|  | /* | 
|  | * ARM GICv3 emulation: Distributor | 
|  | * | 
|  | * Copyright (c) 2015 Huawei. | 
|  | * Copyright (c) 2016 Linaro Limited. | 
|  | * Written by Shlomo Pongratz, Peter Maydell | 
|  | * | 
|  | * This code is licensed under the GPL, version 2 or (at your option) | 
|  | * any later version. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/log.h" | 
|  | #include "trace.h" | 
|  | #include "gicv3_internal.h" | 
|  |  | 
|  | /* The GICD_NSACR registers contain a two bit field for each interrupt which | 
|  | * allows the guest to give NonSecure code access to registers controlling | 
|  | * Secure interrupts: | 
|  | *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI) | 
|  | *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR | 
|  | *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER, | 
|  | *        and w/o to CLRSPI_NSR | 
|  | *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR | 
|  | * | 
|  | * Given a (multiple-of-32) interrupt number, these mask functions return | 
|  | * a mask word where each bit is 1 if the NSACR settings permit access | 
|  | * to the interrupt. The mask returned can then be ORed with the GICD_GROUP | 
|  | * word for this set of interrupts to give an overall mask. | 
|  | */ | 
|  |  | 
|  | typedef uint32_t maskfn(GICv3State *s, int irq); | 
|  |  | 
|  | static uint32_t mask_nsacr_ge1(GICv3State *s, int irq) | 
|  | { | 
|  | /* Return a mask where each bit is set if the NSACR field is >= 1 */ | 
|  | uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; | 
|  |  | 
|  | raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; | 
|  | raw_nsacr = (raw_nsacr >> 1) | raw_nsacr; | 
|  | return half_unshuffle64(raw_nsacr); | 
|  | } | 
|  |  | 
|  | static uint32_t mask_nsacr_ge2(GICv3State *s, int irq) | 
|  | { | 
|  | /* Return a mask where each bit is set if the NSACR field is >= 2 */ | 
|  | uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1]; | 
|  |  | 
|  | raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16]; | 
|  | raw_nsacr = raw_nsacr >> 1; | 
|  | return half_unshuffle64(raw_nsacr); | 
|  | } | 
|  |  | 
|  | /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register, | 
|  | * but it would be implemented using: | 
|  | *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr; | 
|  | */ | 
|  |  | 
|  | static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs, | 
|  | maskfn *maskfn, int irq) | 
|  | { | 
|  | /* Return a 32-bit mask which should be applied for this set of 32 | 
|  | * interrupts; each bit is 1 if access is permitted by the | 
|  | * combination of attrs.secure, GICD_GROUPR and GICD_NSACR. | 
|  | */ | 
|  | uint32_t mask; | 
|  |  | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI | 
|  | * unless the NSACR bits permit access. | 
|  | */ | 
|  | mask = *gic_bmp_ptr32(s->group, irq); | 
|  | if (maskfn) { | 
|  | mask |= maskfn(s, irq); | 
|  | } | 
|  | return mask; | 
|  | } | 
|  | return 0xFFFFFFFFU; | 
|  | } | 
|  |  | 
|  | static int gicd_ns_access(GICv3State *s, int irq) | 
|  | { | 
|  | /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the | 
|  | * specified interrupt. | 
|  | */ | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return 0; | 
|  | } | 
|  | return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2); | 
|  | } | 
|  |  | 
|  | static void gicd_write_bitmap_reg(GICv3State *s, MemTxAttrs attrs, | 
|  | uint32_t *bmp, maskfn *maskfn, | 
|  | int offset, uint32_t val) | 
|  | { | 
|  | /* | 
|  | * Helper routine to implement writing to a "set" register | 
|  | * (GICD_INMIR, etc). | 
|  | * Semantics implemented here: | 
|  | * RAZ/WI for SGIs, PPIs, unimplemented IRQs | 
|  | * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. | 
|  | * offset should be the offset in bytes of the register from the start | 
|  | * of its group. | 
|  | */ | 
