blob: ac307a79b0c01192cfacc0bdba51feeb3e65cfff [file] [log] [blame]
#include "exec.h"
//#define DEBUG_MMU
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
FT0 = (float) *((int32_t *)&FT1);
}
void do_fitod(void)
{
DT0 = (double) *((int32_t *)&FT1);
}
#endif
void do_fabss(void)
{
FT0 = float32_abs(FT1);
}
#ifdef TARGET_SPARC64
void do_fabsd(void)
{
DT0 = float64_abs(DT1);
}
#endif
void do_fsqrts(void)
{
FT0 = float32_sqrt(FT1, &env->fp_status);
}
void do_fsqrtd(void)
{
DT0 = float64_sqrt(DT1, &env->fp_status);
}
#define FS 0
void do_fcmps (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(FT0) || isnan(FT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (FT0 < FT1) {
T0 = FSR_FCC0 << FS;
} else if (FT0 > FT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
void do_fcmpd (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(DT0) || isnan(DT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (DT0 < DT1) {
T0 = FSR_FCC0 << FS;
} else if (DT0 > DT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
#ifdef TARGET_SPARC64
#undef FS
#define FS 22
void do_fcmps_fcc1 (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(FT0) || isnan(FT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (FT0 < FT1) {
T0 = FSR_FCC0 << FS;
} else if (FT0 > FT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
void do_fcmpd_fcc1 (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(DT0) || isnan(DT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (DT0 < DT1) {
T0 = FSR_FCC0 << FS;
} else if (DT0 > DT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
#undef FS
#define FS 24
void do_fcmps_fcc2 (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(FT0) || isnan(FT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (FT0 < FT1) {
T0 = FSR_FCC0 << FS;
} else if (FT0 > FT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
void do_fcmpd_fcc2 (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(DT0) || isnan(DT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (DT0 < DT1) {
T0 = FSR_FCC0 << FS;
} else if (DT0 > DT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
#undef FS
#define FS 26
void do_fcmps_fcc3 (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(FT0) || isnan(FT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (FT0 < FT1) {
T0 = FSR_FCC0 << FS;
} else if (FT0 > FT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
void do_fcmpd_fcc3 (void)
{
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);
if (isnan(DT0) || isnan(DT1)) {
T0 = (FSR_FCC1 | FSR_FCC0) << FS;
if (env->fsr & FSR_NVM) {
env->fsr |= T0;
raise_exception(TT_FP_EXCP);
} else {
env->fsr |= FSR_NVA;
}
} else if (DT0 < DT1) {
T0 = FSR_FCC0 << FS;
} else if (DT0 > DT1) {
T0 = FSR_FCC1 << FS;
} else {
T0 = 0;
}
env->fsr |= T0;
}
#undef FS
#endif
#ifndef TARGET_SPARC64
void helper_ld_asi(int asi, int size, int sign)
{
uint32_t ret;
switch (asi) {
case 3: /* MMU probe */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
if (mmulev > 4)
ret = 0;
else {
ret = mmu_probe(T0, mmulev);
//bswap32s(&ret);
}
#ifdef DEBUG_MMU
printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
#endif
}
break;
case 4: /* read MMU regs */
{
int reg = (T0 >> 8) & 0xf;
ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */
env->mmuregs[reg] = 0;
#ifdef DEBUG_MMU
printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
#endif
}
break;
case 0x20 ... 0x2f: /* MMU passthrough */
cpu_physical_memory_read(T0, (void *) &ret, size);
if (size == 4)
tswap32s(&ret);
else if (size == 2)
tswap16s((uint16_t *)&ret);
break;
default:
ret = 0;
break;
}
T1 = ret;
}
void helper_st_asi(int asi, int size, int sign)
{
switch(asi) {
case 3: /* MMU flush */
{
int mmulev;
mmulev = (T0 >> 8) & 15;
#ifdef DEBUG_MMU
printf("mmu flush level %d\n", mmulev);
#endif
switch (mmulev) {
case 0: // flush page
tlb_flush_page(env, T0 & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
tlb_flush(env, 1);
break;
default:
break;
}
#ifdef DEBUG_MMU
dump_mmu();
#endif
return;
}
case 4: /* write MMU regs */
{
int reg = (T0 >> 8) & 0xf, oldreg;
