| /* |
| * ARM Generic/Distributed Interrupt Controller |
| * |
| * Copyright (c) 2006-2007 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GPL. |
| */ |
| |
| /* This file contains implementation code for the RealView EB interrupt |
| * controller, MPCore distributed interrupt controller and ARMv7-M |
| * Nested Vectored Interrupt Controller. |
| * It is compiled in two ways: |
| * (1) as a standalone file to produce a sysbus device which is a GIC |
| * that can be used on the realview board and as one of the builtin |
| * private peripherals for the ARM MP CPUs (11MPCore, A9, etc) |
| * (2) by being directly #included into armv7m_nvic.c to produce the |
| * armv7m_nvic device. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/irq.h" |
| #include "hw/sysbus.h" |
| #include "gic_internal.h" |
| #include "qapi/error.h" |
| #include "hw/core/cpu.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "trace.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/qtest.h" |
| |
| /* #define DEBUG_GIC */ |
| |
| #ifdef DEBUG_GIC |
| #define DEBUG_GIC_GATE 1 |
| #else |
| #define DEBUG_GIC_GATE 0 |
| #endif |
| |
| #define DPRINTF(fmt, ...) do { \ |
| if (DEBUG_GIC_GATE) { \ |
| fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| static const uint8_t gic_id_11mpcore[] = { |
| 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 |
| }; |
| |
| static const uint8_t gic_id_gicv1[] = { |
| 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1 |
| }; |
| |
| static const uint8_t gic_id_gicv2[] = { |
| 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1 |
| }; |
| |
| static inline int gic_get_current_cpu(GICState *s) |
| { |
| if (!qtest_enabled() && s->num_cpu > 1) { |
| return current_cpu->cpu_index; |
| } |
| return 0; |
| } |
| |
| static inline int gic_get_current_vcpu(GICState *s) |
| { |
| return gic_get_current_cpu(s) + GIC_NCPU; |
| } |
| |
| /* Return true if this GIC config has interrupt groups, which is |
| * true if we're a GICv2, or a GICv1 with the security extensions. |
| */ |
| static inline bool gic_has_groups(GICState *s) |
| { |
| return s->revision == 2 || s->security_extn; |
| } |
| |
| static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs) |
| { |
| return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure; |
| } |
| |
| static inline void gic_get_best_irq(GICState *s, int cpu, |
| int *best_irq, int *best_prio, int *group) |
| { |
| int irq; |
| int cm = 1 << cpu; |
| |
| *best_irq = 1023; |
| *best_prio = 0x100; |
| |
| for (irq = 0; irq < s->num_irq; irq++) { |
| if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) && |
| (!GIC_DIST_TEST_ACTIVE(irq, cm)) && |
| (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) { |
| if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) { |
| *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu); |
| *best_irq = irq; |
| } |
| } |
| } |
| |
| if (*best_irq < 1023) { |
| *group = GIC_DIST_TEST_GROUP(*best_irq, cm); |
| } |
| } |
| |
| static inline void gic_get_best_virq(GICState *s, int cpu, |
| int *best_irq, int *best_prio, int *group) |
| { |
| int lr_idx = 0; |
| |
| *best_irq = 1023; |
| *best_prio = 0x100; |
| |
| for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) { |
| uint32_t lr_entry = s->h_lr[lr_idx][cpu]; |
| int state = GICH_LR_STATE(lr_entry); |
| |
| if (state == GICH_LR_STATE_PENDING) { |
| int prio = GICH_LR_PRIORITY(lr_entry); |
| |
| if (prio < *best_prio) { |
| *best_prio = prio; |
| *best_irq = GICH_LR_VIRT_ID(lr_entry); |
| *group = GICH_LR_GROUP(lr_entry); |
| } |
| } |
| } |
| } |
| |
| /* Return true if IRQ signaling is enabled for the given cpu and at least one |
| * of the given groups: |
| * - in the non-virt case, the distributor must be enabled for one of the |
| * given groups |
| * - in the virt case, the virtual interface must be enabled. |
| * - in all cases, the (v)CPU interface must be enabled for one of the given |
| * groups. |
| */ |
| static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt, |
| int group_mask) |
| { |
| int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu; |
| |
| if (!virt && !(s->ctlr & group_mask)) { |
| return false; |
| } |
| |
| if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) { |
| return false; |
| } |
| |
| if (!(s->cpu_ctlr[cpu_iface] & group_mask)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* TODO: Many places that call this routine could be optimized. */ |
| /* Update interrupt status after enabled or pending bits have been changed. */ |
| static inline void gic_update_internal(GICState *s, bool virt) |
| { |
| int best_irq; |
| int best_prio; |
| int irq_level, fiq_level; |
| int cpu, cpu_iface; |
| int group = 0; |
| qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq; |
| qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq; |
| |
| for (cpu = 0; cpu < s->num_cpu; cpu++) { |
| cpu_iface = virt ? (cpu + GIC_NCPU) : cpu; |
| |
| s->current_pending[cpu_iface] = 1023; |
| if (!gic_irq_signaling_enabled(s, cpu, virt, |
| GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) { |
| qemu_irq_lower(irq_lines[cpu]); |
| qemu_irq_lower(fiq_lines[cpu]); |
| continue; |
| } |
| |
| if (virt) { |
| gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group); |
| } else { |
| gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group); |
| } |
| |
| if (best_irq != 1023) { |
| trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu, |
| best_irq, best_prio, |
| s->priority_mask[cpu_iface], |
| s->running_priority[cpu_iface]); |
| } |
| |
| irq_level = fiq_level = 0; |
| |
| if (best_prio < s->priority_mask[cpu_iface]) { |
| s->current_pending[cpu_iface] = best_irq; |
| if (best_prio < s->running_priority[cpu_iface]) { |
| if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) { |
| if (group == 0 && |
| s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) { |
| DPRINTF("Raised pending FIQ %d (cpu %d)\n", |
| best_irq, cpu_iface); |
| fiq_level = 1; |
| trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq", |
| fiq_level); |
| } else { |
| DPRINTF("Raised pending IRQ %d (cpu %d)\n", |
| best_irq, cpu_iface); |
| irq_level = 1; |
| trace_gic_update_set_irq(cpu, virt ? "virq" : "irq", |
| irq_level); |
| } |
| } |
| } |
| } |
| |
| qemu_set_irq(irq_lines[cpu], irq_level); |
| qemu_set_irq(fiq_lines[cpu], fiq_level); |
| } |
| } |
| |
| static void gic_update(GICState *s) |
| { |
| gic_update_internal(s, false); |
| } |
| |
| /* Return true if this LR is empty, i.e. the corresponding bit |