|  | int irq = offset * 8; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return; | 
|  | } | 
|  | val &= mask_group_and_nsacr(s, attrs, maskfn, irq); | 
|  | *gic_bmp_ptr32(bmp, irq) = val; | 
|  | gicv3_update(s, irq, 32); | 
|  | } | 
|  |  | 
|  | static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs, | 
|  | uint32_t *bmp, | 
|  | maskfn *maskfn, | 
|  | int offset, uint32_t val) | 
|  | { | 
|  | /* Helper routine to implement writing to a "set-bitmap" register | 
|  | * (GICD_ISENABLER, GICD_ISPENDR, etc). | 
|  | * Semantics implemented here: | 
|  | * RAZ/WI for SGIs, PPIs, unimplemented IRQs | 
|  | * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. | 
|  | * Writing 1 means "set bit in bitmap"; writing 0 is ignored. | 
|  | * offset should be the offset in bytes of the register from the start | 
|  | * of its group. | 
|  | */ | 
|  | int irq = offset * 8; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return; | 
|  | } | 
|  | val &= mask_group_and_nsacr(s, attrs, maskfn, irq); | 
|  | *gic_bmp_ptr32(bmp, irq) |= val; | 
|  | gicv3_update(s, irq, 32); | 
|  | } | 
|  |  | 
|  | static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs, | 
|  | uint32_t *bmp, | 
|  | maskfn *maskfn, | 
|  | int offset, uint32_t val) | 
|  | { | 
|  | /* Helper routine to implement writing to a "clear-bitmap" register | 
|  | * (GICD_ICENABLER, GICD_ICPENDR, etc). | 
|  | * Semantics implemented here: | 
|  | * RAZ/WI for SGIs, PPIs, unimplemented IRQs | 
|  | * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. | 
|  | * Writing 1 means "clear bit in bitmap"; writing 0 is ignored. | 
|  | * offset should be the offset in bytes of the register from the start | 
|  | * of its group. | 
|  | */ | 
|  | int irq = offset * 8; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return; | 
|  | } | 
|  | val &= mask_group_and_nsacr(s, attrs, maskfn, irq); | 
|  | *gic_bmp_ptr32(bmp, irq) &= ~val; | 
|  | gicv3_update(s, irq, 32); | 
|  | } | 
|  |  | 
|  | static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs, | 
|  | uint32_t *bmp, | 
|  | maskfn *maskfn, | 
|  | int offset) | 
|  | { | 
|  | /* Helper routine to implement reading a "set/clear-bitmap" register | 
|  | * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc). | 
|  | * Semantics implemented here: | 
|  | * RAZ/WI for SGIs, PPIs, unimplemented IRQs | 
|  | * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI. | 
|  | * offset should be the offset in bytes of the register from the start | 
|  | * of its group. | 
|  | */ | 
|  | int irq = offset * 8; | 
|  | uint32_t val; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return 0; | 
|  | } | 
|  | val = *gic_bmp_ptr32(bmp, irq); | 
|  | if (bmp == s->pending) { | 
|  | /* The PENDING register is a special case -- for level triggered | 
|  | * interrupts, the PENDING state is the logical OR of the state of | 
|  | * the PENDING latch with the input line level. | 
|  | */ | 
|  | uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq); | 
|  | uint32_t level = *gic_bmp_ptr32(s->level, irq); | 
|  | val |= (~edge & level); | 
|  | } | 
|  | val &= mask_group_and_nsacr(s, attrs, maskfn, irq); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq) | 
|  | { | 
|  | /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt, | 
|  | * honouring security state (these are RAZ/WI for Group 0 or Secure | 
|  | * Group 1 interrupts). | 
|  | */ | 
|  | uint32_t prio; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | prio = s->gicd_ipriority[irq]; | 
|  |  | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | if (!gicv3_gicd_group_test(s, irq)) { | 
|  | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | 
|  | return 0; | 
|  | } | 
|  | /* NS view of the interrupt priority */ | 
|  | prio = (prio << 1) & 0xff; | 
|  | } | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq, | 
|  | uint8_t value) | 
|  | { | 
