| /* |
| * QEMU PowerPC XIVE interrupt controller model |
| * |
| * Copyright (c) 2017-2019, IBM Corporation. |
| * |
| * This code is licensed under the GPL version 2 or later. See the |
| * COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qapi/error.h" |
| #include "target/ppc/cpu.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/dma.h" |
| #include "sysemu/reset.h" |
| #include "monitor/monitor.h" |
| #include "hw/ppc/fdt.h" |
| #include "hw/ppc/pnv.h" |
| #include "hw/ppc/pnv_chip.h" |
| #include "hw/ppc/pnv_core.h" |
| #include "hw/ppc/pnv_xscom.h" |
| #include "hw/ppc/pnv_xive.h" |
| #include "hw/ppc/xive_regs.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/ppc/ppc.h" |
| #include "trace.h" |
| |
| #include <libfdt.h> |
| |
| #include "pnv_xive_regs.h" |
| |
| #undef XIVE_DEBUG |
| |
| /* |
| * Virtual structures table (VST) |
| */ |
| #define SBE_PER_BYTE 4 |
| |
| typedef struct XiveVstInfo { |
| const char *name; |
| uint32_t size; |
| uint32_t max_blocks; |
| } XiveVstInfo; |
| |
| static const XiveVstInfo vst_infos[] = { |
| [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 }, |
| [VST_TSEL_SBE] = { "SBE", 1, 16 }, |
| [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 }, |
| [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 }, |
| |
| /* |
| * Interrupt fifo backing store table (not modeled) : |
| * |
| * 0 - IPI, |
| * 1 - HWD, |
| * 2 - First escalate, |
| * 3 - Second escalate, |
| * 4 - Redistribution, |
| * 5 - IPI cascaded queue ? |
| */ |
| [VST_TSEL_IRQ] = { "IRQ", 1, 6 }, |
| }; |
| |
| #define xive_error(xive, fmt, ...) \ |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \ |
| (xive)->chip->chip_id, ## __VA_ARGS__); |
| |
| /* |
| * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID |
| * field overrides the hardwired chip ID in the Powerbus operations |
| * and for CAM compares |
| */ |
| static uint8_t pnv_xive_block_id(PnvXive *xive) |
| { |
| uint8_t blk = xive->chip->chip_id; |
| uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3]; |
| |
| if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) { |
| blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val); |
| } |
| |
| return blk; |
| } |
| |
| /* |
| * VST accessors for SBE, EAT, ENDT, NVT |
| * |
| * Indirect VST tables are arrays of VSDs pointing to a page (of same |
| * size). Each page is a direct VST table. |
| */ |
| |
| #define XIVE_VSD_SIZE 8 |
| |
| /* Indirect page size can be 4K, 64K, 2M, 16M. */ |
| static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift) |
| { |
| return page_shift == 12 || page_shift == 16 || |
| page_shift == 21 || page_shift == 24; |
| } |
| |
| static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type, |
| uint64_t vsd, uint32_t idx) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; |
| uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); |
| uint32_t idx_max; |
| |
| idx_max = vst_tsize / info->size - 1; |
| if (idx > idx_max) { |
| #ifdef XIVE_DEBUG |
| xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?", |
| info->name, idx, idx_max); |
| #endif |
| return 0; |
| } |
| |
| return vst_addr + idx * info->size; |
| } |
| |
| static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type, |
| uint64_t vsd, uint32_t idx) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vsd_addr; |
| uint32_t vsd_idx; |
| uint32_t page_shift; |
| uint32_t vst_per_page; |
| |
| /* Get the page size of the indirect table. */ |
| vsd_addr = vsd & VSD_ADDRESS_MASK; |
| if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd, |
| MEMTXATTRS_UNSPECIFIED)) { |
| xive_error(xive, "VST: failed to access %s entry %x @0x%" PRIx64, |
| info->name, idx, vsd_addr); |
| return 0; |
| } |
| |
| if (!(vsd & VSD_ADDRESS_MASK)) { |
| #ifdef XIVE_DEBUG |
| xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); |
| #endif |
| return 0; |
| } |
| |
| page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; |
| |
| if (!pnv_xive_vst_page_size_allowed(page_shift)) { |
| xive_error(xive, "VST: invalid %s page shift %d", info->name, |
| page_shift); |
| return 0; |
| } |
| |
| vst_per_page = (1ull << page_shift) / info->size; |
| vsd_idx = idx / vst_per_page; |
| |
| /* Load the VSD we are looking for, if not already done */ |
| if (vsd_idx) { |
| vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE; |
| if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd, |
| MEMTXATTRS_UNSPECIFIED)) { |
| xive_error(xive, "VST: failed to access %s entry %x @0x%" |
| PRIx64, info->name, vsd_idx, vsd_addr); |
| return 0; |
| } |
| |
| if (!(vsd & VSD_ADDRESS_MASK)) { |
| #ifdef XIVE_DEBUG |
| xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Check that the pages have a consistent size across the |
| * indirect table |
| */ |
| if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) { |
| xive_error(xive, "VST: %s entry %x indirect page size differ !?", |
| info->name, idx); |
| return 0; |
| } |
| } |
| |
| return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page)); |
| } |
| |
| /* |
| * This is a simplified model of operation forwarding on a remote IC. |
| * |
| * A PC MMIO address is built to identify the NVT structure. The load |
| * on the remote IC will return the address of the structure in RAM, |
| * which will then be used by pnv_xive_vst_write/read to perform the |
| * RAM operation. |
| */ |
| static uint64_t pnv_xive_vst_addr_remote(PnvXive *xive, uint32_t type, |
| uint64_t vsd, uint8_t blk, |
| uint32_t idx) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t remote_addr = vsd & VSD_ADDRESS_MASK; |
| uint64_t vst_addr; |
| MemTxResult result; |
| |
| if (type != VST_TSEL_VPDT) { |
| xive_error(xive, "VST: invalid access on remote VST %s %x/%x !?", |
| info->name, blk, idx); |
| return 0; |
| } |
| |
| remote_addr |= ((uint64_t)idx) << xive->pc_shift; |
| |
| vst_addr = address_space_ldq_be(&address_space_memory, remote_addr, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| xive_error(xive, "VST: read failed at @0x%" HWADDR_PRIx |
| " for NVT %x/%x\n", remote_addr, blk, idx); |
| return 0; |
| } |
| |
| return vst_addr; |
| } |
| |
| static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk, |
| uint32_t idx) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vsd; |
| |
| if (blk >= info->max_blocks) { |
| xive_error(xive, "VST: invalid block id %d for VST %s %d !?", |
| blk, info->name, idx); |
| return 0; |
| } |
| |
| vsd = xive->vsds[type][blk]; |
| |
| /* Remote VST access */ |
| if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) { |
| return pnv_xive_vst_addr_remote(xive, type, vsd, blk, idx); |
| } |
| |
| if (VSD_INDIRECT & vsd) { |
| return pnv_xive_vst_addr_indirect(xive, type, vsd, idx); |
| } |
| |
| return pnv_xive_vst_addr_direct(xive, type, vsd, idx); |
| } |
| |
| static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk, |
| uint32_t idx, void *data) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx); |
| MemTxResult result; |
| |
| if (!addr) { |
| return -1; |
| } |
| |
| result = address_space_read(&address_space_memory, addr, |
| MEMTXATTRS_UNSPECIFIED, data, |
| info->size); |
| if (result != MEMTX_OK) { |
| xive_error(xive, "VST: read failed at @0x%" HWADDR_PRIx |
| " for VST %s %x/%x\n", addr, info->name, blk, idx); |
