguous data, first-fault and no-fault.
*
* For user-only, one could argue that we should hold the mmap_lock during
* the operation so that there is no race between page_check_range and the
* load operation. However, unmapping pages out from under a running thread
* is extraordinarily unlikely. This theoretical race condition also affects
* linux-user/ in its get_user/put_user macros.
*
* TODO: Construct some helpers, written in assembly, that interact with
* host_signal_handler to produce memory ops which can properly report errors
* without racing.
*/
/* Fault on byte I. All bits in FFR from I are cleared. The vector
* result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
* option, which leaves subsequent data unchanged.
*/
static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
{
uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p;
if (i & 63) {
ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63);
i = ROUND_UP(i, 64);
}
for (; i < oprsz; i += 64) {
ffr[i / 64] = 0;
}
}
/*
* Common helper for all contiguous no-fault and first-fault loads.
*/
static inline QEMU_ALWAYS_INLINE
void sve_ldnfff1_r(CPUARMState *env, void *vg, const target_ulong addr,
uint32_t desc, const uintptr_t retaddr, uint32_t mtedesc,
const int esz, const int msz, const SVEContFault fault,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
const unsigned rd = simd_data(desc);
void *vd = &env->vfp.zregs[rd];
const intptr_t reg_max = simd_oprsz(desc);
intptr_t reg_off, mem_off, reg_last;
SVEContLdSt info;
int flags;
void *host;
/* Find the active elements. */
if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, 1 << msz)) {
/* The entire predicate was false; no load occurs. */
memset(vd, 0, reg_max);
return;
}
reg_off = info.reg_off_first[0];
/* Probe the page(s). */
if (!sve_cont_ldst_pages(&info, fault, env, addr, MMU_DATA_LOAD, retaddr)) {
/* Fault on first element. */
tcg_debug_assert(fault == FAULT_NO);
memset(vd, 0, reg_max);
goto do_fault;
}
mem_off = info.mem_off_first[0];
flags = info.page[0].flags;
/*
* Disable MTE checking if the Tagged bit is not set. Since TBI must
* be set within MTEDESC for MTE, !mtedesc => !mte_active.
*/
if (!info.page[0].tagged) {
mtedesc = 0;
}
if (fault == FAULT_FIRST) {
/* Trapping mte check for the first-fault element. */
if (mtedesc) {
mte_check(env, mtedesc, addr + mem_off, retaddr);
}
/*
* Special handling of the first active element,
* if it crosses a page boundary or is MMIO.
*/
bool is_split = mem_off == info.mem_off_split;
if (unlikely(flags != 0) || unlikely(is_split)) {
/*
* Use the slow path for cross-page handling.
* Might trap for MMIO or watchpoints.
*/
tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
/* After any fault, zero the other elements. */
swap_memzero(vd, reg_off);
reg_off += 1 << esz;
mem_off += 1 << msz;
swap_memzero(vd + reg_off, reg_max - reg_off);
if (is_split) {
goto second_page;
}
} else {
memset(vd, 0, reg_max);
}
} else {
memset(vd, 0, reg_max);
if (unlikely(mem_off == info.mem_off_split)) {
/* The first active element crosses a page boundary. */
flags |= info.page[1].flags;
if (unlikely(flags & TLB_MMIO)) {
/* Some page is MMIO, see below. */
goto do_fault;
}
if (unlikely(flags & TLB_WATCHPOINT) &&
(cpu_watchpoint_address_matches
(env_cpu(env), addr + mem_off, 1 << msz)
& BP_MEM_READ)) {
/* Watchpoint hit, see below. */
goto do_fault;
}
if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) {
goto do_fault;
}
/*
* Use the slow path for cross-page handling.
* This is RAM, without a watchpoint, and will not trap.
*/
tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
goto second_page;
}
}
/*
* From this point on, all memory operations are MemSingleNF.
*
* Per the MemSingleNF pseudocode, a no-fault load from Device memory
* must not actually hit the bus -- it returns (UNKNOWN, FAULT) instead.
*
* Unfortuately we do not have access to the memory attributes from the
* PTE to tell Device memory from Normal memory. So we make a mostly
* correct check, and indicate (UNKNOWN, FAULT) for any MMIO.
* This gives the right answer for the common cases of "Normal memory,
* backed by host RAM" and "Device memory, backed by MMIO".
* The architecture allows us to suppress an NF load and return
* (UNKNOWN, FAULT) for any reason, so our behaviour for the corner
* case of "Normal memory, backed by MMIO" is permitted. The case we
* get wrong is "Device memory, backed by host RAM", for which we
* should return (UNKNOWN, FAULT) for but do not.
*
* Similarly, CPU_BP breakpoints would raise exceptions, and so
* return (UNKNOWN, FAULT). For simplicity, we consider gdb and
* architectural breakpoints the same.
*/
if (unlikely(flags & TLB_MMIO)) {
goto do_fault;
}
reg_last = info.reg_off_last[0];
host = info.page[0].host;
do {
uint64_t pg = *(uint64_t *)(vg + (reg_off >> 3));
do {
if ((pg >> (reg_off & 63)) & 1) {
if (unlikely(flags & TLB_WATCHPOINT) &&
(cpu_watchpoint_address_matches
(env_cpu(env), addr + mem_off, 1 << msz)
& BP_MEM_READ)) {
goto do_fault;
}
if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) {
goto do_fault;
}
host_fn(vd, reg_off, host + mem_off);
}
reg_off += 1 << esz;
mem_off += 1 << msz;
} while (reg_off <= reg_last && (reg_off & 63));
} while (reg_off <= reg_last);
/*
* MemSingleNF is allowed to fail for any reason. We have special
* code above to handle the first element crossing a page boundary.
* As an implementation choice, decline to handle a cross-page element
* in any other position.
*/
reg_off = info.reg_off_split;
if (reg_off >= 0) {
goto do_fault;
}
second_page:
reg_off = info.reg_off_first[1];
if (likely(reg_off < 0)) {
/* No active elements on the second page. All done. */
return;
}
/*
* MemSingleNF is allowed to fail for any reason. As an implementation
* choice, decline to handle elements on the second page. This should
* be low frequency as the guest walks through memory -- the next
* iteration of the guest's loop should be aligned on the page boundary,
* and then all following iterations will stay aligned.