| * in ELRSR is set. |
| */ |
| static inline bool gic_lr_entry_is_free(uint32_t entry) |
| { |
| return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID) |
| && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry)); |
| } |
| |
| /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the |
| * corresponding bit in EISR is set. |
| */ |
| static inline bool gic_lr_entry_is_eoi(uint32_t entry) |
| { |
| return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID) |
| && !GICH_LR_HW(entry) && GICH_LR_EOI(entry); |
| } |
| |
| static inline void gic_extract_lr_info(GICState *s, int cpu, |
| int *num_eoi, int *num_valid, int *num_pending) |
| { |
| int lr_idx; |
| |
| *num_eoi = 0; |
| *num_valid = 0; |
| *num_pending = 0; |
| |
| for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) { |
| uint32_t *entry = &s->h_lr[lr_idx][cpu]; |
| |
| if (gic_lr_entry_is_eoi(*entry)) { |
| (*num_eoi)++; |
| } |
| |
| if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) { |
| (*num_valid)++; |
| } |
| |
| if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) { |
| (*num_pending)++; |
| } |
| } |
| } |
| |
| static void gic_compute_misr(GICState *s, int cpu) |
| { |
| uint32_t value = 0; |
| int vcpu = cpu + GIC_NCPU; |
| |
| int num_eoi, num_valid, num_pending; |
| |
| gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending); |
| |
| /* EOI */ |
| if (num_eoi) { |
| value |= R_GICH_MISR_EOI_MASK; |
| } |
| |
| /* U: true if only 0 or 1 LR entry is valid */ |
| if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) { |
| value |= R_GICH_MISR_U_MASK; |
| } |
| |
| /* LRENP: EOICount is not 0 */ |
| if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) && |
| ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) { |
| value |= R_GICH_MISR_LRENP_MASK; |
| } |
| |
| /* NP: no pending interrupts */ |
| if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) { |
| value |= R_GICH_MISR_NP_MASK; |
| } |
| |
| /* VGrp0E: group0 virq signaling enabled */ |
| if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) && |
| (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) { |
| value |= R_GICH_MISR_VGrp0E_MASK; |
| } |
| |
| /* VGrp0D: group0 virq signaling disabled */ |
| if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) && |
| !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) { |
| value |= R_GICH_MISR_VGrp0D_MASK; |
| } |
| |
| /* VGrp1E: group1 virq signaling enabled */ |
| if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) && |
| (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) { |
| value |= R_GICH_MISR_VGrp1E_MASK; |
| } |
| |
| /* VGrp1D: group1 virq signaling disabled */ |
| if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) && |
| !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) { |
| value |= R_GICH_MISR_VGrp1D_MASK; |
| } |
| |
| s->h_misr[cpu] = value; |
| } |
| |
| static void gic_update_maintenance(GICState *s) |
| { |
| int cpu = 0; |
| int maint_level; |
| |
| for (cpu = 0; cpu < s->num_cpu; cpu++) { |
| gic_compute_misr(s, cpu); |
| maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu]; |
| |
| trace_gic_update_maintenance_irq(cpu, maint_level); |
| qemu_set_irq(s->maintenance_irq[cpu], maint_level); |
| } |
| } |
| |
| static void gic_update_virt(GICState *s) |
| { |
| gic_update_internal(s, true); |
| gic_update_maintenance(s); |
| } |
| |
| static void gic_set_irq_11mpcore(GICState *s, int irq, int level, |
| int cm, int target) |
| { |
| if (level) { |
| GIC_DIST_SET_LEVEL(irq, cm); |
| if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) { |
| DPRINTF("Set %d pending mask %x\n", irq, target); |
| GIC_DIST_SET_PENDING(irq, target); |
| } |
| } else { |
| GIC_DIST_CLEAR_LEVEL(irq, cm); |
| } |
| } |
| |
| static void gic_set_irq_generic(GICState *s, int irq, int level, |
| int cm, int target) |
| { |
| if (level) { |
| GIC_DIST_SET_LEVEL(irq, cm); |
| DPRINTF("Set %d pending mask %x\n", irq, target); |
| if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) { |
| GIC_DIST_SET_PENDING(irq, target); |
| } |
| } else { |
| GIC_DIST_CLEAR_LEVEL(irq, cm); |
| } |
| } |
| |
| /* Process a change in an external IRQ input. */ |
| static void gic_set_irq(void *opaque, int irq, int level) |
| { |
| /* Meaning of the 'irq' parameter: |
| * [0..N-1] : external interrupts |
| * [N..N+31] : PPI (internal) interrupts for CPU 0 |
| * [N+32..N+63] : PPI (internal interrupts for CPU 1 |
| * ... |
| */ |
| GICState *s = (GICState *)opaque; |
| int cm, target; |
| if (irq < (s->num_irq - GIC_INTERNAL)) { |
| /* The first external input line is internal interrupt 32. */ |
| cm = ALL_CPU_MASK; |
| irq += GIC_INTERNAL; |
| target = GIC_DIST_TARGET(irq); |
| } else { |
| int cpu; |
| irq -= (s->num_irq - GIC_INTERNAL); |
| cpu = irq / GIC_INTERNAL; |
| irq %= GIC_INTERNAL; |
| cm = 1 << cpu; |
| target = cm; |
| } |
| |
| assert(irq >= GIC_NR_SGIS); |
| |
| if (level == GIC_DIST_TEST_LEVEL(irq, cm)) { |
| return; |
| } |
| |
| if (s->revision == REV_11MPCORE) { |
| gic_set_irq_11mpcore(s, irq, level, cm, target); |
| } else { |
| gic_set_irq_generic(s, irq, level, cm, target); |
| } |
| trace_gic_set_irq(irq, level, cm, target); |
| |
| gic_update(s); |
| } |
| |
| static uint16_t gic_get_current_pending_irq(GICState *s, int cpu, |
| MemTxAttrs attrs) |
| { |
| uint16_t pending_irq = s->current_pending[cpu]; |
| |
| if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) { |
| int group = gic_test_group(s, pending_irq, cpu); |
| |
| /* On a GIC without the security extensions, reading this register |
| * behaves in the same way as a secure access to a GIC with them. |
| */ |
| bool secure = !gic_cpu_ns_access(s, cpu, attrs); |
| |
| if (group == 0 && !secure) { |
| /* Group0 interrupts hidden from Non-secure access */ |
| return 1023; |
| } |
| if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) { |
| /* Group1 interrupts only seen by Secure access if |
| * AckCtl bit set. |
| */ |
| return 1022; |
| } |
| } |
| return pending_irq; |
| } |
| |
| static int gic_get_group_priority(GICState *s, int cpu, int irq) |
| { |
| /* Return the group priority of the specified interrupt |
| * (which is the top bits of its priority, with the number |
| * of bits masked determined by the applicable binary point register). |
| */ |
| int bpr; |
| uint32_t mask; |
| |
| if (gic_has_groups(s) && |
| !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) && |
| gic_test_group(s, irq, cpu)) { |
| bpr = s->abpr[cpu] - 1; |
| assert(bpr >= 0); |
| } else { |
