blob: 44f1ba4fcaf73cf8f7e761c4a95235d565bb9922 [file] [log] [blame]
#include "vl.h"
#define DEBUG_IRQ_COUNT
#define BIOS_FILENAME "mips_bios.bin"
//#define BIOS_FILENAME "system.bin"
#define KERNEL_LOAD_ADDR 0x80010000
#define INITRD_LOAD_ADDR 0x80800000
/* MIPS R4K IRQ controler */
#if defined(DEBUG_IRQ_COUNT)
static uint64_t irq_count[16];
#endif
extern FILE *logfile;
void mips_set_irq (int n_IRQ, int level)
{
uint32_t mask;
if (n_IRQ < 0 || n_IRQ >= 8)
return;
mask = 0x100 << n_IRQ;
if (level != 0) {
#if 1
if (logfile) {
fprintf(logfile, "%s n %d l %d mask %08x %08x\n",
__func__, n_IRQ, level, mask, cpu_single_env->CP0_Status);
}
#endif
cpu_single_env->CP0_Cause |= mask;
if ((cpu_single_env->CP0_Status & 0x00000001) &&
(cpu_single_env->CP0_Status & mask)) {
#if defined(DEBUG_IRQ_COUNT)
irq_count[n_IRQ]++;
#endif
#if 1
if (logfile)
fprintf(logfile, "%s raise IRQ\n", __func__);
#endif
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
}
} else {
cpu_single_env->CP0_Cause &= ~mask;
}
}
void pic_set_irq (int n_IRQ, int level)
{
mips_set_irq(n_IRQ + 2, level);
}
void pic_info (void)
{
term_printf("IRQ asserted: %02x mask: %02x\n",
(cpu_single_env->CP0_Cause >> 8) & 0xFF,
(cpu_single_env->CP0_Status >> 8) & 0xFF);
}
void irq_info (void)
{
#if !defined(DEBUG_IRQ_COUNT)
term_printf("irq statistic code not compiled.\n");
#else
int i;
int64_t count;
term_printf("IRQ statistics:\n");
for (i = 0; i < 8; i++) {
count = irq_count[i];
if (count > 0)
term_printf("%2d: %lld\n", i, count);
}
#endif
}
void cpu_mips_irqctrl_init (void)
{
}
uint32_t cpu_mips_get_random (CPUState *env)
{
uint32_t now = qemu_get_clock(vm_clock);
return now % (MIPS_TLB_NB - env->CP0_Wired) + env->CP0_Wired;
}
/* MIPS R4K timer */
uint32_t cpu_mips_get_count (CPUState *env)
{
return env->CP0_Count +
(uint32_t)muldiv64(qemu_get_clock(vm_clock),
100 * 1000 * 1000, ticks_per_sec);
}
static void cpu_mips_update_count (CPUState *env, uint32_t count,
uint32_t compare)
{
uint64_t now, next;
uint32_t tmp;
tmp = count;
if (count == compare)
tmp++;
now = qemu_get_clock(vm_clock);
next = now + muldiv64(compare - tmp, ticks_per_sec, 100 * 1000 * 1000);
if (next == now)
next++;
#if 1
if (logfile) {
fprintf(logfile, "%s: 0x%08llx %08x %08x => 0x%08llx\n",
__func__, now, count, compare, next - now);
}
#endif
/* Store new count and compare registers */
env->CP0_Compare = compare;
env->CP0_Count =
count - (uint32_t)muldiv64(now, 100 * 1000 * 1000, ticks_per_sec);
/* Adjust timer */
qemu_mod_timer(env->timer, next);
}
void cpu_mips_store_count (CPUState *env, uint32_t value)
{
cpu_mips_update_count(env, value, env->CP0_Compare);
}
void cpu_mips_store_compare (CPUState *env, uint32_t value)
{
cpu_mips_update_count(env, cpu_mips_get_count(env), value);
pic_set_irq(5, 0);
}
static void mips_timer_cb (void *opaque)
{
CPUState *env;
env = opaque;
#if 1
if (logfile) {
fprintf(logfile, "%s\n", __func__);
}
#endif
cpu_mips_update_count(env, cpu_mips_get_count(env), env->CP0_Compare);
pic_set_irq(5, 1);
}
void cpu_mips_clock_init (CPUState *env)
{
env->timer = qemu_new_timer(vm_clock, &mips_timer_cb, env);
env->CP0_Compare = 0;
cpu_mips_update_count(env, 1, 0);
}
static void io_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, value);
cpu_outb(NULL, addr & 0xffff, value);