*/
do_fault:
record_fault(env, reg_off, reg_max);
}
static inline QEMU_ALWAYS_INLINE
void sve_ldnfff1_r_mte(CPUARMState *env, void *vg, target_ulong addr,
uint32_t desc, const uintptr_t retaddr,
const int esz, const int msz, const SVEContFault fault,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
int bit55 = extract64(addr, 55, 1);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Perform gross MTE suppression early. */
if (!tbi_check(mtedesc, bit55) ||
tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) {
mtedesc = 0;
}
sve_ldnfff1_r(env, vg, addr, desc, retaddr, mtedesc,
esz, msz, fault, host_fn, tlb_fn);
}
#define DO_LDFF1_LDNF1_1(PART, ESZ) \
void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_FIRST, \
sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
} \
void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_NO, \
sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
} \
void HELPER(sve_ldff1##PART##_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_FIRST, \
sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
} \
void HELPER(sve_ldnf1##PART##_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_NO, \
sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
}
#define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \
void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \
sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
} \
void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \
sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
} \
void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \
sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
} \
void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO, \
sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
} \
void HELPER(sve_ldff1##PART##_le_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
} \
void HELPER(sve_ldnf1##PART##_le_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
} \
void HELPER(sve_ldff1##PART##_be_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
} \
void HELPER(sve_ldnf1##PART##_be_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
}
DO_LDFF1_LDNF1_1(bb, MO_8)
DO_LDFF1_LDNF1_1(bhu, MO_16)
DO_LDFF1_LDNF1_1(bhs, MO_16)
DO_LDFF1_LDNF1_1(bsu, MO_32)
DO_LDFF1_LDNF1_1(bss, MO_32)
DO_LDFF1_LDNF1_1(bdu, MO_64)
DO_LDFF1_LDNF1_1(bds, MO_64)
DO_LDFF1_LDNF1_2(hh, MO_16, MO_16)
DO_LDFF1_LDNF1_2(hsu, MO_32, MO_16)
DO_LDFF1_LDNF1_2(hss, MO_32, MO_16)
DO_LDFF1_LDNF1_2(hdu, MO_64, MO_16)
DO_LDFF1_LDNF1_2(hds, MO_64, MO_16)
DO_LDFF1_LDNF1_2(ss, MO_32, MO_32)
DO_LDFF1_LDNF1_2(sdu, MO_64, MO_32)
DO_LDFF1_LDNF1_2(sds, MO_64, MO_32)
DO_LDFF1_LDNF1_2(dd, MO_64, MO_64)
#undef DO_LDFF1_LDNF1_1
#undef DO_LDFF1_LDNF1_2
/*
* Common helper for all contiguous 1,2,3,4-register predicated stores.
*/
static inline QEMU_ALWAYS_INLINE
void sve_stN_r(CPUARMState *env, uint64_t *vg, target_ulong addr,
uint32_t desc, const uintptr_t retaddr,
const int esz, const int msz, const int N, uint32_t mtedesc,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
const unsigned rd = simd_data(desc);
const intptr_t reg_max = simd_oprsz(desc);
intptr_t reg_off, reg_last, mem_off;
SVEContLdSt info;
void *host;
int i, flags;
/* Find the active elements. */
if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
/* The entire predicate was false; no store occurs. */
return;
}
/* Probe the page(s). Exit with exception for any invalid page. */
sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, retaddr);
/* Handle watchpoints for all active elements. */
sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
BP_MEM_WRITE, retaddr);
/*
* Handle mte checks for all active elements.
* Since TBI must be set for MTE, !mtedesc => !mte_active.
*/
if (mtedesc) {
sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz,
mtedesc, retaddr);
}
flags = info.page[0].flags | info.page[1].flags;
if (unlikely(flags != 0)) {
#ifdef CONFIG_USER_ONLY
g_assert_not_reached();
#else
/*
* At least one page includes MMIO.
* Any bus operation can fail with cpu_transaction_failed,
* which for ARM will raise SyncExternal. We cannot avoid
* this fault and will leave with the store incomplete.
*/
mem_off = info.mem_off_first[0];
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[1];
if (reg_last < 0) {
reg_last = info.reg_off_split;
if (reg_last < 0) {
reg_last = info.reg_off_last[0];
}
}
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
for (i = 0; i < N; ++i) {
tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
addr + mem_off + (i << msz), retaddr);
}
}
reg_off += 1 << esz;
mem_off += N << msz;
} while (reg_off & 63);
} while (reg_off <= reg_last);
return;
#endif
}
mem_off = info.mem_off_first[0];
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[0];
host = info.page[0].host;
while (reg_off <= reg_last) {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
for (i = 0; i < N; ++i) {
host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
host + mem_off + (i << msz));
}
}
reg_off += 1 << esz;
mem_off += N << msz;
} while (reg_off <= reg_last && (reg_off & 63));
}
/*
* Use the slow path to manage the cross-page misalignment.
* But we know this is RAM and cannot trap.
