|  | /* | 
|  | * ARM GICv3 support - common bits of emulated and KVM kernel model | 
|  | * | 
|  | * Copyright (c) 2012 Linaro Limited | 
|  | * Copyright (c) 2015 Huawei. | 
|  | * Copyright (c) 2015 Samsung Electronics Co., Ltd. | 
|  | * Written by Peter Maydell | 
|  | * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation, either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qemu/module.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "hw/core/cpu.h" | 
|  | #include "hw/intc/arm_gicv3_common.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "migration/vmstate.h" | 
|  | #include "gicv3_internal.h" | 
|  | #include "hw/arm/linux-boot-if.h" | 
|  | #include "sysemu/kvm.h" | 
|  |  | 
|  |  | 
|  | static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) | 
|  | { | 
|  | if (cs->gicd_no_migration_shift_bug) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Older versions of QEMU had a bug in the handling of state save/restore | 
|  | * to the KVM GICv3: they got the offset in the bitmap arrays wrong, | 
|  | * so that instead of the data for external interrupts 32 and up | 
|  | * starting at bit position 32 in the bitmap, it started at bit | 
|  | * position 64. If we're receiving data from a QEMU with that bug, | 
|  | * we must move the data down into the right place. | 
|  | */ | 
|  | memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, | 
|  | sizeof(cs->group) - GIC_INTERNAL / 8); | 
|  | memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, | 
|  | sizeof(cs->grpmod) - GIC_INTERNAL / 8); | 
|  | memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, | 
|  | sizeof(cs->enabled) - GIC_INTERNAL / 8); | 
|  | memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, | 
|  | sizeof(cs->pending) - GIC_INTERNAL / 8); | 
|  | memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, | 
|  | sizeof(cs->active) - GIC_INTERNAL / 8); | 
|  | memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, | 
|  | sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); | 
|  |  | 
|  | /* | 
|  | * While this new version QEMU doesn't have this kind of bug as we fix it, | 
|  | * so it needs to set the flag to true to indicate that and it's necessary | 
|  | * for next migration to work from this new version QEMU. | 
|  | */ | 
|  | cs->gicd_no_migration_shift_bug = true; | 
|  | } | 
|  |  | 
|  | static int gicv3_pre_save(void *opaque) | 
|  | { | 
|  | GICv3State *s = (GICv3State *)opaque; | 
|  | ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); | 
|  |  | 
|  | if (c->pre_save) { | 
|  | c->pre_save(s); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int gicv3_post_load(void *opaque, int version_id) | 
|  | { | 
|  | GICv3State *s = (GICv3State *)opaque; | 
|  | ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); | 
|  |  | 
|  | gicv3_gicd_no_migration_shift_bug_post_load(s); | 
|  |  | 
|  | if (c->post_load) { | 
|  | c->post_load(s); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool virt_state_needed(void *opaque) | 
|  | { | 
|  | GICv3CPUState *cs = opaque; | 
|  |  | 
|  | return cs->num_list_regs != 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_gicv3_cpu_virt = { | 
|  | .name = "arm_gicv3_cpu/virt", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = virt_state_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), | 
|  | VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), | 
|  | VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), | 
|  | VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int vmstate_gicv3_cpu_pre_load(void *opaque) | 
|  | { | 
|  | GICv3CPUState *cs = opaque; | 
|  |  | 
|  | /* | 
|  | * If the sre_el1 subsection is not transferred this | 
|  | * means SRE_EL1 is 0x7 (which might not be the same as | 
|  | * our reset value). | 
|  | */ | 
|  | cs->icc_sre_el1 = 0x7; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool icc_sre_el1_reg_needed(void *opaque) | 
|  | { | 
|  | GICv3CPUState *cs = opaque; | 
|  |  | 
|  | return cs->icc_sre_el1 != 7; | 
|  | } | 
|  |  | 
|  | const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { | 
|  | .name = "arm_gicv3_cpu/sre_el1", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = icc_sre_el1_reg_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static bool gicv4_needed(void *opaque) | 