|  | /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, | 
|  | * honouring security state (these are RAZ/WI for Group 0 or Secure | 
|  | * Group 1 interrupts). | 
|  | */ | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | if (!gicv3_gicd_group_test(s, irq)) { | 
|  | /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ | 
|  | return; | 
|  | } | 
|  | /* NS view of the interrupt priority */ | 
|  | value = 0x80 | (value >> 1); | 
|  | } | 
|  | s->gicd_ipriority[irq] = value; | 
|  | } | 
|  |  | 
|  | static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq) | 
|  | { | 
|  | /* Read the value of GICD_IROUTER<n> for the specified interrupt, | 
|  | * honouring security state. | 
|  | */ | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | /* RAZ/WI for NS accesses to secure interrupts */ | 
|  | if (!gicv3_gicd_group_test(s, irq)) { | 
|  | if (gicd_ns_access(s, irq) != 3) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return s->gicd_irouter[irq]; | 
|  | } | 
|  |  | 
|  | static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq, | 
|  | uint64_t val) | 
|  | { | 
|  | /* Write the value of GICD_IROUTER<n> for the specified interrupt, | 
|  | * honouring security state. | 
|  | */ | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | /* RAZ/WI for NS accesses to secure interrupts */ | 
|  | if (!gicv3_gicd_group_test(s, irq)) { | 
|  | if (gicd_ns_access(s, irq) != 3) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | s->gicd_irouter[irq] = val; | 
|  | gicv3_cache_target_cpustate(s, irq); | 
|  | gicv3_update(s, irq, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gicd_readb | 
|  | * gicd_readw | 
|  | * gicd_readl | 
|  | * gicd_readq | 
|  | * gicd_writeb | 
|  | * gicd_writew | 
|  | * gicd_writel | 
|  | * gicd_writeq | 
|  | * | 
|  | * Return %true if the operation succeeded, %false otherwise. | 
|  | */ | 
|  |  | 
|  | static bool gicd_readb(GICv3State *s, hwaddr offset, | 
|  | uint64_t *data, MemTxAttrs attrs) | 
|  | { | 
|  | /* Most GICv3 distributor registers do not support byte accesses. */ | 
|  | switch (offset) { | 
|  | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | 
|  | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | 
|  | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | 
|  | /* This GIC implementation always has affinity routing enabled, | 
|  | * so these registers are all RAZ/WI. | 
|  | */ | 
|  | return true; | 
|  | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | 
|  | *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR); | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool gicd_writeb(GICv3State *s, hwaddr offset, | 
|  | uint64_t value, MemTxAttrs attrs) | 
|  | { | 
|  | /* Most GICv3 distributor registers do not support byte accesses. */ | 
|  | switch (offset) { | 
|  | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | 
|  | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | 
|  | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | 
|  | /* This GIC implementation always has affinity routing enabled, | 
|  | * so these registers are all RAZ/WI. | 
|  | */ | 
|  | return true; | 
|  | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | 
|  | { | 
|  | int irq = offset - GICD_IPRIORITYR; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return true; | 
|  | } | 
|  | gicd_write_ipriorityr(s, attrs, irq, value); | 
|  | gicv3_update(s, irq, 1); | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool gicd_readw(GICv3State *s, hwaddr offset, | 
|  | uint64_t *data, MemTxAttrs attrs) | 
|  | { | 
|  | /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR | 
|  | * support 16 bit accesses, and those registers are all part of the | 
|  | * optional message-based SPI feature which this GIC does not currently | 
|  | * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are | 
|  | * reserved. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool gicd_writew(GICv3State *s, hwaddr offset, | 