*/
mem_off = info.mem_off_split;
if (unlikely(mem_off >= 0)) {
reg_off = info.reg_off_split;
for (i = 0; i < N; ++i) {
tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
addr + mem_off + (i << msz), retaddr);
}
}
mem_off = info.mem_off_first[1];
if (unlikely(mem_off >= 0)) {
reg_off = info.reg_off_first[1];
reg_last = info.reg_off_last[1];
host = info.page[1].host;
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
for (i = 0; i < N; ++i) {
host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
host + mem_off + (i << msz));
}
}
reg_off += 1 << esz;
mem_off += N << msz;
} while (reg_off & 63);
} while (reg_off <= reg_last);
}
}
static inline QEMU_ALWAYS_INLINE
void sve_stN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr,
uint32_t desc, const uintptr_t ra,
const int esz, const int msz, const int N,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
int bit55 = extract64(addr, 55, 1);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Perform gross MTE suppression early. */
if (!tbi_check(mtedesc, bit55) ||
tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) {
mtedesc = 0;
}
sve_stN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn);
}
#define DO_STN_1(N, NAME, ESZ) \
void HELPER(sve_st##N##NAME##_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, 0, \
sve_st1##NAME##_host, sve_st1##NAME##_tlb); \
} \
void HELPER(sve_st##N##NAME##_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, \
sve_st1##NAME##_host, sve_st1##NAME##_tlb); \
}
#define DO_STN_2(N, NAME, ESZ, MSZ) \
void HELPER(sve_st##N##NAME##_le_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \
sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \
} \
void HELPER(sve_st##N##NAME##_be_r)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0, \
sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \
} \
void HELPER(sve_st##N##NAME##_le_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \
sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \
} \
void HELPER(sve_st##N##NAME##_be_r_mte)(CPUARMState *env, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \
sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \
}
DO_STN_1(1, bb, MO_8)
DO_STN_1(1, bh, MO_16)
DO_STN_1(1, bs, MO_32)
DO_STN_1(1, bd, MO_64)
DO_STN_1(2, bb, MO_8)
DO_STN_1(3, bb, MO_8)
DO_STN_1(4, bb, MO_8)
DO_STN_2(1, hh, MO_16, MO_16)
DO_STN_2(1, hs, MO_32, MO_16)
DO_STN_2(1, hd, MO_64, MO_16)
DO_STN_2(2, hh, MO_16, MO_16)
DO_STN_2(3, hh, MO_16, MO_16)
DO_STN_2(4, hh, MO_16, MO_16)
DO_STN_2(1, ss, MO_32, MO_32)
DO_STN_2(1, sd, MO_64, MO_32)
DO_STN_2(2, ss, MO_32, MO_32)
DO_STN_2(3, ss, MO_32, MO_32)
DO_STN_2(4, ss, MO_32, MO_32)
DO_STN_2(1, dd, MO_64, MO_64)
DO_STN_2(2, dd, MO_64, MO_64)
DO_STN_2(3, dd, MO_64, MO_64)
DO_STN_2(4, dd, MO_64, MO_64)
#undef DO_STN_1
#undef DO_STN_2
/*
* Loads with a vector index.
*/
/*
* Load the element at @reg + @reg_ofs, sign or zero-extend as needed.
*/
typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs);
static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs)
{
return *(uint32_t *)(reg + H1_4(reg_ofs));
}
static target_ulong off_zss_s(void *reg, intptr_t reg_ofs)
{
return *(int32_t *)(reg + H1_4(reg_ofs));
}
static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs)
{
return (uint32_t)*(uint64_t *)(reg + reg_ofs);
}
static target_ulong off_zss_d(void *reg, intptr_t reg_ofs)
{
return (int32_t)*(uint64_t *)(reg + reg_ofs);
}
static target_ulong off_zd_d(void *reg, intptr_t reg_ofs)
{
return *(uint64_t *)(reg + reg_ofs);
}
static inline QEMU_ALWAYS_INLINE
void sve_ld1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
target_ulong base, uint32_t desc, uintptr_t retaddr,
uint32_t mtedesc, int esize, int msize,
zreg_off_fn *off_fn,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
const int mmu_idx = arm_env_mmu_index(env);
const intptr_t reg_max = simd_oprsz(desc);
const int scale = simd_data(desc);
ARMVectorReg scratch;
intptr_t reg_off;
SVEHostPage info, info2;
memset(&scratch, 0, reg_max);
reg_off = 0;
do {
uint64_t pg = vg[reg_off >> 6];
do {
if (likely(pg & 1)) {
target_ulong addr = base + (off_fn(vm, reg_off) << scale);
target_ulong in_page = -(addr | TARGET_PAGE_MASK);
sve_probe_page(&info, false, env, addr, 0, MMU_DATA_LOAD,
mmu_idx, retaddr);
if (likely(in_page >= msize)) {
if (unlikely(info.flags & TLB_WATCHPOINT)) {
cpu_check_watchpoint(env_cpu(env), addr, msize,
info.attrs, BP_MEM_READ, retaddr);
}
if (mtedesc && info.tagged) {
mte_check(env, mtedesc, addr, retaddr);
}
if (unlikely(info.flags & TLB_MMIO)) {
tlb_fn(env, &scratch, reg_off, addr, retaddr);
} else {
host_fn(&scratch, reg_off, info.host);
}
} else {
/* Element crosses the page boundary. */
sve_probe_page(&info2, false, env, addr + in_page, 0,
MMU_DATA_LOAD, mmu_idx, retaddr);
if (unlikely((info.flags | info2.flags) & TLB_WATCHPOINT)) {
cpu_check_watchpoint(env_cpu(env), addr,
msize, info.attrs,
BP_MEM_READ, retaddr);
}
if (mtedesc && info.tagged) {
mte_check(env, mtedesc, addr, retaddr);
}
tlb_fn(env, &scratch, reg_off, addr, retaddr);
}
}
reg_off += esize;
pg >>= esize;
} while (reg_off & 63);
} while (reg_off < reg_max);
/* Wait until all exceptions have been raised to write back. */
memcpy(vd, &scratch, reg_max);
}
static inline QEMU_ALWAYS_INLINE
void sve_ld1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
target_ulong base, uint32_t desc, uintptr_t retaddr,
int esize, int msize, zreg_off_fn *off_fn,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/*
* ??? TODO: For the 32-bit offset extractions, base + ofs cannot
* offset base entirely over the address space hole to change the
* pointer tag, or change the bit55 selector. So we could here
* examine TBI + TCMA like we do for sve_ldN_r_mte().