| return -1; |
| } |
| return 0; |
| } |
| |
| #define XIVE_VST_WORD_ALL -1 |
| |
| static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk, |
| uint32_t idx, void *data, uint32_t word_number) |
| { |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx); |
| MemTxResult result; |
| |
| if (!addr) { |
| return -1; |
| } |
| |
| if (word_number == XIVE_VST_WORD_ALL) { |
| result = address_space_write(&address_space_memory, addr, |
| MEMTXATTRS_UNSPECIFIED, data, |
| info->size); |
| } else { |
| result = address_space_write(&address_space_memory, |
| addr + word_number * 4, |
| MEMTXATTRS_UNSPECIFIED, |
| data + word_number * 4, 4); |
| } |
| |
| if (result != MEMTX_OK) { |
| xive_error(xive, "VST: write failed at @0x%" HWADDR_PRIx |
| "for VST %s %x/%x\n", addr, info->name, blk, idx); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| XiveEND *end) |
| { |
| PnvXive *xive = PNV_XIVE(xrtr); |
| |
| if (pnv_xive_block_id(xive) != blk) { |
| xive_error(xive, "VST: END %x/%x is remote !?", blk, idx); |
| return -1; |
| } |
| |
| return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end); |
| } |
| |
| static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| XiveEND *end, uint8_t word_number) |
| { |
| PnvXive *xive = PNV_XIVE(xrtr); |
| |
| if (pnv_xive_block_id(xive) != blk) { |
| xive_error(xive, "VST: END %x/%x is remote !?", blk, idx); |
| return -1; |
| } |
| |
| return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end, |
| word_number); |
| } |
| |
| static int pnv_xive_end_update(PnvXive *xive) |
| { |
| uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID, |
| xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); |
| uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET, |
| xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); |
| int i; |
| uint64_t eqc_watch[4]; |
| |
| for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) { |
| eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]); |
| } |
| |
| return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch, |
| XIVE_VST_WORD_ALL); |
| } |
| |
| static void pnv_xive_end_cache_load(PnvXive *xive) |
| { |
| uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID, |
| xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); |
| uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET, |
| xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); |
| uint64_t eqc_watch[4] = { 0 }; |
| int i; |
| |
| if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) { |
| xive_error(xive, "VST: no END entry %x/%x !?", blk, idx); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) { |
| xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]); |
| } |
| } |
| |
| static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| XiveNVT *nvt) |
| { |
| return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt); |
| } |
| |
| static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| XiveNVT *nvt, uint8_t word_number) |
| { |
| return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt, |
| word_number); |
| } |
| |
| static int pnv_xive_nvt_update(PnvXive *xive) |
| { |
| uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID, |
| xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); |
| uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET, |
| xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); |
| int i; |
| uint64_t vpc_watch[8]; |
| |
| for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) { |
| vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]); |
| } |
| |
| return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch, |
| XIVE_VST_WORD_ALL); |
| } |
| |
| static void pnv_xive_nvt_cache_load(PnvXive *xive) |
| { |
| uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID, |
| xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); |
| uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET, |
| xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); |
| uint64_t vpc_watch[8] = { 0 }; |
| int i; |
| |
| if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) { |
| xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) { |
| xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]); |
| } |
| } |
| |
| static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| XiveEAS *eas) |
| { |
| PnvXive *xive = PNV_XIVE(xrtr); |
| |
| /* |
| * EAT lookups should be local to the IC |
| */ |
| if (pnv_xive_block_id(xive) != blk) { |
| xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); |
| return -1; |
| } |
| |
| return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas); |
| } |
| |
| static int pnv_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| uint8_t *pq) |
| { |
| PnvXive *xive = PNV_XIVE(xrtr); |
| |
| if (pnv_xive_block_id(xive) != blk) { |
| xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); |
| return -1; |
| } |
| |
| *pq = xive_source_esb_get(&xive->ipi_source, idx); |
| return 0; |
| } |
| |
| static int pnv_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx, |
| uint8_t *pq) |
| { |
| PnvXive *xive = PNV_XIVE(xrtr); |
| |
| if (pnv_xive_block_id(xive) != blk) { |
| xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); |
| return -1; |
| } |
| |
| *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq); |
| return 0; |
| } |
| |
| /* |
| * One bit per thread id. The first register PC_THREAD_EN_REG0 covers |
| * the first cores 0-15 (normal) of the chip or 0-7 (fused). The |
| * second register covers cores 16-23 (normal) or 8-11 (fused). |
| */ |
| static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu) |
| { |
| int pir = ppc_cpu_pir(cpu); |
| uint32_t fc = PNV9_PIR2FUSEDCORE(pir); |
| uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1; |
| uint32_t bit = pir & 0x3f; |
| |
| return xive->regs[reg >> 3] & PPC_BIT(bit); |
| } |
| |
| static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format, |
| uint8_t nvt_blk, uint32_t nvt_idx, |
| bool cam_ignore, uint8_t priority, |
| uint32_t logic_serv, XiveTCTXMatch *match) |
| { |
| PnvXive *xive = PNV_XIVE(xptr); |
| PnvChip *chip = xive->chip; |
| int count = 0; |
| int i, j; |
| |
| for (i = 0; i < chip->nr_cores; i++) { |
| PnvCore *pc = chip->cores[i]; |
| CPUCore *cc = CPU_CORE(pc); |
| |
| for (j = 0; j < cc->nr_threads; j++) { |
| PowerPCCPU *cpu = pc->threads[j]; |
| XiveTCTX *tctx; |
| int ring; |
| |
| if (!pnv_xive_is_cpu_enabled(xive, cpu)) { |
| continue; |
| } |
| |
| tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| |
| /* |
| * Check the thread context CAM lines and record matches. |
| */ |
| ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, |
| nvt_idx, cam_ignore, logic_serv); |
| /* |
| * Save the context and follow on to catch duplicates, that we |
| * don't support yet. |
| */ |
| if (ring != -1) { |
| if (match->tctx) { |
| qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a " |
| "thread context NVT %x/%x\n", |
| nvt_blk, nvt_idx); |
| return -1; |
| } |
| |
| match->ring = ring; |
| match->tctx = tctx; |
| count++; |
| } |
| } |
| } |
| |
| return count; |
| } |
| |
| static uint32_t pnv_xive_presenter_get_config(XivePresenter *xptr) |
| { |
| uint32_t cfg = 0; |
| |
| /* TIMA GEN1 is all P9 knows */ |
| cfg |= XIVE_PRESENTER_GEN1_TIMA_OS; |