}
static uint32_t io_readb (void *opaque, target_phys_addr_t addr)
{
uint32_t ret = cpu_inb(NULL, addr & 0xffff);
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, ret);
return ret;
}
static void io_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, value);
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap16(value);
#endif
cpu_outw(NULL, addr & 0xffff, value);
}
static uint32_t io_readw (void *opaque, target_phys_addr_t addr)
{
uint32_t ret = cpu_inw(NULL, addr & 0xffff);
#ifdef TARGET_WORDS_BIGENDIAN
ret = bswap16(ret);
#endif
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, ret);
return ret;
}
static void io_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, value);
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
cpu_outl(NULL, addr & 0xffff, value);
}
static uint32_t io_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t ret = cpu_inl(NULL, addr & 0xffff);
#ifdef TARGET_WORDS_BIGENDIAN
ret = bswap32(ret);
#endif
if (logfile)
fprintf(logfile, "%s: addr %08x val %08x\n", __func__, addr, ret);
return ret;
}
CPUWriteMemoryFunc *io_write[] = {
&io_writeb,
&io_writew,
&io_writel,
};
CPUReadMemoryFunc *io_read[] = {
&io_readb,
&io_readw,
&io_readl,
};
void mips_r4k_init (int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename)
{
char buf[1024];
target_ulong kernel_base, kernel_size, initrd_base, initrd_size;
unsigned long bios_offset;
int io_memory;
int linux_boot;
int ret;
printf("%s: start\n", __func__);
linux_boot = (kernel_filename != NULL);
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
bios_offset = ram_size + vga_ram_size;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
printf("%s: load BIOS '%s' size %d\n", __func__, buf, BIOS_SIZE);
ret = load_image(buf, phys_ram_base + bios_offset);
if (ret != BIOS_SIZE) {
fprintf(stderr, "qemu: could not load MIPS bios '%s'\n", buf);
exit(1);
}
cpu_register_physical_memory((uint32_t)(0x1fc00000),
BIOS_SIZE, bios_offset | IO_MEM_ROM);
#if 0
memcpy(phys_ram_base + 0x10000, phys_ram_base + bios_offset, BIOS_SIZE);
cpu_single_env->PC = 0x80010004;
#else
cpu_single_env->PC = 0xBFC00004;
#endif
if (linux_boot) {
kernel_base = KERNEL_LOAD_ADDR;
/* now we can load the kernel */
kernel_size = load_image(kernel_filename,
phys_ram_base + (kernel_base - 0x80000000));
if (kernel_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
if (initrd_filename) {
initrd_base = INITRD_LOAD_ADDR;
initrd_size = load_image(initrd_filename,
phys_ram_base + initrd_base);
if (initrd_size == (target_ulong) -1) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
} else {
initrd_base = 0;
initrd_size = 0;
}
cpu_single_env->PC = KERNEL_LOAD_ADDR;
} else {
kernel_base = 0;
kernel_size = 0;
initrd_base = 0;
initrd_size = 0;
}
/* Init internal devices */
cpu_mips_clock_init(cpu_single_env);
cpu_mips_irqctrl_init();
/* Register 64 KB of ISA IO space at 0x14000000 */
io_memory = cpu_register_io_memory(0, io_read, io_write, NULL);
cpu_register_physical_memory(0x14000000, 0x00010000, io_memory);
isa_mem_base = 0x10000000;
serial_init(0x3f8, 4, serial_hds[0]);
vga_initialize(NULL, ds, phys_ram_base + ram_size, ram_size,
vga_ram_size);
isa_ne2000_init(0x300, 9, &nd_table[0]);
}
QEMUMachine mips_machine = {
"mips",
"mips r4k platform",
mips_r4k_init,
};