oldreg = env->mmuregs[reg];
switch(reg) {
case 0:
env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
// Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode
if (oldreg != env->mmuregs[reg])
tlb_flush(env, 1);
break;
case 2:
env->mmuregs[reg] = T1;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(env, 1);
}
break;
case 3:
case 4:
break;
default:
env->mmuregs[reg] = T1;
break;
}
#ifdef DEBUG_MMU
if (oldreg != env->mmuregs[reg]) {
printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
}
dump_mmu();
#endif
return;
}
case 0x17: /* Block copy, sta access */
{
// value (T1) = src
// address (T0) = dst
// copy 32 bytes
int src = T1, dst = T0;
uint8_t temp[32];
tswap32s(&src);
cpu_physical_memory_read(src, (void *) &temp, 32);
cpu_physical_memory_write(dst, (void *) &temp, 32);
}
return;
case 0x1f: /* Block fill, stda access */
{
// value (T1, T2)
// address (T0) = dst
// fill 32 bytes
int i, dst = T0;
uint64_t val;
val = (((uint64_t)T1) << 32) | T2;
tswap64s(&val);
for (i = 0; i < 32; i += 8, dst += 8) {
cpu_physical_memory_write(dst, (void *) &val, 8);
}
}
return;
case 0x20 ... 0x2f: /* MMU passthrough */
{
int temp = T1;
if (size == 4)
tswap32s(&temp);
else if (size == 2)
tswap16s((uint16_t *)&temp);
cpu_physical_memory_write(T0, (void *) &temp, size);
}
return;
default:
return;
}
}
#else
void helper_ld_asi(int asi, int size, int sign)
{
uint64_t ret;
if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
raise_exception(TT_PRIV_INSN);
switch (asi) {
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
{
cpu_physical_memory_read(T0, (void *) &ret, size);
if (size == 8)
tswap64s(&ret);
if (size == 4)
tswap32s((uint32_t *)&ret);
else if (size == 2)
tswap16s((uint16_t *)&ret);
break;
}
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
// XXX
break;
case 0x45: // LSU
ret = env->lsu;
break;
case 0x50: // I-MMU regs
{
int reg = (T0 >> 3) & 0xf;
ret = env->immuregs[reg];
break;
}
case 0x51: // I-MMU 8k TSB pointer
case 0x52: // I-MMU 64k TSB pointer
case 0x55: // I-MMU data access
case 0x56: // I-MMU tag read
break;
case 0x58: // D-MMU regs
{
int reg = (T0 >> 3) & 0xf;
ret = env->dmmuregs[reg];
break;
}
case 0x59: // D-MMU 8k TSB pointer
case 0x5a: // D-MMU 64k TSB pointer
case 0x5b: // D-MMU data pointer
case 0x5d: // D-MMU data access
case 0x5e: // D-MMU tag read
break;
case 0x54: // I-MMU data in, WO
case 0x57: // I-MMU demap, WO
case 0x5c: // D-MMU data in, WO
case 0x5f: // D-MMU demap, WO
default:
ret = 0;
break;
}
T1 = ret;
}
void helper_st_asi(int asi, int size, int sign)
{
if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
raise_exception(TT_PRIV_INSN);
switch(asi) {
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
{
target_ulong temp = T1;
if (size == 8)
tswap64s(&temp);
else if (size == 4)
tswap32s((uint32_t *)&temp);
else if (size == 2)
tswap16s((uint16_t *)&temp);
cpu_physical_memory_write(T0, (void *) &temp, size);
}
return;
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
// XXX
return;
case 0x45: // LSU
{
uint64_t oldreg;
oldreg = env->lsu;
env->lsu = T1 & (DMMU_E | IMMU_E);
// Mappings generated during D/I MMU disabled mode are
// invalid in normal mode
if (oldreg != env->lsu)
tlb_flush(env, 1);
return;
}
case 0x50: // I-MMU regs
{
int reg = (T0 >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->immuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 1: // Not in I-MMU
case 2:
case 7:
case 8:
return;
case 3: // SFSR
if ((T1 & 1) == 0)
T1 = 0; // Clear SFSR
break;
case 5: // TSB access
case 6: // Tag access
default:
break;
}
env->immuregs[reg] = T1;
#ifdef DEBUG_MMU
if (oldreg != env->immuregs[reg]) {
printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->immuregs[reg]);
}
dump_mmu();
#endif
return;
}
case 0x54: // I-MMU data in
{
unsigned int i;
// Try finding an invalid entry
for (i = 0; i < 64; i++) {
if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
}
// Try finding an unlocked entry
for (i = 0; i < 64; i++) {
if ((env->itlb_tte[i] & 0x40) == 0) {
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
}
// error state?