| |
| return cfg; |
| } |
| |
| static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr) |
| { |
| return pnv_xive_block_id(PNV_XIVE(xrtr)); |
| } |
| |
| /* |
| * The TIMA MMIO space is shared among the chips and to identify the |
| * chip from which the access is being done, we extract the chip id |
| * from the PIR. |
| */ |
| static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu) |
| { |
| int pir = ppc_cpu_pir(cpu); |
| XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr; |
| PnvXive *xive = PNV_XIVE(xptr); |
| |
| if (!pnv_xive_is_cpu_enabled(xive, cpu)) { |
| xive_error(xive, "IC: CPU %x is not enabled", pir); |
| } |
| return xive; |
| } |
| |
| /* |
| * The internal sources (IPIs) of the interrupt controller have no |
| * knowledge of the XIVE chip on which they reside. Encode the block |
| * id in the source interrupt number before forwarding the source |
| * event notification to the Router. This is required on a multichip |
| * system. |
| */ |
| static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked) |
| { |
| PnvXive *xive = PNV_XIVE(xn); |
| uint8_t blk = pnv_xive_block_id(xive); |
| |
| xive_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked); |
| } |
| |
| /* |
| * XIVE helpers |
| */ |
| |
| static uint64_t pnv_xive_vc_size(PnvXive *xive) |
| { |
| return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK; |
| } |
| |
| static uint64_t pnv_xive_edt_shift(PnvXive *xive) |
| { |
| return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX); |
| } |
| |
| static uint64_t pnv_xive_pc_size(PnvXive *xive) |
| { |
| return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK; |
| } |
| |
| static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk) |
| { |
| uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk]; |
| uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); |
| |
| return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE; |
| } |
| |
| /* |
| * Compute the number of entries per indirect subpage. |
| */ |
| static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type) |
| { |
| uint8_t blk = pnv_xive_block_id(xive); |
| uint64_t vsd = xive->vsds[type][blk]; |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint64_t vsd_addr; |
| uint32_t page_shift; |
| |
| /* For direct tables, fake a valid value */ |
| if (!(VSD_INDIRECT & vsd)) { |
| return 1; |
| } |
| |
| /* Get the page size of the indirect table. */ |
| vsd_addr = vsd & VSD_ADDRESS_MASK; |
| if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd, |
| MEMTXATTRS_UNSPECIFIED)) { |
| xive_error(xive, "VST: failed to access %s entry @0x%" PRIx64, |
| info->name, vsd_addr); |
| return 0; |
| } |
| |
| if (!(vsd & VSD_ADDRESS_MASK)) { |
| #ifdef XIVE_DEBUG |
| xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); |
| #endif |
| return 0; |
| } |
| |
| page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; |
| |
| if (!pnv_xive_vst_page_size_allowed(page_shift)) { |
| xive_error(xive, "VST: invalid %s page shift %d", info->name, |
| page_shift); |
| return 0; |
| } |
| |
| return (1ull << page_shift) / info->size; |
| } |
| |
| /* |
| * EDT Table |
| * |
| * The Virtualization Controller MMIO region containing the IPI ESB |
| * pages and END ESB pages is sub-divided into "sets" which map |
| * portions of the VC region to the different ESB pages. It is |
| * configured at runtime through the EDT "Domain Table" to let the |
| * firmware decide how to split the VC address space between IPI ESB |
| * pages and END ESB pages. |
| */ |
| |
| /* |
| * Computes the overall size of the IPI or the END ESB pages |
| */ |
| static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type) |
| { |
| uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive); |
| uint64_t size = 0; |
| int i; |
| |
| for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) { |
| uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]); |
| |
| if (edt_type == type) { |
| size += edt_size; |
| } |
| } |
| |
| return size; |
| } |
| |
| /* |
| * Maps an offset of the VC region in the IPI or END region using the |
| * layout defined by the EDT "Domaine Table" |
| */ |
| static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset, |
| uint64_t type) |
| { |
| int i; |
| uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive); |
| uint64_t edt_offset = vc_offset; |
| |
| for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) { |
| uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]); |
| |
| if (edt_type != type) { |
| edt_offset -= edt_size; |
| } |
| } |
| |
| return edt_offset; |
| } |
| |
| static void pnv_xive_edt_resize(PnvXive *xive) |
| { |
| uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI); |
| uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ); |
| |
| memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size); |
| memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio); |
| |
| memory_region_set_size(&xive->end_edt_mmio, end_edt_size); |
| memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio); |
| } |
| |
| /* |
| * XIVE Table configuration. Only EDT is supported. |
| */ |
| static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val) |
| { |
| uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL; |
| uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]); |
| uint64_t *xive_table; |
| uint8_t max_index; |
| |
| switch (tsel) { |
| case CQ_TAR_TSEL_BLK: |
| max_index = ARRAY_SIZE(xive->blk); |
| xive_table = xive->blk; |
| break; |
| case CQ_TAR_TSEL_MIG: |
| max_index = ARRAY_SIZE(xive->mig); |
| xive_table = xive->mig; |
| break; |
| case CQ_TAR_TSEL_EDT: |
| max_index = ARRAY_SIZE(xive->edt); |
| xive_table = xive->edt; |
| break; |
| case CQ_TAR_TSEL_VDT: |
| max_index = ARRAY_SIZE(xive->vdt); |
| xive_table = xive->vdt; |
| break; |
| default: |
| xive_error(xive, "IC: invalid table %d", (int) tsel); |
| return -1; |
| } |
| |
| if (tsel_index >= max_index) { |
| xive_error(xive, "IC: invalid index %d", (int) tsel_index); |
| return -1; |
| } |
| |
| xive_table[tsel_index] = val; |
| |
| if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) { |
| xive->regs[CQ_TAR >> 3] = |
| SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index); |
| } |
| |
| /* |
| * EDT configuration is complete. Resize the MMIO windows exposing |
| * the IPI and the END ESBs in the VC region. |
| */ |
| if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) { |
| pnv_xive_edt_resize(xive); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Virtual Structure Tables (VST) configuration |
| */ |
| static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type, |
| uint8_t blk, uint64_t vsd) |
| { |
| XiveENDSource *end_xsrc = &xive->end_source; |
| XiveSource *xsrc = &xive->ipi_source; |
| const XiveVstInfo *info = &vst_infos[type]; |
| uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; |
| uint64_t vst_tsize = 1ull << page_shift; |
| uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; |
| |
| /* Basic checks */ |
| |
| if (VSD_INDIRECT & vsd) { |
| if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) { |
| xive_error(xive, "VST: %s indirect tables are not enabled", |
| info->name); |
| return; |
| } |
| |
| if (!pnv_xive_vst_page_size_allowed(page_shift)) { |