*/
sve_ld1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
esize, msize, off_fn, host_fn, tlb_fn);
}
#define DO_LD1_ZPZ_S(MEM, OFS, MSZ) \
void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \
off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
} \
void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \
off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
}
#define DO_LD1_ZPZ_D(MEM, OFS, MSZ) \
void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \
off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
} \
void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \
off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
}
DO_LD1_ZPZ_S(bsu, zsu, MO_8)
DO_LD1_ZPZ_S(bsu, zss, MO_8)
DO_LD1_ZPZ_D(bdu, zsu, MO_8)
DO_LD1_ZPZ_D(bdu, zss, MO_8)
DO_LD1_ZPZ_D(bdu, zd, MO_8)
DO_LD1_ZPZ_S(bss, zsu, MO_8)
DO_LD1_ZPZ_S(bss, zss, MO_8)
DO_LD1_ZPZ_D(bds, zsu, MO_8)
DO_LD1_ZPZ_D(bds, zss, MO_8)
DO_LD1_ZPZ_D(bds, zd, MO_8)
DO_LD1_ZPZ_S(hsu_le, zsu, MO_16)
DO_LD1_ZPZ_S(hsu_le, zss, MO_16)
DO_LD1_ZPZ_D(hdu_le, zsu, MO_16)
DO_LD1_ZPZ_D(hdu_le, zss, MO_16)
DO_LD1_ZPZ_D(hdu_le, zd, MO_16)
DO_LD1_ZPZ_S(hsu_be, zsu, MO_16)
DO_LD1_ZPZ_S(hsu_be, zss, MO_16)
DO_LD1_ZPZ_D(hdu_be, zsu, MO_16)
DO_LD1_ZPZ_D(hdu_be, zss, MO_16)
DO_LD1_ZPZ_D(hdu_be, zd, MO_16)
DO_LD1_ZPZ_S(hss_le, zsu, MO_16)
DO_LD1_ZPZ_S(hss_le, zss, MO_16)
DO_LD1_ZPZ_D(hds_le, zsu, MO_16)
DO_LD1_ZPZ_D(hds_le, zss, MO_16)
DO_LD1_ZPZ_D(hds_le, zd, MO_16)
DO_LD1_ZPZ_S(hss_be, zsu, MO_16)
DO_LD1_ZPZ_S(hss_be, zss, MO_16)
DO_LD1_ZPZ_D(hds_be, zsu, MO_16)
DO_LD1_ZPZ_D(hds_be, zss, MO_16)
DO_LD1_ZPZ_D(hds_be, zd, MO_16)
DO_LD1_ZPZ_S(ss_le, zsu, MO_32)
DO_LD1_ZPZ_S(ss_le, zss, MO_32)
DO_LD1_ZPZ_D(sdu_le, zsu, MO_32)
DO_LD1_ZPZ_D(sdu_le, zss, MO_32)
DO_LD1_ZPZ_D(sdu_le, zd, MO_32)
DO_LD1_ZPZ_S(ss_be, zsu, MO_32)
DO_LD1_ZPZ_S(ss_be, zss, MO_32)
DO_LD1_ZPZ_D(sdu_be, zsu, MO_32)
DO_LD1_ZPZ_D(sdu_be, zss, MO_32)
DO_LD1_ZPZ_D(sdu_be, zd, MO_32)
DO_LD1_ZPZ_D(sds_le, zsu, MO_32)
DO_LD1_ZPZ_D(sds_le, zss, MO_32)
DO_LD1_ZPZ_D(sds_le, zd, MO_32)
DO_LD1_ZPZ_D(sds_be, zsu, MO_32)
DO_LD1_ZPZ_D(sds_be, zss, MO_32)
DO_LD1_ZPZ_D(sds_be, zd, MO_32)
DO_LD1_ZPZ_D(dd_le, zsu, MO_64)
DO_LD1_ZPZ_D(dd_le, zss, MO_64)
DO_LD1_ZPZ_D(dd_le, zd, MO_64)
DO_LD1_ZPZ_D(dd_be, zsu, MO_64)
DO_LD1_ZPZ_D(dd_be, zss, MO_64)
DO_LD1_ZPZ_D(dd_be, zd, MO_64)
#undef DO_LD1_ZPZ_S
#undef DO_LD1_ZPZ_D
/* First fault loads with a vector index. */
/*
* Common helpers for all gather first-faulting loads.
*/
static inline QEMU_ALWAYS_INLINE
void sve_ldff1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
target_ulong base, uint32_t desc, uintptr_t retaddr,
uint32_t mtedesc, const int esz, const int msz,
zreg_off_fn *off_fn,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
const int mmu_idx = arm_env_mmu_index(env);
const intptr_t reg_max = simd_oprsz(desc);
const int scale = simd_data(desc);
const int esize = 1 << esz;
const int msize = 1 << msz;
intptr_t reg_off;
SVEHostPage info;
target_ulong addr, in_page;
ARMVectorReg scratch;
/* Skip to the first true predicate. */
reg_off = find_next_active(vg, 0, reg_max, esz);
if (unlikely(reg_off >= reg_max)) {
/* The entire predicate was false; no load occurs. */
memset(vd, 0, reg_max);
return;
}
/* Protect against overlap between vd and vm. */
if (unlikely(vd == vm)) {
vm = memcpy(&scratch, vm, reg_max);
}
/*
* Probe the first element, allowing faults.
*/
addr = base + (off_fn(vm, reg_off) << scale);
if (mtedesc) {
mte_check(env, mtedesc, addr, retaddr);
}
tlb_fn(env, vd, reg_off, addr, retaddr);
/* After any fault, zero the other elements. */
swap_memzero(vd, reg_off);
reg_off += esize;
swap_memzero(vd + reg_off, reg_max - reg_off);
/*
* Probe the remaining elements, not allowing faults.
