|  | /* | 
|  | * Arm SSE Subsystem System Counter | 
|  | * | 
|  | * Copyright (c) 2020 Linaro Limited | 
|  | * Written by Peter Maydell | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 or | 
|  | * (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This is a model of the "System counter" which is documented in | 
|  | * the Arm SSE-123 Example Subsystem Technical Reference Manual: | 
|  | * https://developer.arm.com/documentation/101370/latest/ | 
|  | * | 
|  | * The system counter is a non-stop 64-bit up-counter. It provides | 
|  | * this count value to other devices like the SSE system timer, | 
|  | * which are driven by this system timestamp rather than directly | 
|  | * from a clock. Internally to the counter the count is actually | 
|  | * 88-bit precision (64.24 fixed point), with a programmable scale factor. | 
|  | * | 
|  | * The hardware has the optional feature that it supports dynamic | 
|  | * clock switching, where two clock inputs are connected, and which | 
|  | * one is used is selected via a CLKSEL input signal. Since the | 
|  | * users of this device in QEMU don't use this feature, we only model | 
|  | * the HWCLKSW=0 configuration. | 
|  | */ | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "qapi/error.h" | 
|  | #include "trace.h" | 
|  | #include "hw/timer/sse-counter.h" | 
|  | #include "hw/sysbus.h" | 
|  | #include "hw/registerfields.h" | 
|  | #include "hw/clock.h" | 
|  | #include "hw/qdev-clock.h" | 
|  | #include "migration/vmstate.h" | 
|  |  | 
|  | /* Registers in the control frame */ | 
|  | REG32(CNTCR, 0x0) | 
|  | FIELD(CNTCR, EN, 0, 1) | 
|  | FIELD(CNTCR, HDBG, 1, 1) | 
|  | FIELD(CNTCR, SCEN, 2, 1) | 
|  | FIELD(CNTCR, INTRMASK, 3, 1) | 
|  | FIELD(CNTCR, PSLVERRDIS, 4, 1) | 
|  | FIELD(CNTCR, INTRCLR, 5, 1) | 
|  | /* | 
|  | * Although CNTCR defines interrupt-related bits, the counter doesn't | 
|  | * appear to actually have an interrupt output. So INTRCLR is | 
|  | * effectively a RAZ/WI bit, as are the reserved bits [31:6]. | 
|  | */ | 
|  | #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \ | 
|  | R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \ | 
|  | R_CNTCR_PSLVERRDIS_MASK) | 
|  | REG32(CNTSR, 0x4) | 
|  | REG32(CNTCV_LO, 0x8) | 
|  | REG32(CNTCV_HI, 0xc) | 
|  | REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */ | 
|  | REG32(CNTID, 0x1c) | 
|  | FIELD(CNTID, CNTSC, 0, 4) | 
|  | FIELD(CNTID, CNTCS, 16, 1) | 
|  | FIELD(CNTID, CNTSELCLK, 17, 2) | 
|  | FIELD(CNTID, CNTSCR_OVR, 19, 1) | 
|  | REG32(CNTSCR0, 0xd0) | 
|  | REG32(CNTSCR1, 0xd4) | 
|  |  | 
|  | /* Registers in the status frame */ | 
|  | REG32(STATUS_CNTCV_LO, 0x0) | 
|  | REG32(STATUS_CNTCV_HI, 0x4) | 
|  |  | 
|  | /* Standard ID registers, present in both frames */ | 
|  | REG32(PID4, 0xFD0) | 
|  | REG32(PID5, 0xFD4) | 
|  | REG32(PID6, 0xFD8) | 
|  | REG32(PID7, 0xFDC) | 
|  | REG32(PID0, 0xFE0) | 
|  | REG32(PID1, 0xFE4) | 
|  | REG32(PID2, 0xFE8) | 
|  | REG32(PID3, 0xFEC) | 
|  | REG32(CID0, 0xFF0) | 
|  | REG32(CID1, 0xFF4) | 
|  | REG32(CID2, 0xFF8) | 
|  | REG32(CID3, 0xFFC) | 
|  |  | 
|  | /* PID/CID values */ | 
|  | static const int control_id[] = { | 
|  | 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ | 
|  | 0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */ | 
|  | 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ | 
|  | }; | 
|  |  | 
|  | static const int status_id[] = { | 
|  | 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ | 
|  | 0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */ | 
|  | 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ | 
|  | }; | 
|  |  | 
|  | static void sse_counter_notify_users(SSECounter *s) | 
|  | { | 
|  | /* | 
|  | * Notify users of the count timestamp that they may | 
|  | * need to recalculate. | 
|  | */ | 
|  | notifier_list_notify(&s->notifier_list, NULL); | 
|  | } | 
|  |  | 