| xive_error(xive, "VST: invalid %s page shift %d", info->name, |
| page_shift); |
| return; |
| } |
| } |
| |
| if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) { |
| xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with" |
| " page shift %d", info->name, vst_addr, page_shift); |
| return; |
| } |
| |
| /* Record the table configuration (in SRAM on HW) */ |
| xive->vsds[type][blk] = vsd; |
| |
| /* Now tune the models with the configuration provided by the FW */ |
| |
| switch (type) { |
| case VST_TSEL_IVT: /* Nothing to be done */ |
| break; |
| |
| case VST_TSEL_EQDT: |
| /* |
| * Backing store pages for the END. |
| * |
| * If the table is direct, we can compute the number of PQ |
| * entries provisioned by FW (such as skiboot) and resize the |
| * END ESB window accordingly. |
| */ |
| if (!(VSD_INDIRECT & vsd)) { |
| memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size) |
| * (1ull << xsrc->esb_shift)); |
| } |
| memory_region_add_subregion(&xive->end_edt_mmio, 0, |
| &end_xsrc->esb_mmio); |
| break; |
| |
| case VST_TSEL_SBE: |
| /* |
| * Backing store pages for the source PQ bits. The model does |
| * not use these PQ bits backed in RAM because the XiveSource |
| * model has its own. |
| * |
| * If the table is direct, we can compute the number of PQ |
| * entries provisioned by FW (such as skiboot) and resize the |
| * ESB window accordingly. |
| */ |
| if (!(VSD_INDIRECT & vsd)) { |
| memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE |
| * (1ull << xsrc->esb_shift)); |
| } |
| memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio); |
| break; |
| |
| case VST_TSEL_VPDT: /* Not modeled */ |
| case VST_TSEL_IRQ: /* Not modeled */ |
| /* |
| * These tables contains the backing store pages for the |
| * interrupt fifos of the VC sub-engine in case of overflow. |
| */ |
| break; |
| |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* |
| * Both PC and VC sub-engines are configured as each use the Virtual |
| * Structure Tables : SBE, EAS, END and NVT. |
| */ |
| static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine) |
| { |
| uint8_t mode = GETFIELD(VSD_MODE, vsd); |
| uint8_t type = GETFIELD(VST_TABLE_SELECT, |
| xive->regs[VC_VSD_TABLE_ADDR >> 3]); |
| uint8_t blk = GETFIELD(VST_TABLE_BLOCK, |
| xive->regs[VC_VSD_TABLE_ADDR >> 3]); |
| uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; |
| |
| if (type > VST_TSEL_IRQ) { |
| xive_error(xive, "VST: invalid table type %d", type); |
| return; |
| } |
| |
| if (blk >= vst_infos[type].max_blocks) { |
| xive_error(xive, "VST: invalid block id %d for" |
| " %s table", blk, vst_infos[type].name); |
| return; |
| } |
| |
| /* |
| * Only take the VC sub-engine configuration into account because |
| * the XiveRouter model combines both VC and PC sub-engines |
| */ |
| if (pc_engine) { |
| return; |
| } |
| |
| if (!vst_addr) { |
| xive_error(xive, "VST: invalid %s table address", vst_infos[type].name); |
| return; |
| } |
| |
| switch (mode) { |
| case VSD_MODE_FORWARD: |
| xive->vsds[type][blk] = vsd; |
| break; |
| |
| case VSD_MODE_EXCLUSIVE: |
| pnv_xive_vst_set_exclusive(xive, type, blk, vsd); |
| break; |
| |
| default: |
| xive_error(xive, "VST: unsupported table mode %d", mode); |
| return; |
| } |
| } |
| |
| /* |
| * Interrupt controller MMIO region. The layout is compatible between |
| * 4K and 64K pages : |
| * |
| * Page 0 sub-engine BARs |
| * 0x000 - 0x3FF IC registers |
| * 0x400 - 0x7FF PC registers |
| * 0x800 - 0xFFF VC registers |
| * |
| * Page 1 Notify page (writes only) |
| * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB) |
| * 0x800 - 0xFFF forwards and syncs |
| * |
| * Page 2 LSI Trigger page (writes only) (not modeled) |
| * Page 3 LSI SB EOI page (reads only) (not modeled) |
| * |
| * Page 4-7 indirect TIMA |
| */ |
| |
| /* |
| * IC - registers MMIO |
| */ |
| static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| MemoryRegion *sysmem = get_system_memory(); |
| uint32_t reg = offset >> 3; |
| bool is_chip0 = xive->chip->chip_id == 0; |
| |
| switch (offset) { |
| |
| /* |
| * XIVE CQ (PowerBus bridge) settings |
| */ |
| case CQ_MSGSND: /* msgsnd for doorbells */ |
| case CQ_FIRMASK_OR: /* FIR error reporting */ |
| break; |
| case CQ_PBI_CTL: |
| if (val & CQ_PBI_PC_64K) { |
| xive->pc_shift = 16; |
| } |
| if (val & CQ_PBI_VC_64K) { |
| xive->vc_shift = 16; |
| } |
| break; |
| case CQ_CFG_PB_GEN: /* PowerBus General Configuration */ |
| /* |
| * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode |
| */ |
| break; |
| |
| /* |
| * XIVE Virtualization Controller settings |
| */ |
| case VC_GLOBAL_CONFIG: |
| break; |
| |
| /* |
| * XIVE Presenter Controller settings |
| */ |
| case PC_GLOBAL_CONFIG: |
| /* |
| * PC_GCONF_CHIPID_OVR |
| * Overrides Int command Chip ID with the Chip ID field (DEBUG) |
| */ |
| break; |
| case PC_TCTXT_CFG: |
| /* |
| * TODO: block group support |
| */ |
| break; |
| case PC_TCTXT_TRACK: |
| /* |
| * PC_TCTXT_TRACK_EN: |
| * enable block tracking and exchange of block ownership |
| * information between Interrupt controllers |
| */ |
| break; |
| |
| /* |
| * Misc settings |
| */ |
| case VC_SBC_CONFIG: /* Store EOI configuration */ |
| /* |
| * Configure store EOI if required by firmware (skiboot has removed |
| * support recently though) |
| */ |
| if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) { |
| xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI; |
| } |
| break; |
| |
| case VC_EQC_CONFIG: /* TODO: silent escalation */ |
| case VC_AIB_TX_ORDER_TAG2: /* relax ordering */ |
| break; |
| |
| /* |
| * XIVE BAR settings (XSCOM only) |
| */ |
| case CQ_RST_CTL: |
| /* bit4: resets all BAR registers */ |
| break; |
| |
| case CQ_IC_BAR: /* IC BAR. 8 pages */ |
| xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12; |
| if (!(val & CQ_IC_BAR_VALID)) { |
| xive->ic_base = 0; |
| if (xive->regs[reg] & CQ_IC_BAR_VALID) { |
| memory_region_del_subregion(&xive->ic_mmio, |
| &xive->ic_reg_mmio); |
| memory_region_del_subregion(&xive->ic_mmio, |
| &xive->ic_notify_mmio); |
| memory_region_del_subregion(&xive->ic_mmio, |
| &xive->ic_lsi_mmio); |
| memory_region_del_subregion(&xive->ic_mmio, |
| &xive->tm_indirect_mmio); |
| |
| memory_region_del_subregion(sysmem, &xive->ic_mmio); |
| } |
| } else { |
| xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K); |
| if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) { |
| memory_region_add_subregion(sysmem, xive->ic_base, |
| &xive->ic_mmio); |
| |
| memory_region_add_subregion(&xive->ic_mmio, 0, |
| &xive->ic_reg_mmio); |
| memory_region_add_subregion(&xive->ic_mmio, |
| 1ul << xive->ic_shift, |
| &xive->ic_notify_mmio); |
| memory_region_add_subregion(&xive->ic_mmio, |
| 2ul << xive->ic_shift, |
| &xive->ic_lsi_mmio); |
| memory_region_add_subregion(&xive->ic_mmio, |
| 4ull << xive->ic_shift, |
| &xive->tm_indirect_mmio); |
| } |
| } |
| break; |
| |
| case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */ |
| case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */ |
| xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12; |
| if (!(val & CQ_TM_BAR_VALID)) { |
| xive->tm_base = 0; |
| if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) { |