*/
while (reg_off < reg_max) {
uint64_t pg = vg[reg_off >> 6];
do {
if (likely((pg >> (reg_off & 63)) & 1)) {
addr = base + (off_fn(vm, reg_off) << scale);
in_page = -(addr | TARGET_PAGE_MASK);
if (unlikely(in_page < msize)) {
/* Stop if the element crosses a page boundary. */
goto fault;
}
sve_probe_page(&info, true, env, addr, 0, MMU_DATA_LOAD,
mmu_idx, retaddr);
if (unlikely(info.flags & (TLB_INVALID_MASK | TLB_MMIO))) {
goto fault;
}
if (unlikely(info.flags & TLB_WATCHPOINT) &&
(cpu_watchpoint_address_matches
(env_cpu(env), addr, msize) & BP_MEM_READ)) {
goto fault;
}
if (mtedesc && info.tagged && !mte_probe(env, mtedesc, addr)) {
goto fault;
}
host_fn(vd, reg_off, info.host);
}
reg_off += esize;
} while (reg_off & 63);
}
return;
fault:
record_fault(env, reg_off, reg_max);
}
static inline QEMU_ALWAYS_INLINE
void sve_ldff1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
target_ulong base, uint32_t desc, uintptr_t retaddr,
const int esz, const int msz,
zreg_off_fn *off_fn,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/*
* ??? TODO: For the 32-bit offset extractions, base + ofs cannot
* offset base entirely over the address space hole to change the
* pointer tag, or change the bit55 selector. So we could here
* examine TBI + TCMA like we do for sve_ldN_r_mte().
*/
sve_ldff1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
esz, msz, off_fn, host_fn, tlb_fn);
}
#define DO_LDFF1_ZPZ_S(MEM, OFS, MSZ) \
void HELPER(sve_ldff##MEM##_##OFS) \
(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_32, MSZ, \
off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
} \
void HELPER(sve_ldff##MEM##_##OFS##_mte) \
(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_32, MSZ, \
off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
}
#define DO_LDFF1_ZPZ_D(MEM, OFS, MSZ) \
void HELPER(sve_ldff##MEM##_##OFS) \
(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_64, MSZ, \
off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
} \
void HELPER(sve_ldff##MEM##_##OFS##_mte) \
(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_64, MSZ, \
off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
}
DO_LDFF1_ZPZ_S(bsu, zsu, MO_8)
DO_LDFF1_ZPZ_S(bsu, zss, MO_8)
DO_LDFF1_ZPZ_D(bdu, zsu, MO_8)
DO_LDFF1_ZPZ_D(bdu, zss, MO_8)
DO_LDFF1_ZPZ_D(bdu, zd, MO_8)
DO_LDFF1_ZPZ_S(bss, zsu, MO_8)
DO_LDFF1_ZPZ_S(bss, zss, MO_8)
DO_LDFF1_ZPZ_D(bds, zsu, MO_8)
DO_LDFF1_ZPZ_D(bds, zss, MO_8)
DO_LDFF1_ZPZ_D(bds, zd, MO_8)
DO_LDFF1_ZPZ_S(hsu_le, zsu, MO_16)
DO_LDFF1_ZPZ_S(hsu_le, zss, MO_16)
DO_LDFF1_ZPZ_D(hdu_le, zsu, MO_16)
DO_LDFF1_ZPZ_D(hdu_le, zss, MO_16)
DO_LDFF1_ZPZ_D(hdu_le, zd, MO_16)
DO_LDFF1_ZPZ_S(hsu_be, zsu, MO_16)
DO_LDFF1_ZPZ_S(hsu_be, zss, MO_16)
DO_LDFF1_ZPZ_D(hdu_be, zsu, MO_16)
DO_LDFF1_ZPZ_D(hdu_be, zss, MO_16)
DO_LDFF1_ZPZ_D(hdu_be, zd, MO_16)
DO_LDFF1_ZPZ_S(hss_le, zsu, MO_16)
DO_LDFF1_ZPZ_S(hss_le, zss, MO_16)
DO_LDFF1_ZPZ_D(hds_le, zsu, MO_16)
DO_LDFF1_ZPZ_D(hds_le, zss, MO_16)
DO_LDFF1_ZPZ_D(hds_le, zd, MO_16)
DO_LDFF1_ZPZ_S(hss_be, zsu, MO_16)
DO_LDFF1_ZPZ_S(hss_be, zss, MO_16)
DO_LDFF1_ZPZ_D(hds_be, zsu, MO_16)
DO_LDFF1_ZPZ_D(hds_be, zss, MO_16)
DO_LDFF1_ZPZ_D(hds_be, zd, MO_16)
DO_LDFF1_ZPZ_S(ss_le, zsu, MO_32)
DO_LDFF1_ZPZ_S(ss_le, zss, MO_32)
DO_LDFF1_ZPZ_D(sdu_le, zsu, MO_32)
DO_LDFF1_ZPZ_D(sdu_le, zss, MO_32)
DO_LDFF1_ZPZ_D(sdu_le, zd, MO_32)
DO_LDFF1_ZPZ_S(ss_be, zsu, MO_32)
DO_LDFF1_ZPZ_S(ss_be, zss, MO_32)
DO_LDFF1_ZPZ_D(sdu_be, zsu, MO_32)
DO_LDFF1_ZPZ_D(sdu_be, zss, MO_32)
DO_LDFF1_ZPZ_D(sdu_be, zd, MO_32)
DO_LDFF1_ZPZ_D(sds_le, zsu, MO_32)
DO_LDFF1_ZPZ_D(sds_le, zss, MO_32)
DO_LDFF1_ZPZ_D(sds_le, zd, MO_32)
DO_LDFF1_ZPZ_D(sds_be, zsu, MO_32)
DO_LDFF1_ZPZ_D(sds_be, zss, MO_32)
DO_LDFF1_ZPZ_D(sds_be, zd, MO_32)
DO_LDFF1_ZPZ_D(dd_le, zsu, MO_64)
DO_LDFF1_ZPZ_D(dd_le, zss, MO_64)
DO_LDFF1_ZPZ_D(dd_le, zd, MO_64)
DO_LDFF1_ZPZ_D(dd_be, zsu, MO_64)
DO_LDFF1_ZPZ_D(dd_be, zss, MO_64)
DO_LDFF1_ZPZ_D(dd_be, zd, MO_64)
/* Stores with a vector index. */
static inline QEMU_ALWAYS_INLINE
void sve_st1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
target_ulong base, uint32_t desc, uintptr_t retaddr,
uint32_t mtedesc, int esize, int msize,
zreg_off_fn *off_fn,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
const int mmu_idx = arm_env_mmu_index(env);
const intptr_t reg_max = simd_oprsz(desc);
const int scale = simd_data(desc);
void *host[ARM_MAX_VQ * 4];
intptr_t reg_off, i;
SVEHostPage info, info2;
/*
* Probe all of the elements for host addresses and flags.