|  | { | 
|  | GICv3CPUState *cs = opaque; | 
|  |  | 
|  | return cs->gic->revision > 3; | 
|  | } | 
|  |  | 
|  | const VMStateDescription vmstate_gicv3_gicv4 = { | 
|  | .name = "arm_gicv3_cpu/gicv4", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = gicv4_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT64(gicr_vpropbaser, GICv3CPUState), | 
|  | VMSTATE_UINT64(gicr_vpendbaser, GICv3CPUState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_gicv3_cpu = { | 
|  | .name = "arm_gicv3_cpu", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .pre_load = vmstate_gicv3_cpu_pre_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT32(level, GICv3CPUState), | 
|  | VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), | 
|  | VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), | 
|  | VMSTATE_UINT32(gicr_waker, GICv3CPUState), | 
|  | VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), | 
|  | VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), | 
|  | VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), | 
|  | VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), | 
|  | VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), | 
|  | VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), | 
|  | VMSTATE_UINT32(edge_trigger, GICv3CPUState), | 
|  | VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), | 
|  | VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), | 
|  | VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), | 
|  | VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), | 
|  | VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), | 
|  | VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), | 
|  | VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), | 
|  | VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), | 
|  | VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | .subsections = (const VMStateDescription * const []) { | 
|  | &vmstate_gicv3_cpu_virt, | 
|  | &vmstate_gicv3_cpu_sre_el1, | 
|  | &vmstate_gicv3_gicv4, | 
|  | NULL | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int gicv3_pre_load(void *opaque) | 
|  | { | 
|  | GICv3State *cs = opaque; | 
|  |  | 
|  | /* | 
|  | * The gicd_no_migration_shift_bug flag is used for migration compatibility | 
|  | * for old version QEMU which may have the GICD bmp shift bug under KVM mode. | 
|  | * Strictly, what we want to know is whether the migration source is using | 
|  | * KVM. Since we don't have any way to determine that, we look at whether the | 
|  | * destination is using KVM; this is close enough because for the older QEMU | 
|  | * versions with this bug KVM -> TCG migration didn't work anyway. If the | 
|  | * source is a newer QEMU without this bug it will transmit the migration | 
|  | * subsection which sets the flag to true; otherwise it will remain set to | 
|  | * the value we select here. | 
|  | */ | 
|  | if (kvm_enabled()) { | 
|  | cs->gicd_no_migration_shift_bug = false; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool needed_always(void *opaque) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { | 
|  | .name = "arm_gicv3/gicd_no_migration_shift_bug", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = needed_always, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_gicv3 = { | 
|  | .name = "arm_gicv3", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .pre_load = gicv3_pre_load, | 
|  | .pre_save = gicv3_pre_save, | 
|  | .post_load = gicv3_post_load, | 
|  | .priority = MIG_PRI_GICV3, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT32(gicd_ctlr, GICv3State), | 
|  | VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), | 
|  | VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), | 
|  | VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), | 
|  | VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), | 
|  | VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), | 
|  | VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), | 
|  | VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), | 
|  | VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), | 
|  | VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), | 
|  | VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), | 