| memory_region_del_subregion(sysmem, &xive->tm_mmio); |
| } |
| } else { |
| xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K); |
| if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) { |
| memory_region_add_subregion(sysmem, xive->tm_base, |
| &xive->tm_mmio); |
| } |
| } |
| break; |
| |
| case CQ_PC_BARM: |
| xive->regs[reg] = val; |
| memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive)); |
| break; |
| case CQ_PC_BAR: /* From 32M to 512G */ |
| if (!(val & CQ_PC_BAR_VALID)) { |
| xive->pc_base = 0; |
| if (xive->regs[reg] & CQ_PC_BAR_VALID) { |
| memory_region_del_subregion(sysmem, &xive->pc_mmio); |
| } |
| } else { |
| xive->pc_base = val & ~(CQ_PC_BAR_VALID); |
| if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) { |
| memory_region_add_subregion(sysmem, xive->pc_base, |
| &xive->pc_mmio); |
| } |
| } |
| break; |
| |
| case CQ_VC_BARM: |
| xive->regs[reg] = val; |
| memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive)); |
| break; |
| case CQ_VC_BAR: /* From 64M to 4TB */ |
| if (!(val & CQ_VC_BAR_VALID)) { |
| xive->vc_base = 0; |
| if (xive->regs[reg] & CQ_VC_BAR_VALID) { |
| memory_region_del_subregion(sysmem, &xive->vc_mmio); |
| } |
| } else { |
| xive->vc_base = val & ~(CQ_VC_BAR_VALID); |
| if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) { |
| memory_region_add_subregion(sysmem, xive->vc_base, |
| &xive->vc_mmio); |
| } |
| } |
| break; |
| |
| /* |
| * XIVE Table settings. |
| */ |
| case CQ_TAR: /* Table Address */ |
| break; |
| case CQ_TDR: /* Table Data */ |
| pnv_xive_table_set_data(xive, val); |
| break; |
| |
| /* |
| * XIVE VC & PC Virtual Structure Table settings |
| */ |
| case VC_VSD_TABLE_ADDR: |
| case PC_VSD_TABLE_ADDR: /* Virtual table selector */ |
| break; |
| case VC_VSD_TABLE_DATA: /* Virtual table setting */ |
| case PC_VSD_TABLE_DATA: |
| pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA); |
| break; |
| |
| /* |
| * Interrupt fifo overflow in memory backing store (Not modeled) |
| */ |
| case VC_IRQ_CONFIG_IPI: |
| case VC_IRQ_CONFIG_HW: |
| case VC_IRQ_CONFIG_CASCADE1: |
| case VC_IRQ_CONFIG_CASCADE2: |
| case VC_IRQ_CONFIG_REDIST: |
| case VC_IRQ_CONFIG_IPI_CASC: |
| break; |
| |
| /* |
| * XIVE hardware thread enablement |
| */ |
| case PC_THREAD_EN_REG0: /* Physical Thread Enable */ |
| case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */ |
| break; |
| |
| case PC_THREAD_EN_REG0_SET: |
| xive->regs[PC_THREAD_EN_REG0 >> 3] |= val; |
| break; |
| case PC_THREAD_EN_REG1_SET: |
| xive->regs[PC_THREAD_EN_REG1 >> 3] |= val; |
| break; |
| case PC_THREAD_EN_REG0_CLR: |
| xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val; |
| break; |
| case PC_THREAD_EN_REG1_CLR: |
| xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val; |
| break; |
| |
| /* |
| * Indirect TIMA access set up. Defines the PIR of the HW thread |
| * to use. |
| */ |
| case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3: |
| break; |
| |
| /* |
| * XIVE PC & VC cache updates for EAS, NVT and END |
| */ |
| case VC_IVC_SCRUB_MASK: |
| case VC_IVC_SCRUB_TRIG: |
| break; |
| |
| case VC_EQC_CWATCH_SPEC: |
| val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */ |
| break; |
| case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3: |
| break; |
| case VC_EQC_CWATCH_DAT0: |
| /* writing to DATA0 triggers the cache write */ |
| xive->regs[reg] = val; |
| pnv_xive_end_update(xive); |
| break; |
| case VC_EQC_SCRUB_MASK: |
| case VC_EQC_SCRUB_TRIG: |
| /* |
| * The scrubbing registers flush the cache in RAM and can also |
| * invalidate. |
| */ |
| break; |
| |
| case PC_VPC_CWATCH_SPEC: |
| val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */ |
| break; |
| case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7: |
| break; |
| case PC_VPC_CWATCH_DAT0: |
| /* writing to DATA0 triggers the cache write */ |
| xive->regs[reg] = val; |
| pnv_xive_nvt_update(xive); |
| break; |
| case PC_VPC_SCRUB_MASK: |
| case PC_VPC_SCRUB_TRIG: |
| /* |
| * The scrubbing registers flush the cache in RAM and can also |
| * invalidate. |
| */ |
| break; |
| |
| |
| /* |
| * XIVE PC & VC cache invalidation |
| */ |
| case PC_AT_KILL: |
| break; |
| case VC_AT_MACRO_KILL: |
| break; |
| case PC_AT_KILL_MASK: |
| case VC_AT_MACRO_KILL_MASK: |
| break; |
| |
| default: |
| xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset); |
| return; |
| } |
| |
| xive->regs[reg] = val; |
| } |
| |
| static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| uint64_t val = 0; |
| uint32_t reg = offset >> 3; |
| |
| switch (offset) { |
| case CQ_CFG_PB_GEN: |
| case CQ_IC_BAR: |
| case CQ_TM1_BAR: |
| case CQ_TM2_BAR: |
| case CQ_PC_BAR: |
| case CQ_PC_BARM: |
| case CQ_VC_BAR: |
| case CQ_VC_BARM: |
| case CQ_TAR: |
| case CQ_TDR: |
| case CQ_PBI_CTL: |
| |
| case PC_TCTXT_CFG: |
| case PC_TCTXT_TRACK: |
| case PC_TCTXT_INDIR0: |
| case PC_TCTXT_INDIR1: |
| case PC_TCTXT_INDIR2: |
| case PC_TCTXT_INDIR3: |
| case PC_GLOBAL_CONFIG: |
| |
| case PC_VPC_SCRUB_MASK: |
| |
| case VC_GLOBAL_CONFIG: |
| case VC_AIB_TX_ORDER_TAG2: |
| |
| case VC_IRQ_CONFIG_IPI: |
| case VC_IRQ_CONFIG_HW: |
| case VC_IRQ_CONFIG_CASCADE1: |
| case VC_IRQ_CONFIG_CASCADE2: |
| case VC_IRQ_CONFIG_REDIST: |
| case VC_IRQ_CONFIG_IPI_CASC: |
| |
| case VC_EQC_SCRUB_MASK: |
| case VC_IVC_SCRUB_MASK: |
| case VC_SBC_CONFIG: |
| case VC_AT_MACRO_KILL_MASK: |
| case VC_VSD_TABLE_ADDR: |
| case PC_VSD_TABLE_ADDR: |
| case VC_VSD_TABLE_DATA: |
| case PC_VSD_TABLE_DATA: |
| case PC_THREAD_EN_REG0: |
| case PC_THREAD_EN_REG1: |
| val = xive->regs[reg]; |
| break; |
| |
| /* |
| * XIVE hardware thread enablement |
| */ |
| case PC_THREAD_EN_REG0_SET: |
| case PC_THREAD_EN_REG0_CLR: |
| val = xive->regs[PC_THREAD_EN_REG0 >> 3]; |
| break; |
| case PC_THREAD_EN_REG1_SET: |
| case PC_THREAD_EN_REG1_CLR: |
| val = xive->regs[PC_THREAD_EN_REG1 >> 3]; |
| break; |
| |
| case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */ |
| val = 0xffffff0000000000; |
| break; |
| |
| /* |
| * XIVE PC & VC cache updates for EAS, NVT and END |
| */ |
| case VC_EQC_CWATCH_SPEC: |
| xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT); |
| val = xive->regs[reg]; |
| break; |
| case VC_EQC_CWATCH_DAT0: |
| /* |
| * Load DATA registers from cache with data requested by the |
| * SPEC register |
| */ |
| pnv_xive_end_cache_load(xive); |
| val = xive->regs[reg]; |
| break; |
| case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3: |
| val = xive->regs[reg]; |
| break; |
| |
| case PC_VPC_CWATCH_SPEC: |
| xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT); |
| val = xive->regs[reg]; |
| break; |
| case PC_VPC_CWATCH_DAT0: |
| /* |
| * Load DATA registers from cache with data requested by the |
| * SPEC register |
| */ |
| pnv_xive_nvt_cache_load(xive); |
| val = xive->regs[reg]; |
| break; |
| case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7: |
| val = xive->regs[reg]; |
| break; |
| |
| case PC_VPC_SCRUB_TRIG: |
| case VC_IVC_SCRUB_TRIG: |
| case VC_EQC_SCRUB_TRIG: |
| xive->regs[reg] &= ~VC_SCRUB_VALID; |
| val = xive->regs[reg]; |
| break; |
| |
| /* |
| * XIVE PC & VC cache invalidation |
| */ |
| case PC_AT_KILL: |
| xive->regs[reg] &= ~PC_AT_KILL_VALID; |