| bpr = s->bpr[cpu]; |
| } |
| |
| /* a BPR of 0 means the group priority bits are [7:1]; |
| * a BPR of 1 means they are [7:2], and so on down to |
| * a BPR of 7 meaning no group priority bits at all. |
| */ |
| mask = ~0U << ((bpr & 7) + 1); |
| |
| return gic_get_priority(s, irq, cpu) & mask; |
| } |
| |
| static void gic_activate_irq(GICState *s, int cpu, int irq) |
| { |
| /* Set the appropriate Active Priority Register bit for this IRQ, |
| * and update the running priority. |
| */ |
| int prio = gic_get_group_priority(s, cpu, irq); |
| int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR; |
| int preemption_level = prio >> (min_bpr + 1); |
| int regno = preemption_level / 32; |
| int bitno = preemption_level % 32; |
| uint32_t *papr = NULL; |
| |
| if (gic_is_vcpu(cpu)) { |
| assert(regno == 0); |
| papr = &s->h_apr[gic_get_vcpu_real_id(cpu)]; |
| } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) { |
| papr = &s->nsapr[regno][cpu]; |
| } else { |
| papr = &s->apr[regno][cpu]; |
| } |
| |
| *papr |= (1 << bitno); |
| |
| s->running_priority[cpu] = prio; |
| gic_set_active(s, irq, cpu); |
| } |
| |
| static int gic_get_prio_from_apr_bits(GICState *s, int cpu) |
| { |
| /* Recalculate the current running priority for this CPU based |
| * on the set bits in the Active Priority Registers. |
| */ |
| int i; |
| |
| if (gic_is_vcpu(cpu)) { |
| uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)]; |
| if (apr) { |
| return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1); |
| } else { |
| return 0x100; |
| } |
| } |
| |
| for (i = 0; i < GIC_NR_APRS; i++) { |
| uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu]; |
| if (!apr) { |
| continue; |
| } |
| return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); |
| } |
| return 0x100; |
| } |
| |
| static void gic_drop_prio(GICState *s, int cpu, int group) |
| { |
| /* Drop the priority of the currently active interrupt in the |
| * specified group. |
| * |
| * Note that we can guarantee (because of the requirement to nest |
| * GICC_IAR reads [which activate an interrupt and raise priority] |
| * with GICC_EOIR writes [which drop the priority for the interrupt]) |
| * that the interrupt we're being called for is the highest priority |
| * active interrupt, meaning that it has the lowest set bit in the |
| * APR registers. |
| * |
| * If the guest does not honour the ordering constraints then the |
| * behaviour of the GIC is UNPREDICTABLE, which for us means that |
| * the values of the APR registers might become incorrect and the |
| * running priority will be wrong, so interrupts that should preempt |
| * might not do so, and interrupts that should not preempt might do so. |
| */ |
| if (gic_is_vcpu(cpu)) { |
| int rcpu = gic_get_vcpu_real_id(cpu); |
| |
| if (s->h_apr[rcpu]) { |
| /* Clear lowest set bit */ |
| s->h_apr[rcpu] &= s->h_apr[rcpu] - 1; |
| } |
| } else { |
| int i; |
| |
| for (i = 0; i < GIC_NR_APRS; i++) { |
| uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu]; |
| if (!*papr) { |
| continue; |
| } |
| /* Clear lowest set bit */ |
| *papr &= *papr - 1; |
| break; |
| } |
| } |
| |
| s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu); |
| } |
| |
| static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu) |
| { |
| int src; |
| uint32_t ret; |
| |
| if (!gic_is_vcpu(cpu)) { |
| /* Lookup the source CPU for the SGI and clear this in the |
| * sgi_pending map. Return the src and clear the overall pending |
| * state on this CPU if the SGI is not pending from any CPUs. |
| */ |
| assert(s->sgi_pending[irq][cpu] != 0); |
| src = ctz32(s->sgi_pending[irq][cpu]); |
| s->sgi_pending[irq][cpu] &= ~(1 << src); |
| if (s->sgi_pending[irq][cpu] == 0) { |
| gic_clear_pending(s, irq, cpu); |
| } |
| ret = irq | ((src & 0x7) << 10); |
| } else { |
| uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu); |
| src = GICH_LR_CPUID(*lr_entry); |
| |
| gic_clear_pending(s, irq, cpu); |
| ret = irq | (src << 10); |
| } |
| |
| return ret; |
| } |
| |
| uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs) |
| { |
| int ret, irq; |
| |
| /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately |
| * for the case where this GIC supports grouping and the pending interrupt |
| * is in the wrong group. |
| */ |
| irq = gic_get_current_pending_irq(s, cpu, attrs); |
| trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu", |
| gic_get_vcpu_real_id(cpu), irq); |
| |
| if (irq >= GIC_MAXIRQ) { |
| DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq); |
| return irq; |
| } |
| |
| if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) { |
| DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq); |
| return 1023; |
| } |
| |
| gic_activate_irq(s, cpu, irq); |
| |
| if (s->revision == REV_11MPCORE) { |
| /* Clear pending flags for both level and edge triggered interrupts. |
| * Level triggered IRQs will be reasserted once they become inactive. |
| */ |
| gic_clear_pending(s, irq, cpu); |
| ret = irq; |
| } else { |
| if (irq < GIC_NR_SGIS) { |
| ret = gic_clear_pending_sgi(s, irq, cpu); |
| } else { |
| gic_clear_pending(s, irq, cpu); |
| ret = irq; |
| } |
| } |
| |
| if (gic_is_vcpu(cpu)) { |
| gic_update_virt(s); |
| } else { |
| gic_update(s); |
| } |
| DPRINTF("ACK %d\n", irq); |
| return ret; |
| } |
| |
| static uint32_t gic_fullprio_mask(GICState *s, int cpu) |
| { |
| /* |
| * Return a mask word which clears the unimplemented priority |
| * bits from a priority value for an interrupt. (Not to be |
| * confused with the group priority, whose mask depends on BPR.) |
| */ |
| int priBits; |
| |
| if (gic_is_vcpu(cpu)) { |
| priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS; |
| } else { |
| priBits = s->n_prio_bits; |
| } |
| return ~0U << (8 - priBits); |
| } |
| |
| void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val, |
| MemTxAttrs attrs) |
| { |
| if (s->security_extn && !attrs.secure) { |
| if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) { |
| return; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| val = 0x80 | (val >> 1); /* Non-secure view */ |
| } |
| |
| val &= gic_fullprio_mask(s, cpu); |
| |
| if (irq < GIC_INTERNAL) { |
| s->priority1[irq][cpu] = val; |
| } else { |
| s->priority2[(irq) - GIC_INTERNAL] = val; |
| } |
| } |
| |
| static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq, |
| MemTxAttrs attrs) |
| { |
| uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu); |
| |
| if (s->security_extn && !attrs.secure) { |