|  | static bool sse_counter_enabled(SSECounter *s) | 
|  | { | 
|  | return (s->cntcr & R_CNTCR_EN_MASK) != 0; | 
|  | } | 
|  |  | 
|  | uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick) | 
|  | { | 
|  | if (!sse_counter_enabled(s)) { | 
|  | return UINT64_MAX; | 
|  | } | 
|  |  | 
|  | tick -= s->ticks_then; | 
|  |  | 
|  | if (s->cntcr & R_CNTCR_SCEN_MASK) { | 
|  | /* Adjust the tick count to account for the scale factor */ | 
|  | tick = muldiv64(tick, 0x01000000, s->cntscr0); | 
|  | } | 
|  |  | 
|  | return s->ns_then + clock_ticks_to_ns(s->clk, tick); | 
|  | } | 
|  |  | 
|  | void sse_counter_register_consumer(SSECounter *s, Notifier *notifier) | 
|  | { | 
|  | /* | 
|  | * For the moment we assume that both we and the devices | 
|  | * which consume us last for the life of the simulation, | 
|  | * and so there is no mechanism for removing a notifier. | 
|  | */ | 
|  | notifier_list_add(&s->notifier_list, notifier); | 
|  | } | 
|  |  | 
|  | uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now) | 
|  | { | 
|  | /* Return the CNTCV value for a particular timestamp (clock ns value). */ | 
|  | uint64_t ticks; | 
|  |  | 
|  | if (!sse_counter_enabled(s)) { | 
|  | /* Counter is disabled and does not increment */ | 
|  | return s->ticks_then; | 
|  | } | 
|  |  | 
|  | ticks = clock_ns_to_ticks(s->clk, now - s->ns_then); | 
|  | if (s->cntcr & R_CNTCR_SCEN_MASK) { | 
|  | /* | 
|  | * Scaling is enabled. The CNTSCR value is the amount added to | 
|  | * the underlying 88-bit counter for every tick of the | 
|  | * underlying clock; CNTCV is the top 64 bits of that full | 
|  | * 88-bit value. Multiplying the tick count by CNTSCR tells us | 
|  | * how much the full 88-bit counter has moved on; we then | 
|  | * divide that by 0x01000000 to find out how much the 64-bit | 
|  | * visible portion has advanced. muldiv64() gives us the | 
|  | * necessary at-least-88-bit precision for the intermediate | 
|  | * result. | 
|  | */ | 
|  | ticks = muldiv64(ticks, s->cntscr0, 0x01000000); | 
|  | } | 
|  | return s->ticks_then + ticks; | 
|  | } | 
|  |  | 
|  | static uint64_t sse_cntcv(SSECounter *s) | 
|  | { | 
|  | /* Return the CNTCV value for the current time */ | 
|  | return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); | 
|  | } | 
|  |  | 
|  | static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit) | 
|  | { | 
|  | /* | 
|  | * Write one 32-bit half of the counter value; startbit is the | 
|  | * bit position of this half in the 64-bit word, either 0 or 32. | 
|  | */ | 
|  | uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | uint64_t cntcv = sse_counter_for_timestamp(s, now); | 
|  |  | 
|  | cntcv = deposit64(cntcv, startbit, 32, value); | 
|  | s->ticks_then = cntcv; | 
|  | s->ns_then = now; | 
|  | sse_counter_notify_users(s); | 
|  | } | 
|  |  | 
|  | static uint64_t sse_counter_control_read(void *opaque, hwaddr offset, | 
|  | unsigned size) | 
|  | { | 
|  | SSECounter *s = SSE_COUNTER(opaque); | 
|  | uint64_t r; | 
|  |  | 
|  | switch (offset) { | 
|  | case A_CNTCR: | 
|  | r = s->cntcr; | 
|  | break; | 
|  | case A_CNTSR: | 
|  | /* | 
|  | * The only bit here is DBGH, indicating that the counter has been | 
|  | * halted via the Halt-on-Debug signal. We don't implement halting | 
|  | * debug, so the whole register always reads as zero. | 
|  | */ | 
|  | r = 0; | 
|  | break; | 
|  | case A_CNTCV_LO: | 
|  | r = extract64(sse_cntcv(s), 0, 32); | 
|  | break; | 
|  | case A_CNTCV_HI: | 
|  | r = extract64(sse_cntcv(s), 32, 32); | 
|  | break; | 
|  | case A_CNTID: | 
|  | /* | 
|  | * For our implementation: | 
|  | *  - CNTSCR can only be written when CNTCR.EN == 0 | 
|  | *  - HWCLKSW=0, so selected clock is always CLK0 | 
|  | *  - counter scaling is implemented | 
|  | */ | 
|  | r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT); | 
|  | break; | 
|  | case A_CNTSCR: | 
|  | case A_CNTSCR0: | 