| val = xive->regs[reg]; |
| break; |
| case VC_AT_MACRO_KILL: |
| xive->regs[reg] &= ~VC_KILL_VALID; |
| val = xive->regs[reg]; |
| break; |
| |
| /* |
| * XIVE synchronisation |
| */ |
| case VC_EQC_CONFIG: |
| val = VC_EQC_SYNC_MASK; |
| break; |
| |
| default: |
| xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset); |
| } |
| |
| return val; |
| } |
| |
| static const MemoryRegionOps pnv_xive_ic_reg_ops = { |
| .read = pnv_xive_ic_reg_read, |
| .write = pnv_xive_ic_reg_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * IC - Notify MMIO port page (write only) |
| */ |
| #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */ |
| #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */ |
| #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */ |
| #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */ |
| #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */ |
| #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */ |
| #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */ |
| #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */ |
| |
| /* VC synchronisation */ |
| #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */ |
| #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */ |
| #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */ |
| #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */ |
| #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */ |
| |
| /* PC synchronisation */ |
| #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */ |
| #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */ |
| #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */ |
| |
| static void pnv_xive_end_notify(XiveRouter *xrtr, XiveEAS *eas) |
| { |
| PnvXive *xive = PNV_XIVE(xrtr); |
| uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); |
| uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); |
| uint32_t end_data = xive_get_field64(EAS_END_DATA, eas->w); |
| uint64_t end_vsd = xive->vsds[VST_TSEL_EQDT][end_blk]; |
| |
| switch (GETFIELD(VSD_MODE, end_vsd)) { |
| case VSD_MODE_EXCLUSIVE: |
| /* Perform the END notification on the local IC. */ |
| xive_router_end_notify(xrtr, eas); |
| break; |
| |
| case VSD_MODE_FORWARD: { |
| MemTxResult result; |
| uint64_t notif_port = end_vsd & VSD_ADDRESS_MASK; |
| uint64_t data = XIVE_TRIGGER_END | XIVE_TRIGGER_PQ | |
| be64_to_cpu(eas->w); |
| |
| /* Forward the store on the remote IC notify page. */ |
| address_space_stq_be(&address_space_memory, notif_port, data, |
| MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| xive_error(xive, "IC: Forward notif END %x/%x [%x] failed @%" |
| HWADDR_PRIx, end_blk, end_idx, end_data, notif_port); |
| return; |
| } |
| break; |
| } |
| |
| case VSD_MODE_INVALID: |
| default: |
| /* Set FIR */ |
| xive_error(xive, "IC: Invalid END VSD for block %x", end_blk); |
| return; |
| } |
| } |
| |
| /* |
| * The notify page can either be used to receive trigger events from |
| * the HW controllers (PHB, PSI) or to reroute interrupts between |
| * Interrupt controllers. |
| */ |
| static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val) |
| { |
| uint8_t blk; |
| uint32_t idx; |
| |
| trace_pnv_xive_ic_hw_trigger(addr, val); |
| |
| if (val & XIVE_TRIGGER_END) { |
| val = cpu_to_be64(val); |
| pnv_xive_end_notify(XIVE_ROUTER(xive), (XiveEAS *) &val); |
| return; |
| } |
| |
| /* |
| * Forward the source event notification directly to the Router. |
| * The source interrupt number should already be correctly encoded |
| * with the chip block id by the sending device (PHB, PSI). |
| */ |
| blk = XIVE_EAS_BLOCK(val); |
| idx = XIVE_EAS_INDEX(val); |
| |
| xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx), |
| !!(val & XIVE_TRIGGER_PQ)); |
| } |
| |
| static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val, |
| unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| |
| /* VC: HW triggers */ |
| switch (addr) { |
| case 0x000 ... 0x7FF: |
| pnv_xive_ic_hw_trigger(opaque, addr, val); |
| break; |
| |
| /* VC: Forwarded IRQs */ |
| case PNV_XIVE_FORWARD_IPI: |
| case PNV_XIVE_FORWARD_HW: |
| case PNV_XIVE_FORWARD_OS_ESC: |
| case PNV_XIVE_FORWARD_HW_ESC: |
| case PNV_XIVE_FORWARD_REDIS: |
| /* TODO: forwarded IRQs. Should be like HW triggers */ |
| xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64, |
| addr, val); |
| break; |
| |
| /* VC syncs */ |
| case PNV_XIVE_SYNC_IPI: |
| case PNV_XIVE_SYNC_HW: |
| case PNV_XIVE_SYNC_OS_ESC: |
| case PNV_XIVE_SYNC_HW_ESC: |
| case PNV_XIVE_SYNC_REDIS: |
| break; |
| |
| /* PC syncs */ |
| case PNV_XIVE_SYNC_PULL: |
| case PNV_XIVE_SYNC_PUSH: |
| case PNV_XIVE_SYNC_VPC: |
| break; |
| |
| default: |
| xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr); |
| } |
| } |
| |
| static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| |
| /* loads are invalid */ |
| xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr); |
| return -1; |
| } |
| |
| static const MemoryRegionOps pnv_xive_ic_notify_ops = { |
| .read = pnv_xive_ic_notify_read, |
| .write = pnv_xive_ic_notify_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * IC - LSI MMIO handlers (not modeled) |
| */ |
| |
| static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| |
| xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr); |
| } |
| |
| static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| |
| xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr); |
| return -1; |
| } |
| |
| static const MemoryRegionOps pnv_xive_ic_lsi_ops = { |
| .read = pnv_xive_ic_lsi_read, |
| .write = pnv_xive_ic_lsi_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * IC - Indirect TIMA MMIO handlers |
| */ |
| |
| /* |
| * When the TIMA is accessed from the indirect page, the thread id of |
| * the target CPU is configured in the PC_TCTXT_INDIR0 register before |
| * use. This is used for resets and for debug purpose also. |
| */ |
| static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive) |
| { |
| PnvChip *chip = xive->chip; |
| uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3]; |
| PowerPCCPU *cpu = NULL; |
| int pir; |
| |
| if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) { |
| xive_error(xive, "IC: no indirect TIMA access in progress"); |
| return NULL; |
| } |
| |
| pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir); |
| cpu = pnv_chip_find_cpu(chip, pir); |
| if (!cpu) { |
| xive_error(xive, "IC: invalid PIR %x for indirect access", pir); |
| return NULL; |
| } |
| |
| /* Check that HW thread is XIVE enabled */ |
| if (!pnv_xive_is_cpu_enabled(xive, cpu)) { |
| xive_error(xive, "IC: CPU %x is not enabled", pir); |
| } |
| |
| return XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| } |
| |
| static void xive_tm_indirect_write(void *opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque)); |
| |
| xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size); |
| } |
| |
| static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque)); |
| |
| return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size); |
| } |
| |
| static const MemoryRegionOps xive_tm_indirect_ops = { |
| .read = xive_tm_indirect_read, |
| .write = xive_tm_indirect_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static void pnv_xive_tm_write(void *opaque, hwaddr offset, |