| if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) { |
| return 0; /* Non-secure access cannot read priority of Group0 IRQ */ |
| } |
| prio = (prio << 1) & 0xff; /* Non-secure view */ |
| } |
| return prio & gic_fullprio_mask(s, cpu); |
| } |
| |
| static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask, |
| MemTxAttrs attrs) |
| { |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| if (s->priority_mask[cpu] & 0x80) { |
| /* Priority Mask in upper half */ |
| pmask = 0x80 | (pmask >> 1); |
| } else { |
| /* Non-secure write ignored if priority mask is in lower half */ |
| return; |
| } |
| } |
| s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu); |
| } |
| |
| static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs) |
| { |
| uint32_t pmask = s->priority_mask[cpu]; |
| |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| if (pmask & 0x80) { |
| /* Priority Mask in upper half, return Non-secure view */ |
| pmask = (pmask << 1) & 0xff; |
| } else { |
| /* Priority Mask in lower half, RAZ */ |
| pmask = 0; |
| } |
| } |
| return pmask; |
| } |
| |
| static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs) |
| { |
| uint32_t ret = s->cpu_ctlr[cpu]; |
| |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| /* Construct the NS banked view of GICC_CTLR from the correct |
| * bits of the S banked view. We don't need to move the bypass |
| * control bits because we don't implement that (IMPDEF) part |
| * of the GIC architecture. |
| */ |
| ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1; |
| } |
| return ret; |
| } |
| |
| static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value, |
| MemTxAttrs attrs) |
| { |
| uint32_t mask; |
| |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| /* The NS view can only write certain bits in the register; |
| * the rest are unchanged |
| */ |
| mask = GICC_CTLR_EN_GRP1; |
| if (s->revision == 2) { |
| mask |= GICC_CTLR_EOIMODE_NS; |
| } |
| s->cpu_ctlr[cpu] &= ~mask; |
| s->cpu_ctlr[cpu] |= (value << 1) & mask; |
| } else { |
| if (s->revision == 2) { |
| mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK; |
| } else { |
| mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK; |
| } |
| s->cpu_ctlr[cpu] = value & mask; |
| } |
| DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, " |
| "Group1 Interrupts %sabled\n", cpu, |
| (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis", |
| (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis"); |
| } |
| |
| static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs) |
| { |
| if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) { |
| /* Idle priority */ |
| return 0xff; |
| } |
| |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| if (s->running_priority[cpu] & 0x80) { |
| /* Running priority in upper half of range: return the Non-secure |
| * view of the priority. |
| */ |
| return s->running_priority[cpu] << 1; |
| } else { |
| /* Running priority in lower half of range: RAZ */ |
| return 0; |
| } |
| } else { |
| return s->running_priority[cpu]; |
| } |
| } |
| |
| /* Return true if we should split priority drop and interrupt deactivation, |
| * ie whether the relevant EOIMode bit is set. |
| */ |
| static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs) |
| { |
| if (s->revision != 2) { |
| /* Before GICv2 prio-drop and deactivate are not separable */ |
| return false; |
| } |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS; |
| } |
| return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE; |
| } |
| |
| static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs) |
| { |
| int group; |
| |
| if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) { |
| /* |
| * This handles two cases: |
| * 1. If software writes the ID of a spurious interrupt [ie 1023] |
| * to the GICC_DIR, the GIC ignores that write. |
| * 2. If software writes the number of a non-existent interrupt |
| * this must be a subcase of "value written is not an active interrupt" |
| * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs, |
| * all IRQs potentially exist, so this limit does not apply. |
| */ |
| return; |
| } |
| |
| if (!gic_eoi_split(s, cpu, attrs)) { |
| /* This is UNPREDICTABLE; we choose to ignore it */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "gic_deactivate_irq: GICC_DIR write when EOIMode clear"); |
| return; |
| } |
| |
| if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) { |
| /* This vIRQ does not have an LR entry which is either active or |
| * pending and active. Increment EOICount and ignore the write. |
| */ |
| int rcpu = gic_get_vcpu_real_id(cpu); |
| s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT; |
| |
| /* Update the virtual interface in case a maintenance interrupt should |
| * be raised. |
| */ |
| gic_update_virt(s); |
| return; |
| } |
| |
| group = gic_has_groups(s) && gic_test_group(s, irq, cpu); |
| |
| if (gic_cpu_ns_access(s, cpu, attrs) && !group) { |
| DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq); |
| return; |
| } |
| |
| gic_clear_active(s, irq, cpu); |
| } |
| |
| static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs) |
| { |
| int cm = 1 << cpu; |
| int group; |
| |
| DPRINTF("EOI %d\n", irq); |
| if (gic_is_vcpu(cpu)) { |
| /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the |
| * running prio is < 0x100. |
| */ |
| bool prio_drop = s->running_priority[cpu] < 0x100; |
| |
| if (irq >= GIC_MAXIRQ) { |
| /* Ignore spurious interrupt */ |
| return; |
| } |
| |
| gic_drop_prio(s, cpu, 0); |
| |
| if (!gic_eoi_split(s, cpu, attrs)) { |
| bool valid = gic_virq_is_valid(s, irq, cpu); |
| if (prio_drop && !valid) { |
| /* We are in a situation where: |
| * - V_CTRL.EOIMode is false (no EOI split), |
| * - The call to gic_drop_prio() cleared a bit in GICH_APR, |
| * - This vIRQ does not have an LR entry which is either |
| * active or pending and active. |
| * In that case, we must increment EOICount. |
| */ |
| int rcpu = gic_get_vcpu_real_id(cpu); |
| s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT; |
| } else if (valid) { |
| gic_clear_active(s, irq, cpu); |
| } |
| } |
| |
| gic_update_virt(s); |
| return; |
| } |
| |
| if (irq >= s->num_irq) { |
| /* This handles two cases: |
| * 1. If software writes the ID of a spurious interrupt [ie 1023] |
| * to the GICC_EOIR, the GIC ignores that write. |
| * 2. If software writes the number of a non-existent interrupt |
| * this must be a subcase of "value written does not match the last |