|  | uint64_t value, MemTxAttrs attrs) | 
|  | { | 
|  | /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR | 
|  | * support 16 bit accesses, and those registers are all part of the | 
|  | * optional message-based SPI feature which this GIC does not currently | 
|  | * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are | 
|  | * reserved. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool gicd_readl(GICv3State *s, hwaddr offset, | 
|  | uint64_t *data, MemTxAttrs attrs) | 
|  | { | 
|  | /* Almost all GICv3 distributor registers are 32-bit. | 
|  | * Note that WO registers must return an UNKNOWN value on reads, | 
|  | * not an abort. | 
|  | */ | 
|  |  | 
|  | switch (offset) { | 
|  | case GICD_CTLR: | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | /* The NS view of the GICD_CTLR sees only certain bits: | 
|  | * + bit [31] (RWP) is an alias of the Secure bit [31] | 
|  | * + bit [4] (ARE_NS) is an alias of Secure bit [5] | 
|  | * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if | 
|  | *   NS affinity routing is enabled, otherwise RES0 | 
|  | * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if | 
|  | *   NS affinity routing is not enabled, otherwise RES0 | 
|  | * Since for QEMU affinity routing is always enabled | 
|  | * for both S and NS this means that bits [4] and [5] are | 
|  | * both always 1, and we can simply make the NS view | 
|  | * be bits 31, 4 and 1 of the S view. | 
|  | */ | 
|  | *data = s->gicd_ctlr & (GICD_CTLR_ARE_S | | 
|  | GICD_CTLR_EN_GRP1NS | | 
|  | GICD_CTLR_RWP); | 
|  | } else { | 
|  | *data = s->gicd_ctlr; | 
|  | } | 
|  | return true; | 
|  | case GICD_TYPER: | 
|  | { | 
|  | /* For this implementation: | 
|  | * No1N == 1 (1-of-N SPI interrupts not supported) | 
|  | * A3V == 1 (non-zero values of Affinity level 3 supported) | 
|  | * IDbits == 0xf (we support 16-bit interrupt identifiers) | 
|  | * DVIS == 1 (Direct virtual LPI injection supported) if GICv4 | 
|  | * LPIS == 1 (LPIs are supported if affinity routing is enabled) | 
|  | * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated | 
|  | *                      by GICD_TYPER.IDbits) | 
|  | * MBIS == 0 (message-based SPIs not supported) | 
|  | * SecurityExtn == 1 if security extns supported | 
|  | * NMI = 1 if Non-maskable interrupt property is supported | 
|  | * CPUNumber == 0 since for us ARE is always 1 | 
|  | * ITLinesNumber == (((max SPI IntID + 1) / 32) - 1) | 
|  | */ | 
|  | int itlinesnumber = (s->num_irq / 32) - 1; | 
|  | /* | 
|  | * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and | 
|  | * "security extensions not supported" always implies DS == 1, | 
|  | * so we only need to check the DS bit. | 
|  | */ | 
|  | bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS); | 
|  | bool dvis = s->revision >= 4; | 
|  |  | 
|  | *data = (1 << 25) | (1 << 24) | (dvis << 18) | (sec_extn << 10) | | 
|  | (s->nmi_support << GICD_TYPER_NMI_SHIFT) | | 
|  | (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) | | 
|  | (0xf << 19) | itlinesnumber; | 
|  | return true; | 
|  | } | 
|  | case GICD_IIDR: | 
|  | /* We claim to be an ARM r0p0 with a zero ProductID. | 
|  | * This is the same as an r0p0 GIC-500. | 
|  | */ | 
|  | *data = gicv3_iidr(); | 
|  | return true; | 
|  | case GICD_STATUSR: | 
|  | /* RAZ/WI for us (this is an optional register and our implementation | 
|  | * does not track RO/WO/reserved violations to report them to the guest) | 
|  | */ | 
|  | *data = 0; | 
|  | return true; | 
|  | case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | *data = 0; | 
|  | return true; | 
|  | } | 
|  | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | 
|  | irq = (offset - GICD_IGROUPR) * 8; | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | *data = 0; | 
|  | return true; | 
|  | } | 
|  | *data = *gic_bmp_ptr32(s->group, irq); | 