| uint64_t value, unsigned size) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(current_cpu); |
| PnvXive *xive = pnv_xive_tm_get_xive(cpu); |
| XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| |
| xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size); |
| } |
| |
| static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(current_cpu); |
| PnvXive *xive = pnv_xive_tm_get_xive(cpu); |
| XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); |
| |
| return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size); |
| } |
| |
| const MemoryRegionOps pnv_xive_tm_ops = { |
| .read = pnv_xive_tm_read, |
| .write = pnv_xive_tm_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * Interrupt controller XSCOM region. |
| */ |
| static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| switch (addr >> 3) { |
| case X_VC_EQC_CONFIG: |
| /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */ |
| return VC_EQC_SYNC_MASK; |
| default: |
| return pnv_xive_ic_reg_read(opaque, addr, size); |
| } |
| } |
| |
| static void pnv_xive_xscom_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| pnv_xive_ic_reg_write(opaque, addr, val, size); |
| } |
| |
| static const MemoryRegionOps pnv_xive_xscom_ops = { |
| .read = pnv_xive_xscom_read, |
| .write = pnv_xive_xscom_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| } |
| }; |
| |
| /* |
| * Virtualization Controller MMIO region containing the IPI and END ESB pages |
| */ |
| static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| uint64_t edt_index = offset >> pnv_xive_edt_shift(xive); |
| uint64_t edt_type = 0; |
| uint64_t edt_offset; |
| MemTxResult result; |
| AddressSpace *edt_as = NULL; |
| uint64_t ret = -1; |
| |
| if (edt_index < XIVE_TABLE_EDT_MAX) { |
| edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]); |
| } |
| |
| switch (edt_type) { |
| case CQ_TDR_EDT_IPI: |
| edt_as = &xive->ipi_as; |
| break; |
| case CQ_TDR_EDT_EQ: |
| edt_as = &xive->end_as; |
| break; |
| default: |
| xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset); |
| return -1; |
| } |
| |
| /* Remap the offset for the targeted address space */ |
| edt_offset = pnv_xive_edt_offset(xive, offset, edt_type); |
| |
| ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED, |
| &result); |
| |
| if (result != MEMTX_OK) { |
| xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%" |
| HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END", |
| offset, edt_offset); |
| return -1; |
| } |
| |
| return ret; |
| } |
| |
| static void pnv_xive_vc_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| uint64_t edt_index = offset >> pnv_xive_edt_shift(xive); |
| uint64_t edt_type = 0; |
| uint64_t edt_offset; |
| MemTxResult result; |
| AddressSpace *edt_as = NULL; |
| |
| if (edt_index < XIVE_TABLE_EDT_MAX) { |
| edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]); |
| } |
| |
| switch (edt_type) { |
| case CQ_TDR_EDT_IPI: |
| edt_as = &xive->ipi_as; |
| break; |
| case CQ_TDR_EDT_EQ: |
| edt_as = &xive->end_as; |
| break; |
| default: |
| xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx, |
| offset); |
| return; |
| } |
| |
| /* Remap the offset for the targeted address space */ |
| edt_offset = pnv_xive_edt_offset(xive, offset, edt_type); |
| |
| address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result); |
| if (result != MEMTX_OK) { |
| xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset); |
| } |
| } |
| |
| static const MemoryRegionOps pnv_xive_vc_ops = { |
| .read = pnv_xive_vc_read, |
| .write = pnv_xive_vc_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| /* |
| * Presenter Controller MMIO region. Points to the NVT sets. |
| * |
| * HW implements all possible mem ops to the underlying NVT structure |
| * but QEMU does not need to be so precise. The model implementation |
| * simply returns the RAM address of the NVT structure which is then |
| * used by pnv_xive_vst_write/read to perform the RAM operation. |
| */ |
| static uint64_t pnv_xive_pc_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| uint32_t nvt_idx = offset >> xive->pc_shift; |
| uint8_t blk = pnv_xive_block_id(xive); /* TODO: VDT -> block xlate */ |
| |
| return pnv_xive_vst_addr(xive, VST_TSEL_VPDT, blk, nvt_idx); |
| } |
| |
| static void pnv_xive_pc_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| PnvXive *xive = PNV_XIVE(opaque); |
| |
| xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr); |
| } |
| |
| static const MemoryRegionOps pnv_xive_pc_ops = { |
| .read = pnv_xive_pc_read, |
| .write = pnv_xive_pc_write, |
| .endianness = DEVICE_BIG_ENDIAN, |
| .valid = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| .impl = { |
| .min_access_size = 8, |
| .max_access_size = 8, |
| }, |
| }; |
| |
| static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx, |
| Monitor *mon) |
| { |
| uint8_t eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1); |
| uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1); |
| |
| if (!xive_nvt_is_valid(nvt)) { |
| return; |
| } |
| |
| monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x\n", nvt_idx, |
| eq_blk, eq_idx, |
| xive_get_field32(NVT_W4_IPB, nvt->w4)); |
| } |
| |
| void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon) |
| { |
| XiveRouter *xrtr = XIVE_ROUTER(xive); |
| uint8_t blk = pnv_xive_block_id(xive); |
| uint8_t chip_id = xive->chip->chip_id; |
| uint32_t srcno0 = XIVE_EAS(blk, 0); |
| uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk); |
| XiveEAS eas; |
| XiveEND end; |
| XiveNVT nvt; |
| int i; |
| uint64_t xive_nvt_per_subpage; |
| |
| monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk, |
| srcno0, srcno0 + nr_ipis - 1); |
| xive_source_pic_print_info(&xive->ipi_source, srcno0, mon); |
| |
| monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk, |
| srcno0, srcno0 + nr_ipis - 1); |
| for (i = 0; i < nr_ipis; i++) { |
| if (xive_router_get_eas(xrtr, blk, i, &eas)) { |
| break; |
| } |
| if (!xive_eas_is_masked(&eas)) { |
| xive_eas_pic_print_info(&eas, i, mon); |
| } |
| } |
| |
| monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk); |
| i = 0; |
| while (!xive_router_get_end(xrtr, blk, i, &end)) { |
| xive_end_pic_print_info(&end, i++, mon); |
| } |
| |
| monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk); |
| i = 0; |
| while (!xive_router_get_end(xrtr, blk, i, &end)) { |
| xive_end_eas_pic_print_info(&end, i++, mon); |
| } |
| |
| monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk, |
| 0, XIVE_NVT_COUNT - 1); |
| xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT); |
| for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) { |
| while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) { |
| xive_nvt_pic_print_info(&nvt, i++, mon); |
| } |
| } |
| } |
| |
| static void pnv_xive_reset(void *dev) |
| { |
| PnvXive *xive = PNV_XIVE(dev); |
| XiveSource *xsrc = &xive->ipi_source; |
| XiveENDSource *end_xsrc = &xive->end_source; |
| |
| /* Default page size (Should be changed at runtime to 64k) */ |
| xive->ic_shift = xive->vc_shift = xive->pc_shift = 12; |
| |
| /* Clear subregions */ |
| if (memory_region_is_mapped(&xsrc->esb_mmio)) { |
| memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio); |