| * valid interrupt value read from the Interrupt Acknowledge |
| * register" and so this is UNPREDICTABLE. We choose to ignore it. |
| */ |
| return; |
| } |
| if (s->running_priority[cpu] == 0x100) { |
| return; /* No active IRQ. */ |
| } |
| |
| if (s->revision == REV_11MPCORE) { |
| /* Mark level triggered interrupts as pending if they are still |
| raised. */ |
| if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm) |
| && GIC_DIST_TEST_LEVEL(irq, cm) |
| && (GIC_DIST_TARGET(irq) & cm) != 0) { |
| DPRINTF("Set %d pending mask %x\n", irq, cm); |
| GIC_DIST_SET_PENDING(irq, cm); |
| } |
| } |
| |
| group = gic_has_groups(s) && gic_test_group(s, irq, cpu); |
| |
| if (gic_cpu_ns_access(s, cpu, attrs) && !group) { |
| DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq); |
| return; |
| } |
| |
| /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1 |
| * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1, |
| * i.e. go ahead and complete the irq anyway. |
| */ |
| |
| gic_drop_prio(s, cpu, group); |
| |
| /* In GICv2 the guest can choose to split priority-drop and deactivate */ |
| if (!gic_eoi_split(s, cpu, attrs)) { |
| gic_clear_active(s, irq, cpu); |
| } |
| gic_update(s); |
| } |
| |
| static uint8_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| uint32_t res; |
| int irq; |
| int i; |
| int cpu; |
| int cm; |
| int mask; |
| |
| cpu = gic_get_current_cpu(s); |
| cm = 1 << cpu; |
| if (offset < 0x100) { |
| if (offset == 0) { /* GICD_CTLR */ |
| /* We rely here on the only non-zero bits being in byte 0 */ |
| if (s->security_extn && !attrs.secure) { |
| /* The NS bank of this register is just an alias of the |
| * EnableGrp1 bit in the S bank version. |
| */ |
| return extract32(s->ctlr, 1, 1); |
| } else { |
| return s->ctlr; |
| } |
| } |
| if (offset == 4) { |
| /* GICD_TYPER byte 0 */ |
| return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5); |
| } |
| if (offset == 5) { |
| /* GICD_TYPER byte 1 */ |
| return (s->security_extn << 2); |
| } |
| if (offset == 8) { |
| /* GICD_IIDR byte 0 */ |
| return 0x3b; /* Arm JEP106 identity */ |
| } |
| if (offset == 9) { |
| /* GICD_IIDR byte 1 */ |
| return 0x04; /* Arm JEP106 identity */ |
| } |
| if (offset < 0x0c) { |
| /* All other bytes in this range are RAZ */ |
| return 0; |
| } |
| if (offset >= 0x80) { |
| /* Interrupt Group Registers: these RAZ/WI if this is an NS |
| * access to a GIC with the security extensions, or if the GIC |
| * doesn't have groups at all. |
| */ |
| res = 0; |
| if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) { |
| /* Every byte offset holds 8 group status bits */ |
| irq = (offset - 0x080) * 8; |
| if (irq >= s->num_irq) { |
| goto bad_reg; |
| } |
| for (i = 0; i < 8; i++) { |
| if (GIC_DIST_TEST_GROUP(irq + i, cm)) { |
| res |= (1 << i); |
| } |
| } |
| } |
| return res; |
| } |
| goto bad_reg; |
| } else if (offset < 0x200) { |
| /* Interrupt Set/Clear Enable. */ |
| if (offset < 0x180) |
| irq = (offset - 0x100) * 8; |
| else |
| irq = (offset - 0x180) * 8; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| res = 0; |
| for (i = 0; i < 8; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (GIC_DIST_TEST_ENABLED(irq + i, cm)) { |
| res |= (1 << i); |
| } |
| } |
| } else if (offset < 0x300) { |
| /* Interrupt Set/Clear Pending. */ |
| if (offset < 0x280) |
| irq = (offset - 0x200) * 8; |
| else |
| irq = (offset - 0x280) * 8; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| res = 0; |
| mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK; |
| for (i = 0; i < 8; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (gic_test_pending(s, irq + i, mask)) { |
| res |= (1 << i); |
| } |
| } |
| } else if (offset < 0x400) { |
| /* Interrupt Set/Clear Active. */ |
| if (offset < 0x380) { |
| irq = (offset - 0x300) * 8; |
| } else if (s->revision == 2) { |
| irq = (offset - 0x380) * 8; |
| } else { |
| goto bad_reg; |
| } |
| |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| res = 0; |
| mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK; |
| for (i = 0; i < 8; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) { |
| res |= (1 << i); |
| } |
| } |
| } else if (offset < 0x800) { |
| /* Interrupt Priority. */ |
| irq = (offset - 0x400); |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| res = gic_dist_get_priority(s, cpu, irq, attrs); |
| } else if (offset < 0xc00) { |
| /* Interrupt CPU Target. */ |
| if (s->num_cpu == 1 && s->revision != REV_11MPCORE) { |
| /* For uniprocessor GICs these RAZ/WI */ |
| res = 0; |
| } else { |
| irq = (offset - 0x800); |
| if (irq >= s->num_irq) { |
| goto bad_reg; |
| } |
| if (irq < 29 && s->revision == REV_11MPCORE) { |
| res = 0; |
| } else if (irq < GIC_INTERNAL) { |
| res = cm; |
| } else { |
| res = GIC_DIST_TARGET(irq); |
| } |
| } |
| } else if (offset < 0xf00) { |
| /* Interrupt Configuration. */ |
| irq = (offset - 0xc00) * 4; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| res = 0; |
| for (i = 0; i < 4; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (GIC_DIST_TEST_MODEL(irq + i)) { |
| res |= (1 << (i * 2)); |
| } |
| if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) { |
| res |= (2 << (i * 2)); |
| } |
| } |
| } else if (offset < 0xf10) { |
| goto bad_reg; |
| } else if (offset < 0xf30) { |
| if (s->revision == REV_11MPCORE) { |
| goto bad_reg; |
| } |
| |
| if (offset < 0xf20) { |
| /* GICD_CPENDSGIRn */ |
| irq = (offset - 0xf10); |
| } else { |
| irq = (offset - 0xf20); |
| /* GICD_SPENDSGIRn */ |
| } |
| |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) { |
| res = 0; /* Ignore Non-secure access of Group0 IRQ */ |
| } else { |
| res = s->sgi_pending[irq][cpu]; |
| } |
| } else if (offset < 0xfd0) { |
| goto bad_reg; |
| } else if (offset < 0x1000) { |
| if (offset & 3) { |
| res = 0; |
| } else { |
| switch (s->revision) { |
| case REV_11MPCORE: |
| res = gic_id_11mpcore[(offset - 0xfd0) >> 2]; |
| break; |
| case 1: |
| res = gic_id_gicv1[(offset - 0xfd0) >> 2]; |
| break; |
| case 2: |
| res = gic_id_gicv2[(offset - 0xfd0) >> 2]; |
| break; |
| default: |
| res = 0; |
| } |
| } |
| } else { |
| g_assert_not_reached(); |
| } |
| return res; |
| bad_reg: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "gic_dist_readb: Bad offset %x\n", (int)offset); |
| return 0; |
| } |
| |
| static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| switch (size) { |
| case 1: |
| *data = gic_dist_readb(opaque, offset, attrs); |
| break; |
| case 2: |
| *data = gic_dist_readb(opaque, offset, attrs); |