|  | return true; | 
|  | } | 
|  | case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: | 
|  | *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, | 
|  | offset - GICD_ISENABLER); | 
|  | return true; | 
|  | case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: | 
|  | *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL, | 
|  | offset - GICD_ICENABLER); | 
|  | return true; | 
|  | case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: | 
|  | *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, | 
|  | offset - GICD_ISPENDR); | 
|  | return true; | 
|  | case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: | 
|  | *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, | 
|  | offset - GICD_ICPENDR); | 
|  | return true; | 
|  | case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: | 
|  | *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, | 
|  | offset - GICD_ISACTIVER); | 
|  | return true; | 
|  | case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: | 
|  | *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2, | 
|  | offset - GICD_ICACTIVER); | 
|  | return true; | 
|  | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | 
|  | { | 
|  | int i, irq = offset - GICD_IPRIORITYR; | 
|  | uint32_t value = 0; | 
|  |  | 
|  | for (i = irq + 3; i >= irq; i--) { | 
|  | value <<= 8; | 
|  | value |= gicd_read_ipriorityr(s, attrs, i); | 
|  | } | 
|  | *data = value; | 
|  | return true; | 
|  | } | 
|  | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | 
|  | /* RAZ/WI since affinity routing is always enabled */ | 
|  | *data = 0; | 
|  | return true; | 
|  | case GICD_ICFGR ... GICD_ICFGR + 0xff: | 
|  | { | 
|  | /* Here only the even bits are used; odd bits are RES0 */ | 
|  | int irq = (offset - GICD_ICFGR) * 4; | 
|  | uint32_t value = 0; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | *data = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Since our edge_trigger bitmap is one bit per irq, we only need | 
|  | * half of the 32-bit word, which we can then spread out | 
|  | * into the odd bits. | 
|  | */ | 
|  | value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f); | 
|  | value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); | 
|  | value = extract32(value, (irq & 0x1f) ? 16 : 0, 16); | 
|  | value = half_shuffle32(value) << 1; | 
|  | *data = value; | 
|  | return true; | 
|  | } | 
|  | case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | 
|  | /* RAZ/WI if security disabled, or if | 
|  | * security enabled and this is an NS access | 
|  | */ | 
|  | *data = 0; | 
|  | return true; | 
|  | } | 
|  | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | 
|  | irq = (offset - GICD_IGRPMODR) * 8; | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | *data = 0; | 
|  | return true; | 
|  | } | 
|  | *data = *gic_bmp_ptr32(s->grpmod, irq); | 
|  | return true; | 
|  | } | 
|  | case GICD_NSACR ... GICD_NSACR + 0xff: | 
|  | { | 
|  | /* Two bits per interrupt */ | 
|  | int irq = (offset - GICD_NSACR) * 4; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | *data = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | 
|  | /* RAZ/WI if security disabled, or if | 
|  | * security enabled and this is an NS access | 
|  | */ | 
|  | *data = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | *data = s->gicd_nsacr[irq / 16]; | 
|  | return true; | 
|  | } | 
|  | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | 
|  | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | 
|  | /* RAZ/WI since affinity routing is always enabled */ | 
|  | *data = 0; | 
|  | return true; | 
|  | case GICD_INMIR ... GICD_INMIR + 0x7f: | 
|  | *data = (!s->nmi_support) ? 0 : | 
|  | gicd_read_bitmap_reg(s, attrs, s->nmi, NULL, | 
|  | offset - GICD_INMIR); | 
|  | return true; | 
|  | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | 
|  | { | 
|  | uint64_t r; | 