*/
i = reg_off = 0;
do {
uint64_t pg = vg[reg_off >> 6];
do {
target_ulong addr = base + (off_fn(vm, reg_off) << scale);
target_ulong in_page = -(addr | TARGET_PAGE_MASK);
host[i] = NULL;
if (likely((pg >> (reg_off & 63)) & 1)) {
if (likely(in_page >= msize)) {
sve_probe_page(&info, false, env, addr, 0, MMU_DATA_STORE,
mmu_idx, retaddr);
if (!(info.flags & TLB_MMIO)) {
host[i] = info.host;
}
} else {
/*
* Element crosses the page boundary.
* Probe both pages, but do not record the host address,
* so that we use the slow path.
*/
sve_probe_page(&info, false, env, addr, 0,
MMU_DATA_STORE, mmu_idx, retaddr);
sve_probe_page(&info2, false, env, addr + in_page, 0,
MMU_DATA_STORE, mmu_idx, retaddr);
info.flags |= info2.flags;
}
if (unlikely(info.flags & TLB_WATCHPOINT)) {
cpu_check_watchpoint(env_cpu(env), addr, msize,
info.attrs, BP_MEM_WRITE, retaddr);
}
if (mtedesc && info.tagged) {
mte_check(env, mtedesc, addr, retaddr);
}
}
i += 1;
reg_off += esize;
} while (reg_off & 63);
} while (reg_off < reg_max);
/*
* Now that we have recognized all exceptions except SyncExternal
* (from TLB_MMIO), which we cannot avoid, perform all of the stores.
*
* Note for the common case of an element in RAM, not crossing a page
* boundary, we have stored the host address in host[]. This doubles
* as a first-level check against the predicate, since only enabled
* elements have non-null host addresses.
*/
i = reg_off = 0;
do {
void *h = host[i];
if (likely(h != NULL)) {
host_fn(vd, reg_off, h);
} else if ((vg[reg_off >> 6] >> (reg_off & 63)) & 1) {
target_ulong addr = base + (off_fn(vm, reg_off) << scale);
tlb_fn(env, vd, reg_off, addr, retaddr);
}
i += 1;
reg_off += esize;
} while (reg_off < reg_max);
}
static inline QEMU_ALWAYS_INLINE
void sve_st1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
target_ulong base, uint32_t desc, uintptr_t retaddr,
int esize, int msize, zreg_off_fn *off_fn,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/*
* ??? TODO: For the 32-bit offset extractions, base + ofs cannot
* offset base entirely over the address space hole to change the
* pointer tag, or change the bit55 selector. So we could here
* examine TBI + TCMA like we do for sve_ldN_r_mte().
*/
sve_st1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
esize, msize, off_fn, host_fn, tlb_fn);
}
#define DO_ST1_ZPZ_S(MEM, OFS, MSZ) \
void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ, \
off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
} \
void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \
off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
}
#define DO_ST1_ZPZ_D(MEM, OFS, MSZ) \
void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ, \
off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
} \
void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
void *vm, target_ulong base, uint32_t desc) \
{ \
sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \
off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
}
DO_ST1_ZPZ_S(bs, zsu, MO_8)
DO_ST1_ZPZ_S(hs_le, zsu, MO_16)
DO_ST1_ZPZ_S(hs_be, zsu, MO_16)
DO_ST1_ZPZ_S(ss_le, zsu, MO_32)
DO_ST1_ZPZ_S(ss_be, zsu, MO_32)
DO_ST1_ZPZ_S(bs, zss, MO_8)
DO_ST1_ZPZ_S(hs_le, zss, MO_16)
DO_ST1_ZPZ_S(hs_be, zss, MO_16)
DO_ST1_ZPZ_S(ss_le, zss, MO_32)
DO_ST1_ZPZ_S(ss_be, zss, MO_32)
DO_ST1_ZPZ_D(bd, zsu, MO_8)
DO_ST1_ZPZ_D(hd_le, zsu, MO_16)
DO_ST1_ZPZ_D(hd_be, zsu, MO_16)
DO_ST1_ZPZ_D(sd_le, zsu, MO_32)
DO_ST1_ZPZ_D(sd_be, zsu, MO_32)
DO_ST1_ZPZ_D(dd_le, zsu, MO_64)
DO_ST1_ZPZ_D(dd_be, zsu, MO_64)
DO_ST1_ZPZ_D(bd, zss, MO_8)
DO_ST1_ZPZ_D(hd_le, zss, MO_16)
DO_ST1_ZPZ_D(hd_be, zss, MO_16)
DO_ST1_ZPZ_D(sd_le, zss, MO_32)
DO_ST1_ZPZ_D(sd_be, zss, MO_32)
DO_ST1_ZPZ_D(dd_le, zss, MO_64)
DO_ST1_ZPZ_D(dd_be, zss, MO_64)
DO_ST1_ZPZ_D(bd, zd, MO_8)
DO_ST1_ZPZ_D(hd_le, zd, MO_16)
DO_ST1_ZPZ_D(hd_be, zd, MO_16)
DO_ST1_ZPZ_D(sd_le, zd, MO_32)
DO_ST1_ZPZ_D(sd_be, zd, MO_32)
DO_ST1_ZPZ_D(dd_le, zd, MO_64)
DO_ST1_ZPZ_D(dd_be, zd, MO_64)
#undef DO_ST1_ZPZ_S
#undef DO_ST1_ZPZ_D
void HELPER(sve2_eor3)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
for (i = 0; i < opr_sz; ++i) {
d[i] = n[i] ^ m[i] ^ k[i];
}
}
void HELPER(sve2_bcax)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
for (i = 0; i < opr_sz; ++i) {
d[i] = n[i] ^ (m[i] & ~k[i]);
}
}
void HELPER(sve2_bsl1n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
for (i = 0; i < opr_sz; ++i) {
d[i] = (~n[i] & k[i]) | (m[i] & ~k[i]);
}
}
void HELPER(sve2_bsl2n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
for (i = 0; i < opr_sz; ++i) {
d[i] = (n[i] & k[i]) | (~m[i] & ~k[i]);
}
}
void HELPER(sve2_nbsl)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
for (i = 0; i < opr_sz; ++i) {
d[i] = ~((n[i] & k[i]) | (m[i] & ~k[i]));
}
}
/*
* Returns true if m0 or m1 contains the low uint8_t/uint16_t in n.