|  | r = s->cntscr0; | 
|  | break; | 
|  | case A_CNTSCR1: | 
|  | /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */ | 
|  | r = 0; | 
|  | break; | 
|  | case A_PID4 ... A_CID3: | 
|  | r = control_id[(offset - A_PID4) / 4]; | 
|  | break; | 
|  | default: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "SSE System Counter control frame read: bad offset 0x%x", | 
|  | (unsigned)offset); | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_sse_counter_control_read(offset, r, size); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void sse_counter_control_write(void *opaque, hwaddr offset, | 
|  | uint64_t value, unsigned size) | 
|  | { | 
|  | SSECounter *s = SSE_COUNTER(opaque); | 
|  |  | 
|  | trace_sse_counter_control_write(offset, value, size); | 
|  |  | 
|  | switch (offset) { | 
|  | case A_CNTCR: | 
|  | /* | 
|  | * Although CNTCR defines interrupt-related bits, the counter doesn't | 
|  | * appear to actually have an interrupt output. So INTRCLR is | 
|  | * effectively a RAZ/WI bit, as are the reserved bits [31:6]. | 
|  | * The documentation does not explicitly say so, but we assume | 
|  | * that changing the scale factor while the counter is enabled | 
|  | * by toggling CNTCR.SCEN has the same behaviour (making the counter | 
|  | * value UNKNOWN) as changing it by writing to CNTSCR, and so we | 
|  | * don't need to try to recalculate for that case. | 
|  | */ | 
|  | value &= CNTCR_VALID_MASK; | 
|  | if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) { | 
|  | /* | 
|  | * Whether the counter is being enabled or disabled, the | 
|  | * required action is the same: sync the (ns_then, ticks_then) | 
|  | * tuple. | 
|  | */ | 
|  | uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | s->ticks_then = sse_counter_for_timestamp(s, now); | 
|  | s->ns_then = now; | 
|  | sse_counter_notify_users(s); | 
|  | } | 
|  | s->cntcr = value; | 
|  | break; | 
|  | case A_CNTCV_LO: | 
|  | sse_write_cntcv(s, value, 0); | 
|  | break; | 
|  | case A_CNTCV_HI: | 
|  | sse_write_cntcv(s, value, 32); | 
|  | break; | 
|  | case A_CNTSCR: | 
|  | case A_CNTSCR0: | 
|  | /* | 
|  | * If the scale registers are changed when the counter is enabled, | 
|  | * the count value becomes UNKNOWN. So we don't try to recalculate | 
|  | * anything here but only do it on a write to CNTCR.EN. | 
|  | */ | 
|  | s->cntscr0 = value; | 
|  | break; | 
|  | case A_CNTSCR1: | 
|  | /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */ | 
|  | break; | 
|  | case A_CNTSR: | 
|  | case A_CNTID: | 
|  | case A_PID4 ... A_CID3: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "SSE System Counter control frame: write to RO offset 0x%x\n", | 
|  | (unsigned)offset); | 
|  | break; | 
|  | default: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "SSE System Counter control frame: write to bad offset 0x%x\n", | 
|  | (unsigned)offset); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t sse_counter_status_read(void *opaque, hwaddr offset, | 
|  | unsigned size) | 
|  | { | 
|  | SSECounter *s = SSE_COUNTER(opaque); | 
|  | uint64_t r; | 
|  |  | 
|  | switch (offset) { | 
|  | case A_STATUS_CNTCV_LO: | 
|  | r = extract64(sse_cntcv(s), 0, 32); | 
|  | break; | 
|  | case A_STATUS_CNTCV_HI: | 
|  | r = extract64(sse_cntcv(s), 32, 32); | 
|  | break; | 
|  | case A_PID4 ... A_CID3: | 
|  | r = status_id[(offset - A_PID4) / 4]; | 
|  | break; | 
|  | default: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "SSE System Counter status frame read: bad offset 0x%x", | 
|  | (unsigned)offset); | 
|  | r = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_sse_counter_status_read(offset, r, size); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void sse_counter_status_write(void *opaque, hwaddr offset, | 
|  | uint64_t value, unsigned size) | 
|  | { | 
|  | trace_sse_counter_status_write(offset, value, size); | 
|  |  | 
|  | switch (offset) { | 