|  | int irq = (offset - GICD_IROUTER) / 8; | 
|  |  | 
|  | r = gicd_read_irouter(s, attrs, irq); | 
|  | if (offset & 7) { | 
|  | *data = r >> 32; | 
|  | } else { | 
|  | *data = (uint32_t)r; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case GICD_IDREGS ... GICD_IDREGS + 0x2f: | 
|  | /* ID registers */ | 
|  | *data = gicv3_idreg(s, offset - GICD_IDREGS, GICV3_PIDR0_DIST); | 
|  | return true; | 
|  | case GICD_SGIR: | 
|  | /* WO registers, return unknown value */ | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "%s: invalid guest read from WO register at offset " | 
|  | HWADDR_FMT_plx "\n", __func__, offset); | 
|  | *data = 0; | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool gicd_writel(GICv3State *s, hwaddr offset, | 
|  | uint64_t value, MemTxAttrs attrs) | 
|  | { | 
|  | /* Almost all GICv3 distributor registers are 32-bit. Note that | 
|  | * RO registers must ignore writes, not abort. | 
|  | */ | 
|  |  | 
|  | switch (offset) { | 
|  | case GICD_CTLR: | 
|  | { | 
|  | uint32_t mask; | 
|  | /* GICv3 5.3.20 */ | 
|  | if (s->gicd_ctlr & GICD_CTLR_DS) { | 
|  | /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI, | 
|  | * ARE is RAO/WI (affinity routing always on), and only | 
|  | * bits 0 and 1 (group enables) are writable. | 
|  | */ | 
|  | mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS; | 
|  | } else { | 
|  | if (attrs.secure) { | 
|  | /* for secure access: | 
|  | * ARE_NS and ARE_S are RAO/WI (affinity routing always on) | 
|  | * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup) | 
|  | * | 
|  | * We can only modify bits[2:0] (the group enables). | 
|  | */ | 
|  | mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL; | 
|  | } else { | 
|  | /* For non secure access ARE_NS is RAO/WI and EnableGrp1 | 
|  | * is RES0. The only writable bit is [1] (EnableGrp1A), which | 
|  | * is an alias of the Secure bit [1]. | 
|  | */ | 
|  | mask = GICD_CTLR_EN_GRP1NS; | 
|  | } | 
|  | } | 
|  | s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask); | 
|  | if (value & mask & GICD_CTLR_DS) { | 
|  | /* We just set DS, so the ARE_NS and EnG1S bits are now RES0. | 
|  | * Note that this is a one-way transition because if DS is set | 
|  | * then it's not writable, so it can only go back to 0 with a | 
|  | * hardware reset. | 
|  | */ | 
|  | s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS); | 
|  | } | 
|  | gicv3_full_update(s); | 
|  | return true; | 
|  | } | 
|  | case GICD_STATUSR: | 
|  | /* RAZ/WI for our implementation */ | 
|  | return true; | 
|  | case GICD_IGROUPR ... GICD_IGROUPR + 0x7f: | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) { | 
|  | return true; | 
|  | } | 
|  | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | 
|  | irq = (offset - GICD_IGROUPR) * 8; | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return true; | 
|  | } | 
|  | *gic_bmp_ptr32(s->group, irq) = value; | 
|  | gicv3_update(s, irq, 32); | 
|  | return true; | 
|  | } | 
|  | case GICD_ISENABLER ... GICD_ISENABLER + 0x7f: | 
|  | gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL, | 
|  | offset - GICD_ISENABLER, value); | 
|  | return true; | 
|  | case GICD_ICENABLER ... GICD_ICENABLER + 0x7f: | 
|  | gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL, | 
|  | offset - GICD_ICENABLER, value); | 
|  | return true; | 
|  | case GICD_ISPENDR ... GICD_ISPENDR + 0x7f: | 
|  | gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1, | 
|  | offset - GICD_ISPENDR, value); | 
|  | return true; | 
|  | case GICD_ICPENDR ... GICD_ICPENDR + 0x7f: | 
|  | gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2, | 
|  | offset - GICD_ICPENDR, value); | 
|  | return true; | 
|  | case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f: | 
|  | gicd_write_set_bitmap_reg(s, attrs, s->active, NULL, | 
|  | offset - GICD_ISACTIVER, value); | 
|  | return true; | 