* See hasless(v,1) from
* https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
*/
static inline bool do_match2(uint64_t n, uint64_t m0, uint64_t m1, int esz)
{
int bits = 8 << esz;
uint64_t ones = dup_const(esz, 1);
uint64_t signs = ones << (bits - 1);
uint64_t cmp0, cmp1;
cmp1 = dup_const(esz, n);
cmp0 = cmp1 ^ m0;
cmp1 = cmp1 ^ m1;
cmp0 = (cmp0 - ones) & ~cmp0;
cmp1 = (cmp1 - ones) & ~cmp1;
return (cmp0 | cmp1) & signs;
}
static inline uint32_t do_match(void *vd, void *vn, void *vm, void *vg,
uint32_t desc, int esz, bool nmatch)
{
uint16_t esz_mask = pred_esz_masks[esz];
intptr_t opr_sz = simd_oprsz(desc);
uint32_t flags = PREDTEST_INIT;
intptr_t i, j, k;
for (i = 0; i < opr_sz; i += 16) {
uint64_t m0 = *(uint64_t *)(vm + i);
uint64_t m1 = *(uint64_t *)(vm + i + 8);
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)) & esz_mask;
uint16_t out = 0;
for (j = 0; j < 16; j += 8) {
uint64_t n = *(uint64_t *)(vn + i + j);
for (k = 0; k < 8; k += 1 << esz) {
if (pg & (1 << (j + k))) {
bool o = do_match2(n >> (k * 8), m0, m1, esz);
out |= (o ^ nmatch) << (j + k);
}
}
}
*(uint16_t *)(vd + H1_2(i >> 3)) = out;
flags = iter_predtest_fwd(out, pg, flags);
}
return flags;
}
#define DO_PPZZ_MATCH(NAME, ESZ, INV) \
uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
return do_match(vd, vn, vm, vg, desc, ESZ, INV); \
}
DO_PPZZ_MATCH(sve2_match_ppzz_b, MO_8, false)
DO_PPZZ_MATCH(sve2_match_ppzz_h, MO_16, false)
DO_PPZZ_MATCH(sve2_nmatch_ppzz_b, MO_8, true)
DO_PPZZ_MATCH(sve2_nmatch_ppzz_h, MO_16, true)
#undef DO_PPZZ_MATCH
void HELPER(sve2_histcnt_s)(void *vd, void *vn, void *vm, void *vg,
uint32_t desc)
{
ARMVectorReg scratch;
intptr_t i, j;
intptr_t opr_sz = simd_oprsz(desc);
uint32_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
if (d == n) {
n = memcpy(&scratch, n, opr_sz);
if (d == m) {
m = n;
}
} else if (d == m) {
m = memcpy(&scratch, m, opr_sz);
}
for (i = 0; i < opr_sz; i += 4) {
uint64_t count = 0;
uint8_t pred;
pred = pg[H1(i >> 3)] >> (i & 7);
if (pred & 1) {
uint32_t nn = n[H4(i >> 2)];
for (j = 0; j <= i; j += 4) {
pred = pg[H1(j >> 3)] >> (j & 7);
if ((pred & 1) && nn == m[H4(j >> 2)]) {
++count;
}
}
}
d[H4(i >> 2)] = count;
}
}
void HELPER(sve2_histcnt_d)(void *vd, void *vn, void *vm, void *vg,
uint32_t desc)
{
ARMVectorReg scratch;
intptr_t i, j;
intptr_t opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
if (d == n) {
n = memcpy(&scratch, n, opr_sz);
if (d == m) {
m = n;
}
} else if (d == m) {
m = memcpy(&scratch, m, opr_sz);
}
for (i = 0; i < opr_sz / 8; ++i) {
uint64_t count = 0;
if (pg[H1(i)] & 1) {
uint64_t nn = n[i];
for (j = 0; j <= i; ++j) {
if ((pg[H1(j)] & 1) && nn == m[j]) {
++count;
}
}
}
d[i] = count;
}
}
/*
* Returns the number of bytes in m0 and m1 that match n.
* Unlike do_match2 we don't just need true/false, we need an exact count.
* This requires two extra logical operations.
*/
static inline uint64_t do_histseg_cnt(uint8_t n, uint64_t m0, uint64_t m1)
{
const uint64_t mask = dup_const(MO_8, 0x7f);
uint64_t cmp0, cmp1;
cmp1 = dup_const(MO_8, n);
cmp0 = cmp1 ^ m0;
cmp1 = cmp1 ^ m1;
/*
* 1: clear msb of each byte to avoid carry to next byte (& mask)
* 2: carry in to msb if byte != 0 (+ mask)
* 3: set msb if cmp has msb set (| cmp)
* 4: set ~msb to ignore them (| mask)
* We now have 0xff for byte != 0 or 0x7f for byte == 0.
* 5: invert, resulting in 0x80 if and only if byte == 0.
*/
cmp0 = ~(((cmp0 & mask) + mask) | cmp0 | mask);
cmp1 = ~(((cmp1 & mask) + mask) | cmp1 | mask);
/*
* Combine the two compares in a way that the bits do
* not overlap, and so preserves the count of set bits.
* If the host has an efficient instruction for ctpop,
* then ctpop(x) + ctpop(y) has the same number of
* operations as ctpop(x | (y >> 1)). If the host does
* not have an efficient ctpop, then we only want to
* use it once.