|  | VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, | 
|  | DIV_ROUND_UP(GICV3_MAXIRQ, 16)), | 
|  | VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, | 
|  | vmstate_gicv3_cpu, GICv3CPUState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | .subsections = (const VMStateDescription * const []) { | 
|  | &vmstate_gicv3_gicd_no_migration_shift_bug, | 
|  | NULL | 
|  | } | 
|  | }; | 
|  |  | 
|  | void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, | 
|  | const MemoryRegionOps *ops) | 
|  | { | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(s); | 
|  | int i; | 
|  | int cpuidx; | 
|  |  | 
|  | /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. | 
|  | * GPIO array layout is thus: | 
|  | *  [0..N-1] spi | 
|  | *  [N..N+31] PPIs for CPU 0 | 
|  | *  [N+32..N+63] PPIs for CPU 1 | 
|  | *   ... | 
|  | */ | 
|  | i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; | 
|  | qdev_init_gpio_in(DEVICE(s), handler, i); | 
|  |  | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | sysbus_init_irq(sbd, &s->cpu[i].parent_irq); | 
|  | } | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); | 
|  | } | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | sysbus_init_irq(sbd, &s->cpu[i].parent_virq); | 
|  | } | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); | 
|  | } | 
|  |  | 
|  | memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, | 
|  | "gicv3_dist", 0x10000); | 
|  | sysbus_init_mmio(sbd, &s->iomem_dist); | 
|  |  | 
|  | s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions); | 
|  | cpuidx = 0; | 
|  | for (i = 0; i < s->nb_redist_regions; i++) { | 
|  | char *name = g_strdup_printf("gicv3_redist_region[%d]", i); | 
|  | GICv3RedistRegion *region = &s->redist_regions[i]; | 
|  |  | 
|  | region->gic = s; | 
|  | region->cpuidx = cpuidx; | 
|  | cpuidx += s->redist_region_count[i]; | 
|  |  | 
|  | memory_region_init_io(®ion->iomem, OBJECT(s), | 
|  | ops ? &ops[1] : NULL, region, name, | 
|  | s->redist_region_count[i] * gicv3_redist_size(s)); | 
|  | sysbus_init_mmio(sbd, ®ion->iomem); | 
|  | g_free(name); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | GICv3State *s = ARM_GICV3_COMMON(dev); | 
|  | int i, rdist_capacity, cpuidx; | 
|  |  | 
|  | /* | 
|  | * This GIC device supports only revisions 3 and 4. The GICv1/v2 | 
|  | * is a separate device. | 
|  | * Note that subclasses of this device may impose further restrictions | 
|  | * on the GIC revision: notably, the in-kernel KVM GIC doesn't | 
|  | * support GICv4. | 
|  | */ | 
|  | if (s->revision != 3 && s->revision != 4) { | 
|  | error_setg(errp, "unsupported GIC revision %d", s->revision); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->num_irq > GICV3_MAXIRQ) { | 
|  | error_setg(errp, | 
|  | "requested %u interrupt lines exceeds GIC maximum %d", | 
|  | s->num_irq, GICV3_MAXIRQ); | 
|  | return; | 
|  | } | 
|  | if (s->num_irq < GIC_INTERNAL) { | 
|  | error_setg(errp, | 
|  | "requested %u interrupt lines is below GIC minimum %d", | 
|  | s->num_irq, GIC_INTERNAL); | 
|  | return; | 
|  | } | 
|  | if (s->num_cpu == 0) { | 
|  | error_setg(errp, "num-cpu must be at least 1"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* ITLinesNumber is represented as (N / 32) - 1, so this is an | 
|  | * implementation imposed restriction, not an architectural one, | 
|  | * so we don't have to deal with bitfields where only some of the | 
|  | * bits in a 32-bit word should be valid. | 
|  | */ | 
|  | if (s->num_irq % 32) { | 
|  | error_setg(errp, | 
|  | "%d interrupt lines unsupported: not divisible by 32", | 
|  | s->num_irq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->lpi_enable && !s->dma) { | 
|  | error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rdist_capacity = 0; | 
|  | for (i = 0; i < s->nb_redist_regions; i++) { | 
|  | rdist_capacity += s->redist_region_count[i]; | 
|  | } | 
|  | if (rdist_capacity != s->num_cpu) { | 
|  | error_setg(errp, "Capacity of the redist regions(%d) " | 
|  | "does not match the number of vcpus(%d)", | 
|  | rdist_capacity, s->num_cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (s->lpi_enable) { | 
|  | address_space_init(&s->dma_as, s->dma, | 
|  | "gicv3-its-sysmem"); | 
|  | } | 
|  |  | 
|  | s->cpu = g_new0(GICv3CPUState, s->num_cpu); | 