|  | case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f: | 
|  | gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL, | 
|  | offset - GICD_ICACTIVER, value); | 
|  | return true; | 
|  | case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff: | 
|  | { | 
|  | int i, irq = offset - GICD_IPRIORITYR; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (i = irq; i < irq + 4; i++, value >>= 8) { | 
|  | gicd_write_ipriorityr(s, attrs, i, value); | 
|  | } | 
|  | gicv3_update(s, irq, 4); | 
|  | return true; | 
|  | } | 
|  | case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff: | 
|  | /* RAZ/WI since affinity routing is always enabled */ | 
|  | return true; | 
|  | case GICD_ICFGR ... GICD_ICFGR + 0xff: | 
|  | { | 
|  | /* Here only the odd bits are used; even bits are RES0 */ | 
|  | int irq = (offset - GICD_ICFGR) * 4; | 
|  | uint32_t mask, oldval; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Since our edge_trigger bitmap is one bit per irq, our input | 
|  | * 32-bits will compress down into 16 bits which we need | 
|  | * to write into the bitmap. | 
|  | */ | 
|  | value = half_unshuffle32(value >> 1); | 
|  | mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f); | 
|  | if (irq & 0x1f) { | 
|  | value <<= 16; | 
|  | mask &= 0xffff0000U; | 
|  | } else { | 
|  | mask &= 0xffff; | 
|  | } | 
|  | oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f)); | 
|  | value = (oldval & ~mask) | (value & mask); | 
|  | *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value; | 
|  | return true; | 
|  | } | 
|  | case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff: | 
|  | { | 
|  | int irq; | 
|  |  | 
|  | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | 
|  | /* RAZ/WI if security disabled, or if | 
|  | * security enabled and this is an NS access | 
|  | */ | 
|  | return true; | 
|  | } | 
|  | /* RAZ/WI for SGIs, PPIs, unimplemented irqs */ | 
|  | irq = (offset - GICD_IGRPMODR) * 8; | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return true; | 
|  | } | 
|  | *gic_bmp_ptr32(s->grpmod, irq) = value; | 
|  | gicv3_update(s, irq, 32); | 
|  | return true; | 
|  | } | 
|  | case GICD_NSACR ... GICD_NSACR + 0xff: | 
|  | { | 
|  | /* Two bits per interrupt */ | 
|  | int irq = (offset - GICD_NSACR) * 4; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { | 
|  | /* RAZ/WI if security disabled, or if | 
|  | * security enabled and this is an NS access | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | s->gicd_nsacr[irq / 16] = value; | 
|  | /* No update required as this only affects access permission checks */ | 
|  | return true; | 
|  | } | 
|  | case GICD_SGIR: | 
|  | /* RES0 if affinity routing is enabled */ | 
|  | return true; | 
|  | case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf: | 
|  | case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf: | 
|  | /* RAZ/WI since affinity routing is always enabled */ | 
|  | return true; | 
|  | case GICD_INMIR ... GICD_INMIR + 0x7f: | 
|  | if (s->nmi_support) { | 
|  | gicd_write_bitmap_reg(s, attrs, s->nmi, NULL, | 
|  | offset - GICD_INMIR, value); | 
|  | } | 
|  | return true; | 
|  | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | 
|  | { | 
|  | uint64_t r; | 
|  | int irq = (offset - GICD_IROUTER) / 8; | 
|  |  | 
|  | if (irq < GIC_INTERNAL || irq >= s->num_irq) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Write half of the 64-bit register */ | 
|  | r = gicd_read_irouter(s, attrs, irq); | 
|  | r = deposit64(r, (offset & 7) ? 32 : 0, 32, value); | 
|  | gicd_write_irouter(s, attrs, irq, r); | 
|  | return true; | 
|  | } | 
|  | case GICD_IDREGS ... GICD_IDREGS + 0x2f: | 
|  | case GICD_TYPER: | 
|  | case GICD_IIDR: | 
|  | /* RO registers, ignore the write */ | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "%s: invalid guest write to RO register at offset " | 