*/
return ctpop64(cmp0 | (cmp1 >> 1));
}
void HELPER(sve2_histseg)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j;
intptr_t opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
uint64_t n0 = *(uint64_t *)(vn + i);
uint64_t m0 = *(uint64_t *)(vm + i);
uint64_t n1 = *(uint64_t *)(vn + i + 8);
uint64_t m1 = *(uint64_t *)(vm + i + 8);
uint64_t out0 = 0;
uint64_t out1 = 0;
for (j = 0; j < 64; j += 8) {
uint64_t cnt0 = do_histseg_cnt(n0 >> j, m0, m1);
uint64_t cnt1 = do_histseg_cnt(n1 >> j, m0, m1);
out0 |= cnt0 << j;
out1 |= cnt1 << j;
}
*(uint64_t *)(vd + i) = out0;
*(uint64_t *)(vd + i + 8) = out1;
}
}
void HELPER(sve2_xar_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
int shr = simd_data(desc);
int shl = 8 - shr;
uint64_t mask = dup_const(MO_8, 0xff >> shr);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
uint64_t t = n[i] ^ m[i];
d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask);
}
}
void HELPER(sve2_xar_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
int shr = simd_data(desc);
int shl = 16 - shr;
uint64_t mask = dup_const(MO_16, 0xffff >> shr);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
uint64_t t = n[i] ^ m[i];
d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask);
}
}
void HELPER(sve2_xar_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
int shr = simd_data(desc);
uint32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
d[i] = ror32(n[i] ^ m[i], shr);
}
}
void HELPER(fmmla_s)(void *vd, void *vn, void *vm, void *va,
void *status, uint32_t desc)
{
intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float32) * 4);
for (s = 0; s < opr_sz; ++s) {
float32 *n = vn + s * sizeof(float32) * 4;
float32 *m = vm + s * sizeof(float32) * 4;
float32 *a = va + s * sizeof(float32) * 4;
float32 *d = vd + s * sizeof(float32) * 4;
float32 n00 = n[H4(0)], n01 = n[H4(1)];
float32 n10 = n[H4(2)], n11 = n[H4(3)];
float32 m00 = m[H4(0)], m01 = m[H4(1)];
float32 m10 = m[H4(2)], m11 = m[H4(3)];
float32 p0, p1;
/* i = 0, j = 0 */
p0 = float32_mul(n00, m00, status);
p1 = float32_mul(n01, m01, status);
d[H4(0)] = float32_add(a[H4(0)], float32_add(p0, p1, status), status);
/* i = 0, j = 1 */
p0 = float32_mul(n00, m10, status);
p1 = float32_mul(n01, m11, status);
d[H4(1)] = float32_add(a[H4(1)], float32_add(p0, p1, status), status);
/* i = 1, j = 0 */
p0 = float32_mul(n10, m00, status);
p1 = float32_mul(n11, m01, status);
d[H4(2)] = float32_add(a[H4(2)], float32_add(p0, p1, status), status);
/* i = 1, j = 1 */
p0 = float32_mul(n10, m10, status);
p1 = float32_mul(n11, m11, status);
d[H4(3)] = float32_add(a[H4(3)], float32_add(p0, p1, status), status);
}
}
void HELPER(fmmla_d)(void *vd, void *vn, void *vm, void *va,
void *status, uint32_t desc)
{
intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float64) * 4);
for (s = 0; s < opr_sz; ++s) {
float64 *n = vn + s * sizeof(float64) * 4;
float64 *m = vm + s * sizeof(float64) * 4;
float64 *a = va + s * sizeof(float64) * 4;
float64 *d = vd + s * sizeof(float64) * 4;
float64 n00 = n[0], n01 = n[1], n10 = n[2], n11 = n[3];
float64 m00 = m[0], m01 = m[1], m10 = m[2], m11 = m[3];
float64 p0, p1;
/* i = 0, j = 0 */
p0 = float64_mul(n00, m00, status);
p1 = float64_mul(n01, m01, status);
d[0] = float64_add(a[0], float64_add(p0, p1, status), status);
/* i = 0, j = 1 */
p0 = float64_mul(n00, m10, status);
p1 = float64_mul(n01, m11, status);
d[1] = float64_add(a[1], float64_add(p0, p1, status), status);
/* i = 1, j = 0 */
p0 = float64_mul(n10, m00, status);
p1 = float64_mul(n11, m01, status);
d[2] = float64_add(a[2], float64_add(p0, p1, status), status);
/* i = 1, j = 1 */
p0 = float64_mul(n10, m10, status);
p1 = float64_mul(n11, m11, status);
d[3] = float64_add(a[3], float64_add(p0, p1, status), status);
}
}
#define DO_FCVTNT(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
{ \
intptr_t i = simd_oprsz(desc); \
uint64_t *g = vg; \
do { \
uint64_t pg = g[(i - 1) >> 6]; \
do { \
i -= sizeof(TYPEW); \
if (likely((pg >> (i & 63)) & 1)) { \
TYPEW nn = *(TYPEW *)(vn + HW(i)); \
*(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, status); \
} \
} while (i & 63); \
} while (i != 0); \
}
DO_FCVTNT(sve_bfcvtnt, uint32_t, uint16_t, H1_4, H1_2, float32_to_bfloat16)
DO_FCVTNT(sve2_fcvtnt_sh, uint32_t, uint16_t, H1_4, H1_2, sve_f32_to_f16)
DO_FCVTNT(sve2_fcvtnt_ds, uint64_t, uint32_t, H1_8, H1_4, float64_to_float32)
#define DO_FCVTLT(NAME, TYPEW, TYPEN, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
{ \
intptr_t i = simd_oprsz(desc); \
uint64_t *g = vg; \
do { \
uint64_t pg = g[(i - 1) >> 6]; \
do { \
i -= sizeof(TYPEW); \
if (likely((pg >> (i & 63)) & 1)) { \
TYPEN nn = *(TYPEN *)(vn + HN(i + sizeof(TYPEN))); \
*(TYPEW *)(vd + HW(i)) = OP(nn, status); \
} \
} while (i & 63); \
} while (i != 0); \
}
DO_FCVTLT(sve2_fcvtlt_hs, uint32_t, uint16_t, H1_4, H1_2, sve_f16_to_f32)
DO_FCVTLT(sve2_fcvtlt_sd, uint64_t, uint32_t, H1_8, H1_4, float32_to_float64)
#undef DO_FCVTLT
#undef DO_FCVTNT