|  | case A_STATUS_CNTCV_LO: | 
|  | case A_STATUS_CNTCV_HI: | 
|  | case A_PID4 ... A_CID3: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "SSE System Counter status frame: write to RO offset 0x%x\n", | 
|  | (unsigned)offset); | 
|  | break; | 
|  | default: | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "SSE System Counter status frame: write to bad offset 0x%x\n", | 
|  | (unsigned)offset); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps sse_counter_control_ops = { | 
|  | .read = sse_counter_control_read, | 
|  | .write = sse_counter_control_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | .valid.min_access_size = 4, | 
|  | .valid.max_access_size = 4, | 
|  | }; | 
|  |  | 
|  | static const MemoryRegionOps sse_counter_status_ops = { | 
|  | .read = sse_counter_status_read, | 
|  | .write = sse_counter_status_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | .valid.min_access_size = 4, | 
|  | .valid.max_access_size = 4, | 
|  | }; | 
|  |  | 
|  | static void sse_counter_reset(DeviceState *dev) | 
|  | { | 
|  | SSECounter *s = SSE_COUNTER(dev); | 
|  |  | 
|  | trace_sse_counter_reset(); | 
|  |  | 
|  | s->cntcr = 0; | 
|  | s->cntscr0 = 0x01000000; | 
|  | s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | s->ticks_then = 0; | 
|  | } | 
|  |  | 
|  | static void sse_clk_callback(void *opaque, ClockEvent event) | 
|  | { | 
|  | SSECounter *s = SSE_COUNTER(opaque); | 
|  | uint64_t now; | 
|  |  | 
|  | switch (event) { | 
|  | case ClockPreUpdate: | 
|  | /* | 
|  | * Before the clock period updates, set (ticks_then, ns_then) | 
|  | * to the current time and tick count (as calculated with | 
|  | * the old clock period). | 
|  | */ | 
|  | if (sse_counter_enabled(s)) { | 
|  | now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
|  | s->ticks_then = sse_counter_for_timestamp(s, now); | 
|  | s->ns_then = now; | 
|  | } | 
|  | break; | 
|  | case ClockUpdate: | 
|  | sse_counter_notify_users(s); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sse_counter_init(Object *obj) | 
|  | { | 
|  | SysBusDevice *sbd = SYS_BUS_DEVICE(obj); | 
|  | SSECounter *s = SSE_COUNTER(obj); | 
|  |  | 
|  | notifier_list_init(&s->notifier_list); | 
|  |  | 
|  | s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s, | 
|  | ClockPreUpdate | ClockUpdate); | 
|  | memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops, | 
|  | s, "sse-counter-control", 0x1000); | 
|  | memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops, | 
|  | s, "sse-counter-status", 0x1000); | 
|  | sysbus_init_mmio(sbd, &s->control_mr); | 
|  | sysbus_init_mmio(sbd, &s->status_mr); | 
|  | } | 
|  |  | 
|  | static void sse_counter_realize(DeviceState *dev, Error **errp) | 
|  | { | 
|  | SSECounter *s = SSE_COUNTER(dev); | 
|  |  | 
|  | if (!clock_has_source(s->clk)) { | 
|  | error_setg(errp, "SSE system counter: CLK must be connected"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const VMStateDescription sse_counter_vmstate = { | 
|  | .name = "sse-counter", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (VMStateField[]) { | 
|  | VMSTATE_CLOCK(clk, SSECounter), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void sse_counter_class_init(ObjectClass *klass, void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  |  | 
|  | dc->realize = sse_counter_realize; | 
|  | dc->vmsd = &sse_counter_vmstate; | 
|  | dc->reset = sse_counter_reset; | 
|  | } | 
|  |  | 
|  | static const TypeInfo sse_counter_info = { | 
|  | .name = TYPE_SSE_COUNTER, | 
|  | .parent = TYPE_SYS_BUS_DEVICE, | 
|  | .instance_size = sizeof(SSECounter), | 
|  | .instance_init = sse_counter_init, | 
|  | .class_init = sse_counter_class_init, | 
|  | }; | 
|  |  | 
|  | static void sse_counter_register_types(void) | 
|  | { | 
|  | type_register_static(&sse_counter_info); | 
|  | } | 
|  |  | 
|  | type_init(sse_counter_register_types); |