|  | HWADDR_FMT_plx "\n", __func__, offset); | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool gicd_writeq(GICv3State *s, hwaddr offset, | 
|  | uint64_t value, MemTxAttrs attrs) | 
|  | { | 
|  | /* Our only 64-bit registers are GICD_IROUTER<n> */ | 
|  | int irq; | 
|  |  | 
|  | switch (offset) { | 
|  | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | 
|  | irq = (offset - GICD_IROUTER) / 8; | 
|  | gicd_write_irouter(s, attrs, irq, value); | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool gicd_readq(GICv3State *s, hwaddr offset, | 
|  | uint64_t *data, MemTxAttrs attrs) | 
|  | { | 
|  | /* Our only 64-bit registers are GICD_IROUTER<n> */ | 
|  | int irq; | 
|  |  | 
|  | switch (offset) { | 
|  | case GICD_IROUTER ... GICD_IROUTER + 0x1fdf: | 
|  | irq = (offset - GICD_IROUTER) / 8; | 
|  | *data = gicd_read_irouter(s, attrs, irq); | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data, | 
|  | unsigned size, MemTxAttrs attrs) | 
|  | { | 
|  | GICv3State *s = (GICv3State *)opaque; | 
|  | bool r; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | r = gicd_readb(s, offset, data, attrs); | 
|  | break; | 
|  | case 2: | 
|  | r = gicd_readw(s, offset, data, attrs); | 
|  | break; | 
|  | case 4: | 
|  | r = gicd_readl(s, offset, data, attrs); | 
|  | break; | 
|  | case 8: | 
|  | r = gicd_readq(s, offset, data, attrs); | 
|  | break; | 
|  | default: | 
|  | r = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!r) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "%s: invalid guest read at offset " HWADDR_FMT_plx | 
|  | " size %u\n", __func__, offset, size); | 
|  | trace_gicv3_dist_badread(offset, size, attrs.secure); | 
|  | /* The spec requires that reserved registers are RAZ/WI; | 
|  | * so use MEMTX_ERROR returns from leaf functions as a way to | 
|  | * trigger the guest-error logging but don't return it to | 
|  | * the caller, or we'll cause a spurious guest data abort. | 
|  | */ | 
|  | *data = 0; | 
|  | } else { | 
|  | trace_gicv3_dist_read(offset, *data, size, attrs.secure); | 
|  | } | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data, | 
|  | unsigned size, MemTxAttrs attrs) | 
|  | { | 
|  | GICv3State *s = (GICv3State *)opaque; | 
|  | bool r; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | r = gicd_writeb(s, offset, data, attrs); | 
|  | break; | 
|  | case 2: | 
|  | r = gicd_writew(s, offset, data, attrs); | 
|  | break; | 
|  | case 4: | 
|  | r = gicd_writel(s, offset, data, attrs); | 
|  | break; | 
|  | case 8: | 
|  | r = gicd_writeq(s, offset, data, attrs); | 
|  | break; | 
|  | default: | 
|  | r = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!r) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "%s: invalid guest write at offset " HWADDR_FMT_plx | 
|  | " size %u\n", __func__, offset, size); | 
|  | trace_gicv3_dist_badwrite(offset, data, size, attrs.secure); | 
|  | /* The spec requires that reserved registers are RAZ/WI; | 
|  | * so use MEMTX_ERROR returns from leaf functions as a way to | 
|  | * trigger the guest-error logging but don't return it to | 
|  | * the caller, or we'll cause a spurious guest data abort. | 
|  | */ | 
|  | } else { | 
|  | trace_gicv3_dist_write(offset, data, size, attrs.secure); | 
|  | } | 
|  | return MEMTX_OK; | 
|  | } | 
|  |  | 
|  | void gicv3_dist_set_irq(GICv3State *s, int irq, int level) | 
|  | { | 
|  | /* Update distributor state for a change in an external SPI input line */ | 
|  | if (level == gicv3_gicd_level_test(s, irq)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_gicv3_dist_set_irq(irq, level); | 
|  |  | 
|  | gicv3_gicd_level_replace(s, irq, level); | 
|  |  | 
|  | if (level) { | 
|  | /* 0->1 edges latch the pending bit for edge-triggered interrupts */ | 
|  | if (gicv3_gicd_edge_trigger_test(s, irq)) { | 
|  | gicv3_gicd_pending_set(s, irq); | 
|  | } | 
|  | } | 
|  |  | 
|  | gicv3_update(s, irq, 1); | 
|  | } |