return;
}
case 0x55: // I-MMU data access
{
unsigned int i = (T0 >> 3) & 0x3f;
env->itlb_tag[i] = env->immuregs[6];
env->itlb_tte[i] = T1;
return;
}
case 0x57: // I-MMU demap
return;
case 0x58: // D-MMU regs
{
int reg = (T0 >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->dmmuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 3: // SFSR
if ((T1 & 1) == 0) {
T1 = 0; // Clear SFSR, Fault address
env->dmmuregs[4] = 0;
}
env->dmmuregs[reg] = T1;
break;
case 1: // Primary context
case 2: // Secondary context
case 5: // TSB access
case 6: // Tag access
case 7: // Virtual Watchpoint
case 8: // Physical Watchpoint
default:
break;
}
env->dmmuregs[reg] = T1;
#ifdef DEBUG_MMU
if (oldreg != env->dmmuregs[reg]) {
printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->dmmuregs[reg]);
}
dump_mmu();
#endif
return;
}
case 0x5c: // D-MMU data in
{
unsigned int i;
// Try finding an invalid entry
for (i = 0; i < 64; i++) {
if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
}
// Try finding an unlocked entry
for (i = 0; i < 64; i++) {
if ((env->dtlb_tte[i] & 0x40) == 0) {
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
}
// error state?
return;
}
case 0x5d: // D-MMU data access
{
unsigned int i = (T0 >> 3) & 0x3f;
env->dtlb_tag[i] = env->dmmuregs[6];
env->dtlb_tte[i] = T1;
return;
}
case 0x5f: // D-MMU demap
return;
case 0x51: // I-MMU 8k TSB pointer, RO
case 0x52: // I-MMU 64k TSB pointer, RO
case 0x56: // I-MMU tag read, RO
case 0x59: // D-MMU 8k TSB pointer, RO
case 0x5a: // D-MMU 64k TSB pointer, RO
case 0x5b: // D-MMU data pointer, RO
case 0x5e: // D-MMU tag read, RO
default:
return;
}
}
#endif
#ifndef TARGET_SPARC64
void helper_rett()
{
unsigned int cwp;
env->psret = 1;
cwp = (env->cwp + 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
env->psrs = env->psrps;
}
#endif
void helper_ldfsr(void)
{
int rnd_mode;
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
rnd_mode = float_round_nearest_even;
break;
default:
case FSR_RD_ZERO:
rnd_mode = float_round_to_zero;
break;
case FSR_RD_POS:
rnd_mode = float_round_up;
break;
case FSR_RD_NEG:
rnd_mode = float_round_down;
break;
}
set_float_rounding_mode(rnd_mode, &env->fp_status);
}
void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f)
{
int exptemp;
*pmant = ldexp(frexp(f, &exptemp), 53);
*pexp = exptemp;
}
double cpu_put_fp64(uint64_t mant, uint16_t exp)
{
return ldexp((double) mant, exp - 53);
}
void helper_debug()
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
#ifndef TARGET_SPARC64
void do_wrpsr()
{
PUT_PSR(env, T0);
}
void do_rdpsr()
{
T0 = GET_PSR(env);
}
#else
void do_popc()
{
T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
}
#endif