| *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8; |
| break; |
| case 4: |
| *data = gic_dist_readb(opaque, offset, attrs); |
| *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8; |
| *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16; |
| *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24; |
| break; |
| default: |
| return MEMTX_ERROR; |
| } |
| |
| trace_gic_dist_read(offset, size, *data); |
| return MEMTX_OK; |
| } |
| |
| static void gic_dist_writeb(void *opaque, hwaddr offset, |
| uint32_t value, MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| int irq; |
| int i; |
| int cpu; |
| |
| cpu = gic_get_current_cpu(s); |
| if (offset < 0x100) { |
| if (offset == 0) { |
| if (s->security_extn && !attrs.secure) { |
| /* NS version is just an alias of the S version's bit 1 */ |
| s->ctlr = deposit32(s->ctlr, 1, 1, value); |
| } else if (gic_has_groups(s)) { |
| s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1); |
| } else { |
| s->ctlr = value & GICD_CTLR_EN_GRP0; |
| } |
| DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n", |
| s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis", |
| s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis"); |
| } else if (offset < 4) { |
| /* ignored. */ |
| } else if (offset >= 0x80) { |
| /* Interrupt Group Registers: RAZ/WI for NS access to secure |
| * GIC, or for GICs without groups. |
| */ |
| if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) { |
| /* Every byte offset holds 8 group status bits */ |
| irq = (offset - 0x80) * 8; |
| if (irq >= s->num_irq) { |
| goto bad_reg; |
| } |
| for (i = 0; i < 8; i++) { |
| /* Group bits are banked for private interrupts */ |
| int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; |
| if (value & (1 << i)) { |
| /* Group1 (Non-secure) */ |
| GIC_DIST_SET_GROUP(irq + i, cm); |
| } else { |
| /* Group0 (Secure) */ |
| GIC_DIST_CLEAR_GROUP(irq + i, cm); |
| } |
| } |
| } |
| } else { |
| goto bad_reg; |
| } |
| } else if (offset < 0x180) { |
| /* Interrupt Set Enable. */ |
| irq = (offset - 0x100) * 8; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| if (irq < GIC_NR_SGIS) { |
| value = 0xff; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| if (value & (1 << i)) { |
| int mask = |
| (irq < GIC_INTERNAL) ? (1 << cpu) |
| : GIC_DIST_TARGET(irq + i); |
| int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; |
| |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) { |
| DPRINTF("Enabled IRQ %d\n", irq + i); |
| trace_gic_enable_irq(irq + i); |
| } |
| GIC_DIST_SET_ENABLED(irq + i, cm); |
| /* If a raised level triggered IRQ enabled then mark |
| is as pending. */ |
| if (GIC_DIST_TEST_LEVEL(irq + i, mask) |
| && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) { |
| DPRINTF("Set %d pending mask %x\n", irq + i, mask); |
| GIC_DIST_SET_PENDING(irq + i, mask); |
| } |
| } |
| } |
| } else if (offset < 0x200) { |
| /* Interrupt Clear Enable. */ |
| irq = (offset - 0x180) * 8; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| if (irq < GIC_NR_SGIS) { |
| value = 0; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| if (value & (1 << i)) { |
| int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; |
| |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (GIC_DIST_TEST_ENABLED(irq + i, cm)) { |
| DPRINTF("Disabled IRQ %d\n", irq + i); |
| trace_gic_disable_irq(irq + i); |
| } |
| GIC_DIST_CLEAR_ENABLED(irq + i, cm); |
| } |
| } |
| } else if (offset < 0x280) { |
| /* Interrupt Set Pending. */ |
| irq = (offset - 0x200) * 8; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| if (irq < GIC_NR_SGIS) { |
| value = 0; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| if (value & (1 << i)) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i)); |
| } |
| } |
| } else if (offset < 0x300) { |
| /* Interrupt Clear Pending. */ |
| irq = (offset - 0x280) * 8; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| if (irq < GIC_NR_SGIS) { |
| value = 0; |
| } |
| |
| for (i = 0; i < 8; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| /* ??? This currently clears the pending bit for all CPUs, even |
| for per-CPU interrupts. It's unclear whether this is the |
| correct behavior. */ |
| if (value & (1 << i)) { |
| GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK); |
| } |
| } |
| } else if (offset < 0x380) { |
| /* Interrupt Set Active. */ |
| if (s->revision != 2) { |
| goto bad_reg; |
| } |
| |
| irq = (offset - 0x300) * 8; |
| if (irq >= s->num_irq) { |
| goto bad_reg; |
| } |
| |
| /* This register is banked per-cpu for PPIs */ |
| int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK; |
| |
| for (i = 0; i < 8; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (value & (1 << i)) { |
| GIC_DIST_SET_ACTIVE(irq + i, cm); |
| } |
| } |
| } else if (offset < 0x400) { |
| /* Interrupt Clear Active. */ |
| if (s->revision != 2) { |
| goto bad_reg; |
| } |
| |
| irq = (offset - 0x380) * 8; |
| if (irq >= s->num_irq) { |
| goto bad_reg; |
| } |
| |
| /* This register is banked per-cpu for PPIs */ |
| int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK; |
| |
| for (i = 0; i < 8; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (value & (1 << i)) { |
| GIC_DIST_CLEAR_ACTIVE(irq + i, cm); |
| } |
| } |
| } else if (offset < 0x800) { |
| /* Interrupt Priority. */ |
| irq = (offset - 0x400); |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| gic_dist_set_priority(s, cpu, irq, value, attrs); |
| } else if (offset < 0xc00) { |
| /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the |
| * annoying exception of the 11MPCore's GIC. |
| */ |
| if (s->num_cpu != 1 || s->revision == REV_11MPCORE) { |
| irq = (offset - 0x800); |
| if (irq >= s->num_irq) { |
| goto bad_reg; |
| } |
| if (irq < 29 && s->revision == REV_11MPCORE) { |
| value = 0; |
| } else if (irq < GIC_INTERNAL) { |
| value = ALL_CPU_MASK; |
| } |
| s->irq_target[irq] = value & ALL_CPU_MASK; |
| } |
| } else if (offset < 0xf00) { |
| /* Interrupt Configuration. */ |
| irq = (offset - 0xc00) * 4; |
| if (irq >= s->num_irq) |
| goto bad_reg; |
| if (irq < GIC_NR_SGIS) |
| value |= 0xaa; |
| for (i = 0; i < 4; i++) { |
| if (s->security_extn && !attrs.secure && |
| !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) { |
| continue; /* Ignore Non-secure access of Group0 IRQ */ |
| } |
| |
| if (s->revision == REV_11MPCORE) { |
| if (value & (1 << (i * 2))) { |
| GIC_DIST_SET_MODEL(irq + i); |
| } else { |
| GIC_DIST_CLEAR_MODEL(irq + i); |
| } |
| } |