|  |  | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | CPUState *cpu = qemu_get_cpu(i); | 
|  | uint64_t cpu_affid; | 
|  |  | 
|  | s->cpu[i].cpu = cpu; | 
|  | s->cpu[i].gic = s; | 
|  | /* Store GICv3CPUState in CPUARMState gicv3state pointer */ | 
|  | gicv3_set_gicv3state(cpu, &s->cpu[i]); | 
|  |  | 
|  | /* Pre-construct the GICR_TYPER: | 
|  | * For our implementation: | 
|  | *  Top 32 bits are the affinity value of the associated CPU | 
|  | *  CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) | 
|  | *  Processor_Number == CPU index starting from 0 | 
|  | *  DPGS == 0 (GICR_CTLR.DPG* not supported) | 
|  | *  Last == 1 if this is the last redistributor in a series of | 
|  | *            contiguous redistributor pages | 
|  | *  DirectLPI == 0 (direct injection of LPIs not supported) | 
|  | *  VLPIS == 1 if vLPIs supported (GICv4 and up) | 
|  | *  PLPIS == 1 if LPIs supported | 
|  | */ | 
|  | cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); | 
|  |  | 
|  | /* The CPU mp-affinity property is in MPIDR register format; squash | 
|  | * the affinity bytes into 32 bits as the GICR_TYPER has them. | 
|  | */ | 
|  | cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | | 
|  | (cpu_affid & 0xFFFFFF); | 
|  | s->cpu[i].gicr_typer = (cpu_affid << 32) | | 
|  | (1 << 24) | | 
|  | (i << 8); | 
|  |  | 
|  | if (s->lpi_enable) { | 
|  | s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS; | 
|  | if (s->revision > 3) { | 
|  | s->cpu[i].gicr_typer |= GICR_TYPER_VLPIS; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now go through and set GICR_TYPER.Last for the final | 
|  | * redistributor in each region. | 
|  | */ | 
|  | cpuidx = 0; | 
|  | for (i = 0; i < s->nb_redist_regions; i++) { | 
|  | cpuidx += s->redist_region_count[i]; | 
|  | s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST; | 
|  | } | 
|  |  | 
|  | s->itslist = g_ptr_array_new(); | 
|  | } | 
|  |  | 
|  | static void arm_gicv3_finalize(Object *obj) | 
|  | { | 
|  | GICv3State *s = ARM_GICV3_COMMON(obj); | 
|  |  | 
|  | g_free(s->redist_region_count); | 
|  | } | 
|  |  | 
|  | static void arm_gicv3_common_reset_hold(Object *obj) | 
|  | { | 
|  | GICv3State *s = ARM_GICV3_COMMON(obj); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < s->num_cpu; i++) { | 
|  | GICv3CPUState *cs = &s->cpu[i]; | 
|  |  | 
|  | cs->level = 0; | 
|  | cs->gicr_ctlr = 0; | 
|  | if (s->lpi_enable) { | 
|  | /* Our implementation supports clearing GICR_CTLR.EnableLPIs */ | 
|  | cs->gicr_ctlr |= GICR_CTLR_CES; | 
|  | } | 
|  | cs->gicr_statusr[GICV3_S] = 0; | 
|  | cs->gicr_statusr[GICV3_NS] = 0; | 
|  | cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; | 
|  | cs->gicr_propbaser = 0; | 
|  | cs->gicr_pendbaser = 0; | 
|  | cs->gicr_vpropbaser = 0; | 
|  | cs->gicr_vpendbaser = 0; | 
|  | /* If we're resetting a TZ-aware GIC as if secure firmware | 
|  | * had set it up ready to start a kernel in non-secure, we | 
|  | * need to set interrupts to group 1 so the kernel can use them. | 
|  | * Otherwise they reset to group 0 like the hardware. | 
|  | */ | 
|  | if (s->irq_reset_nonsecure) { | 
|  | cs->gicr_igroupr0 = 0xffffffff; | 
|  | } else { | 
|  | cs->gicr_igroupr0 = 0; | 
|  | } | 
|  |  | 
|  | cs->gicr_ienabler0 = 0; | 
|  | cs->gicr_ipendr0 = 0; | 
|  | cs->gicr_iactiver0 = 0; | 
|  | cs->edge_trigger = 0xffff; | 
|  | cs->gicr_igrpmodr0 = 0; | 
|  | cs->gicr_nsacr = 0; | 
|  | memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); | 
|  |  | 
|  | cs->hppi.prio = 0xff; | 
|  | cs->hpplpi.prio = 0xff; | 
|  | cs->hppvlpi.prio = 0xff; | 
|  |  | 
|  | /* State in the CPU interface must *not* be reset here, because it | 
|  | * is part of the CPU's reset domain, not the GIC device's. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* For our implementation affinity routing is always enabled */ | 
|  | if (s->security_extn) { | 
|  | s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; | 
|  | } else { | 
|  | s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; | 
|  | } | 
|  |  | 
|  | s->gicd_statusr[GICV3_S] = 0; | 
|  | s->gicd_statusr[GICV3_NS] = 0; | 
|  |  | 
|  | memset(s->group, 0, sizeof(s->group)); | 
|  | memset(s->grpmod, 0, sizeof(s->grpmod)); | 