| } |
| |
| if (memory_region_is_mapped(&xive->ipi_edt_mmio)) { |
| memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio); |
| } |
| |
| if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { |
| memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio); |
| } |
| |
| if (memory_region_is_mapped(&xive->end_edt_mmio)) { |
| memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio); |
| } |
| } |
| |
| static void pnv_xive_init(Object *obj) |
| { |
| PnvXive *xive = PNV_XIVE(obj); |
| |
| object_initialize_child(obj, "ipi_source", &xive->ipi_source, |
| TYPE_XIVE_SOURCE); |
| object_initialize_child(obj, "end_source", &xive->end_source, |
| TYPE_XIVE_END_SOURCE); |
| } |
| |
| /* |
| * Maximum number of IRQs and ENDs supported by HW |
| */ |
| #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) |
| #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) |
| |
| static void pnv_xive_realize(DeviceState *dev, Error **errp) |
| { |
| PnvXive *xive = PNV_XIVE(dev); |
| PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev); |
| XiveSource *xsrc = &xive->ipi_source; |
| XiveENDSource *end_xsrc = &xive->end_source; |
| Error *local_err = NULL; |
| |
| pxc->parent_realize(dev, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| assert(xive->chip); |
| |
| /* |
| * The XiveSource and XiveENDSource objects are realized with the |
| * maximum allowed HW configuration. The ESB MMIO regions will be |
| * resized dynamically when the controller is configured by the FW |
| * to limit accesses to resources not provisioned. |
| */ |
| object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS, |
| &error_fatal); |
| object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort); |
| if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { |
| return; |
| } |
| |
| object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS, |
| &error_fatal); |
| object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), |
| &error_abort); |
| if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) { |
| return; |
| } |
| |
| /* Default page size. Generally changed at runtime to 64k */ |
| xive->ic_shift = xive->vc_shift = xive->pc_shift = 12; |
| |
| /* XSCOM region, used for initial configuration of the BARs */ |
| memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops, |
| xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3); |
| |
| /* Interrupt controller MMIO regions */ |
| memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic", |
| PNV9_XIVE_IC_SIZE); |
| |
| memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops, |
| xive, "xive-ic-reg", 1 << xive->ic_shift); |
| memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev), |
| &pnv_xive_ic_notify_ops, |
| xive, "xive-ic-notify", 1 << xive->ic_shift); |
| xive->ic_notify_mmio.disable_reentrancy_guard = true; |
| |
| /* The Pervasive LSI trigger and EOI pages (not modeled) */ |
| memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops, |
| xive, "xive-ic-lsi", 2 << xive->ic_shift); |
| |
| /* Thread Interrupt Management Area (Indirect) */ |
| memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev), |
| &xive_tm_indirect_ops, |
| xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE); |
| /* |
| * Overall Virtualization Controller MMIO region containing the |
| * IPI ESB pages and END ESB pages. The layout is defined by the |
| * EDT "Domain table" and the accesses are dispatched using |
| * address spaces for each. |
| */ |
| memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive, |
| "xive-vc", PNV9_XIVE_VC_SIZE); |
| |
| memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi", |
| PNV9_XIVE_VC_SIZE); |
| address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi"); |
| memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end", |
| PNV9_XIVE_VC_SIZE); |
| address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end"); |
| |
| /* |
| * The MMIO windows exposing the IPI ESBs and the END ESBs in the |
| * VC region. Their size is configured by the FW in the EDT table. |
| */ |
| memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0); |
| memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0); |
| |
| /* Presenter Controller MMIO region (not modeled) */ |
| memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive, |
| "xive-pc", PNV9_XIVE_PC_SIZE); |
| xive->pc_mmio.disable_reentrancy_guard = true; |
| |
| /* Thread Interrupt Management Area (Direct) */ |
| memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops, |
| xive, "xive-tima", PNV9_XIVE_TM_SIZE); |
| |
| qemu_register_reset(pnv_xive_reset, dev); |
| } |
| |
| static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt, |
| int xscom_offset) |
| { |
| const char compat[] = "ibm,power9-xive-x"; |
| char *name; |
| int offset; |
| uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE; |
| uint32_t reg[] = { |
| cpu_to_be32(lpc_pcba), |
| cpu_to_be32(PNV9_XSCOM_XIVE_SIZE) |
| }; |
| |
| name = g_strdup_printf("xive@%x", lpc_pcba); |
| offset = fdt_add_subnode(fdt, xscom_offset, name); |
| _FDT(offset); |
| g_free(name); |
| |
| _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); |
| _FDT((fdt_setprop(fdt, offset, "compatible", compat, |
| sizeof(compat)))); |
| return 0; |
| } |
| |
| static Property pnv_xive_properties[] = { |
| DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0), |
| DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0), |
| DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0), |
| DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0), |
| /* The PnvChip id identifies the XIVE interrupt controller. */ |
| DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void pnv_xive_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); |
| XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); |
| XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); |
| XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); |
| PnvXiveClass *pxc = PNV_XIVE_CLASS(klass); |
| |
| xdc->dt_xscom = pnv_xive_dt_xscom; |
| |
| dc->desc = "PowerNV XIVE Interrupt Controller"; |
| device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize); |
| dc->realize = pnv_xive_realize; |
| device_class_set_props(dc, pnv_xive_properties); |
| |
| xrc->get_eas = pnv_xive_get_eas; |
| xrc->get_pq = pnv_xive_get_pq; |
| xrc->set_pq = pnv_xive_set_pq; |
| xrc->get_end = pnv_xive_get_end; |
| xrc->write_end = pnv_xive_write_end; |
| xrc->get_nvt = pnv_xive_get_nvt; |
| xrc->write_nvt = pnv_xive_write_nvt; |
| xrc->get_block_id = pnv_xive_get_block_id; |
| xrc->end_notify = pnv_xive_end_notify; |
| |
| xnc->notify = pnv_xive_notify; |
| xpc->match_nvt = pnv_xive_match_nvt; |
| xpc->get_config = pnv_xive_presenter_get_config; |
| }; |
| |
| static const TypeInfo pnv_xive_info = { |
| .name = TYPE_PNV_XIVE, |
| .parent = TYPE_XIVE_ROUTER, |
| .instance_init = pnv_xive_init, |
| .instance_size = sizeof(PnvXive), |
| .class_init = pnv_xive_class_init, |
| .class_size = sizeof(PnvXiveClass), |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_PNV_XSCOM_INTERFACE }, |
| { } |
| } |
| }; |
| |
| static void pnv_xive_register_types(void) |
| { |
| type_register_static(&pnv_xive_info); |
| } |
| |
| type_init(pnv_xive_register_types) |