|  | memset(s->enabled, 0, sizeof(s->enabled)); | 
|  | memset(s->pending, 0, sizeof(s->pending)); | 
|  | memset(s->active, 0, sizeof(s->active)); | 
|  | memset(s->level, 0, sizeof(s->level)); | 
|  | memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); | 
|  | memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); | 
|  | memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); | 
|  | memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); | 
|  | /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must | 
|  | * write these to get sane behaviour and we need not populate the | 
|  | * pointer cache here; however having the cache be different for | 
|  | * "happened to be 0 from reset" and "guest wrote 0" would be | 
|  | * too confusing. | 
|  | */ | 
|  | gicv3_cache_all_target_cpustates(s); | 
|  |  | 
|  | if (s->irq_reset_nonsecure) { | 
|  | /* If we're resetting a TZ-aware GIC as if secure firmware | 
|  | * had set it up ready to start a kernel in non-secure, we | 
|  | * need to set interrupts to group 1 so the kernel can use them. | 
|  | * Otherwise they reset to group 0 like the hardware. | 
|  | */ | 
|  | for (i = GIC_INTERNAL; i < s->num_irq; i++) { | 
|  | gicv3_gicd_group_set(s, i); | 
|  | } | 
|  | } | 
|  | s->gicd_no_migration_shift_bug = true; | 
|  | } | 
|  |  | 
|  | static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, | 
|  | bool secure_boot) | 
|  | { | 
|  | GICv3State *s = ARM_GICV3_COMMON(obj); | 
|  |  | 
|  | if (s->security_extn && !secure_boot) { | 
|  | /* We're directly booting a kernel into NonSecure. If this GIC | 
|  | * implements the security extensions then we must configure it | 
|  | * to have all the interrupts be NonSecure (this is a job that | 
|  | * is done by the Secure boot firmware in real hardware, and in | 
|  | * this mode QEMU is acting as a minimalist firmware-and-bootloader | 
|  | * equivalent). | 
|  | */ | 
|  | s->irq_reset_nonsecure = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Property arm_gicv3_common_properties[] = { | 
|  | DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), | 
|  | DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), | 
|  | DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), | 
|  | DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0), | 
|  | DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), | 
|  | /* | 
|  | * Compatibility property: force 8 bits of physical priority, even | 
|  | * if the CPU being emulated should have fewer. | 
|  | */ | 
|  | DEFINE_PROP_BOOL("force-8-bit-prio", GICv3State, force_8bit_prio, 0), | 
|  | DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, | 
|  | redist_region_count, qdev_prop_uint32, uint32_t), | 
|  | DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION, | 
|  | MemoryRegion *), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | }; | 
|  |  | 
|  | static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | ResettableClass *rc = RESETTABLE_CLASS(klass); | 
|  | ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); | 
|  |  | 
|  | rc->phases.hold = arm_gicv3_common_reset_hold; | 
|  | dc->realize = arm_gicv3_common_realize; | 
|  | device_class_set_props(dc, arm_gicv3_common_properties); | 
|  | dc->vmsd = &vmstate_gicv3; | 
|  | albifc->arm_linux_init = arm_gic_common_linux_init; | 
|  | } | 
|  |  | 
|  | static const TypeInfo arm_gicv3_common_type = { | 
|  | .name = TYPE_ARM_GICV3_COMMON, | 
|  | .parent = TYPE_SYS_BUS_DEVICE, | 
|  | .instance_size = sizeof(GICv3State), | 
|  | .class_size = sizeof(ARMGICv3CommonClass), | 
|  | .class_init = arm_gicv3_common_class_init, | 
|  | .instance_finalize = arm_gicv3_finalize, | 
|  | .abstract = true, | 
|  | .interfaces = (InterfaceInfo []) { | 
|  | { TYPE_ARM_LINUX_BOOT_IF }, | 
|  | { }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void register_types(void) | 
|  | { | 
|  | type_register_static(&arm_gicv3_common_type); | 
|  | } | 
|  |  | 
|  | type_init(register_types) | 
|  |  | 
|  | const char *gicv3_class_name(void) | 
|  | { | 
|  | if (kvm_irqchip_in_kernel()) { | 
|  | return "kvm-arm-gicv3"; | 
|  | } else { | 
|  | if (kvm_enabled()) { | 
|  | error_report("Userspace GICv3 is not supported with KVM"); | 
|  | exit(1); | 
|  | } | 
|  | return "arm-gicv3"; | 
|  | } | 
|  | } |