| if (value & (2 << (i * 2))) { |
| GIC_DIST_SET_EDGE_TRIGGER(irq + i); |
| } else { |
| GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i); |
| } |
| } |
| } else if (offset < 0xf10) { |
| /* 0xf00 is only handled for 32-bit writes. */ |
| goto bad_reg; |
| } else if (offset < 0xf20) { |
| /* GICD_CPENDSGIRn */ |
| if (s->revision == REV_11MPCORE) { |
| goto bad_reg; |
| } |
| irq = (offset - 0xf10); |
| |
| if (!s->security_extn || attrs.secure || |
| GIC_DIST_TEST_GROUP(irq, 1 << cpu)) { |
| s->sgi_pending[irq][cpu] &= ~value; |
| if (s->sgi_pending[irq][cpu] == 0) { |
| GIC_DIST_CLEAR_PENDING(irq, 1 << cpu); |
| } |
| } |
| } else if (offset < 0xf30) { |
| /* GICD_SPENDSGIRn */ |
| if (s->revision == REV_11MPCORE) { |
| goto bad_reg; |
| } |
| irq = (offset - 0xf20); |
| |
| if (!s->security_extn || attrs.secure || |
| GIC_DIST_TEST_GROUP(irq, 1 << cpu)) { |
| GIC_DIST_SET_PENDING(irq, 1 << cpu); |
| s->sgi_pending[irq][cpu] |= value; |
| } |
| } else { |
| goto bad_reg; |
| } |
| gic_update(s); |
| return; |
| bad_reg: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "gic_dist_writeb: Bad offset %x\n", (int)offset); |
| } |
| |
| static void gic_dist_writew(void *opaque, hwaddr offset, |
| uint32_t value, MemTxAttrs attrs) |
| { |
| gic_dist_writeb(opaque, offset, value & 0xff, attrs); |
| gic_dist_writeb(opaque, offset + 1, value >> 8, attrs); |
| } |
| |
| static void gic_dist_writel(void *opaque, hwaddr offset, |
| uint32_t value, MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| if (offset == 0xf00) { |
| int cpu; |
| int irq; |
| int mask; |
| int target_cpu; |
| |
| cpu = gic_get_current_cpu(s); |
| irq = value & 0xf; |
| switch ((value >> 24) & 3) { |
| case 0: |
| mask = (value >> 16) & ALL_CPU_MASK; |
| break; |
| case 1: |
| mask = ALL_CPU_MASK ^ (1 << cpu); |
| break; |
| case 2: |
| mask = 1 << cpu; |
| break; |
| default: |
| DPRINTF("Bad Soft Int target filter\n"); |
| mask = ALL_CPU_MASK; |
| break; |
| } |
| GIC_DIST_SET_PENDING(irq, mask); |
| target_cpu = ctz32(mask); |
| while (target_cpu < GIC_NCPU) { |
| s->sgi_pending[irq][target_cpu] |= (1 << cpu); |
| mask &= ~(1 << target_cpu); |
| target_cpu = ctz32(mask); |
| } |
| gic_update(s); |
| return; |
| } |
| gic_dist_writew(opaque, offset, value & 0xffff, attrs); |
| gic_dist_writew(opaque, offset + 2, value >> 16, attrs); |
| } |
| |
| static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| trace_gic_dist_write(offset, size, data); |
| |
| switch (size) { |
| case 1: |
| gic_dist_writeb(opaque, offset, data, attrs); |
| return MEMTX_OK; |
| case 2: |
| gic_dist_writew(opaque, offset, data, attrs); |
| return MEMTX_OK; |
| case 4: |
| gic_dist_writel(opaque, offset, data, attrs); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno) |
| { |
| /* Return the Nonsecure view of GICC_APR<regno>. This is the |
| * second half of GICC_NSAPR. |
| */ |
| switch (GIC_MIN_BPR) { |
| case 0: |
| if (regno < 2) { |
| return s->nsapr[regno + 2][cpu]; |
| } |
| break; |
| case 1: |
| if (regno == 0) { |
| return s->nsapr[regno + 1][cpu]; |
| } |
| break; |
| case 2: |
| if (regno == 0) { |
| return extract32(s->nsapr[0][cpu], 16, 16); |
| } |
| break; |
| case 3: |
| if (regno == 0) { |
| return extract32(s->nsapr[0][cpu], 8, 8); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return 0; |
| } |
| |
| static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno, |
| uint32_t value) |
| { |
| /* Write the Nonsecure view of GICC_APR<regno>. */ |
| switch (GIC_MIN_BPR) { |
| case 0: |
| if (regno < 2) { |
| s->nsapr[regno + 2][cpu] = value; |
| } |
| break; |
| case 1: |
| if (regno == 0) { |
| s->nsapr[regno + 1][cpu] = value; |
| } |
| break; |
| case 2: |
| if (regno == 0) { |
| s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value); |
| } |
| break; |
| case 3: |
| if (regno == 0) { |
| s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case 0x00: /* Control */ |
| *data = gic_get_cpu_control(s, cpu, attrs); |
| break; |
| case 0x04: /* Priority mask */ |
| *data = gic_get_priority_mask(s, cpu, attrs); |
| break; |
| case 0x08: /* Binary Point */ |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) { |
| /* NS view of BPR when CBPR is 1 */ |
| *data = MIN(s->bpr[cpu] + 1, 7); |
| } else { |
| /* BPR is banked. Non-secure copy stored in ABPR. */ |
| *data = s->abpr[cpu]; |
| } |
| } else { |
| *data = s->bpr[cpu]; |
| } |
| break; |
| case 0x0c: /* Acknowledge */ |
| *data = gic_acknowledge_irq(s, cpu, attrs); |
| break; |
| case 0x14: /* Running Priority */ |
| *data = gic_get_running_priority(s, cpu, attrs); |
| break; |
| case 0x18: /* Highest Pending Interrupt */ |
| *data = gic_get_current_pending_irq(s, cpu, attrs); |
| break; |
| case 0x1c: /* Aliased Binary Point */ |
| /* GIC v2, no security: ABPR |
| * GIC v1, no security: not implemented (RAZ/WI) |
| * With security extensions, secure access: ABPR (alias of NS BPR) |
| * With security extensions, nonsecure access: RAZ/WI |
| */ |
| if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) { |
| *data = 0; |
| } else { |
| *data = s->abpr[cpu]; |
| } |
| break; |
| case 0xd0: case 0xd4: case 0xd8: case 0xdc: |
| { |
| int regno = (offset - 0xd0) / 4; |
| int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS; |
| |
| if (regno >= nr_aprs || s->revision != 2) { |
| *data = 0; |
| } else if (gic_is_vcpu(cpu)) { |
| *data = s->h_apr[gic_get_vcpu_real_id(cpu)]; |
| } else if (gic_cpu_ns_access(s, cpu, attrs)) { |
| /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */ |
| *data = gic_apr_ns_view(s, cpu, regno); |
| } else { |
| *data = s->apr[regno][cpu]; |
| } |
| break; |
| } |
| case 0xe0: case 0xe4: case 0xe8: case 0xec: |
| { |
| int regno = (offset - 0xe0) / 4; |
| |
| if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) || |
| gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) { |
| *data = 0; |
| } else { |
| *data = s->nsapr[regno][cpu]; |
| } |
| break; |
| } |
| case 0xfc: |
| if (s->revision == REV_11MPCORE) { |
| /* Reserved on 11MPCore */ |
| *data = 0; |
| } else { |
| /* GICv1 or v2; Arm implementation */ |
| *data = (s->revision << 16) | 0x43b; |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "gic_cpu_read: Bad offset %x\n", (int)offset); |
| *data = 0; |
| break; |
| } |
| |
| trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu", |
| gic_get_vcpu_real_id(cpu), offset, *data); |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset, |
| uint32_t value, MemTxAttrs attrs) |
| { |
| trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu", |
| gic_get_vcpu_real_id(cpu), offset, value); |
| |
| switch (offset) { |
| case 0x00: /* Control */ |
| gic_set_cpu_control(s, cpu, value, attrs); |
| break; |
| case 0x04: /* Priority mask */ |
| gic_set_priority_mask(s, cpu, value, attrs); |
| break; |
| case 0x08: /* Binary Point */ |
| if (gic_cpu_ns_access(s, cpu, attrs)) { |
| if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) { |
| /* WI when CBPR is 1 */ |
| return MEMTX_OK; |
| } else { |
| s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR); |
| } |
| } else { |
| int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR; |
| s->bpr[cpu] = MAX(value & 0x7, min_bpr); |
| } |
| break; |
| case 0x10: /* End Of Interrupt */ |
| gic_complete_irq(s, cpu, value & 0x3ff, attrs); |
| return MEMTX_OK; |
| case 0x1c: /* Aliased Binary Point */ |
| if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) { |
| /* unimplemented, or NS access: RAZ/WI */ |
| return MEMTX_OK; |
| } else { |
| s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR); |
| } |
| break; |
| case 0xd0: case 0xd4: case 0xd8: case 0xdc: |
| { |
| int regno = (offset - 0xd0) / 4; |
| int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS; |
| |
| if (regno >= nr_aprs || s->revision != 2) { |
| return MEMTX_OK; |
| } |
| if (gic_is_vcpu(cpu)) { |
| s->h_apr[gic_get_vcpu_real_id(cpu)] = value; |
| } else if (gic_cpu_ns_access(s, cpu, attrs)) { |
| /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */ |
| gic_apr_write_ns_view(s, cpu, regno, value); |
| } else { |
| s->apr[regno][cpu] = value; |
| } |
| s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu); |
| break; |
| } |
| case 0xe0: case 0xe4: case 0xe8: case 0xec: |
| { |
| int regno = (offset - 0xe0) / 4; |
| |
| if (regno >= GIC_NR_APRS || s->revision != 2) { |
| return MEMTX_OK; |
| } |
| if (gic_is_vcpu(cpu)) { |
| return MEMTX_OK; |
| } |
| if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) { |
| return MEMTX_OK; |
| } |
| s->nsapr[regno][cpu] = value; |
| s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu); |
| break; |
| } |
| case 0x1000: |
| /* GICC_DIR */ |
| gic_deactivate_irq(s, cpu, value & 0x3ff, attrs); |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "gic_cpu_write: Bad offset %x\n", (int)offset); |
| return MEMTX_OK; |
| } |
| |
| if (gic_is_vcpu(cpu)) { |
| gic_update_virt(s); |
| } else { |
| gic_update(s); |
| } |
| |
| return MEMTX_OK; |
| } |
| |
| /* Wrappers to read/write the GIC CPU interface for the current CPU */ |
| static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs); |
| } |
| |
| static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs); |
| } |
| |
| /* Wrappers to read/write the GIC CPU interface for a specific CPU. |
| * These just decode the opaque pointer into GICState* + cpu id. |
| */ |
| static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICState **backref = (GICState **)opaque; |
| GICState *s = *backref; |
| int id = (backref - s->backref); |
| return gic_cpu_read(s, id, addr, data, attrs); |
| } |
| |
| static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| GICState **backref = (GICState **)opaque; |
| GICState *s = *backref; |
| int id = (backref - s->backref); |
| return gic_cpu_write(s, id, addr, value, attrs); |
| } |
| |
| static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| |
| return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs); |
| } |
| |
| static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| |
| return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs); |
| } |
| |
| static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start) |
| { |
| int lr_idx; |
| uint32_t ret = 0; |
| |
| for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) { |
| uint32_t *entry = &s->h_lr[lr_idx][cpu]; |
| ret = deposit32(ret, lr_idx - lr_start, 1, |
| gic_lr_entry_is_eoi(*entry)); |
| } |
| |
| return ret; |
| } |
| |
| static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start) |
| { |
| int lr_idx; |
| uint32_t ret = 0; |
| |
| for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) { |
| uint32_t *entry = &s->h_lr[lr_idx][cpu]; |
| ret = deposit32(ret, lr_idx - lr_start, 1, |
| gic_lr_entry_is_free(*entry)); |
| } |
| |
| return ret; |
| } |
| |
| static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs) |
| { |
| int vcpu = gic_get_current_vcpu(s); |
| uint32_t ctlr; |
| uint32_t abpr; |
| uint32_t bpr; |
| uint32_t prio_mask; |
| |
| ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr); |
| abpr = FIELD_EX32(value, GICH_VMCR, VMABP); |
| bpr = FIELD_EX32(value, GICH_VMCR, VMBP); |
| prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3; |
| |
| gic_set_cpu_control(s, vcpu, ctlr, attrs); |
| s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR); |
| s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR); |
| gic_set_priority_mask(s, vcpu, prio_mask, attrs); |
| } |
| |
| static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| GICState *s = ARM_GIC(opaque); |
| int vcpu = cpu + GIC_NCPU; |
| |
| switch (addr) { |
| case A_GICH_HCR: /* Hypervisor Control */ |
| *data = s->h_hcr[cpu]; |
| break; |
| |
| case A_GICH_VTR: /* VGIC Type */ |
| *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1); |
| *data = FIELD_DP32(*data, GICH_VTR, PREbits, |
| GIC_VIRT_MAX_GROUP_PRIO_BITS - 1); |
| *data = FIELD_DP32(*data, GICH_VTR, PRIbits, |
| (7 - GIC_VIRT_MIN_BPR) - 1); |
| break; |
| |
| case A_GICH_VMCR: /* Virtual Machine Control */ |
| *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr, |
| extract32(s->cpu_ctlr[vcpu], 0, 10)); |
| *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]); |
| *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]); |
| *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask, |
| extract32(s->priority_mask[vcpu], 3, 5)); |
| break; |
| |
| case A_GICH_MISR: /* Maintenance Interrupt Status */ |
| *data = s->h_misr[cpu]; |
| break; |
| |
| case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */ |
| case A_GICH_EISR1: |
| *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8); |
| break; |
| |
| case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */ |
| case A_GICH_ELRSR1: |
| *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8); |
| break; |
| |
| case A_GICH_APR: /* Active Priorities */ |
| *data = s->h_apr[cpu]; |
| break; |
| |
| case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */ |
| { |
| int lr_idx = (addr - A_GICH_LR0) / 4; |
| |
| if (lr_idx > s->num_lrs) { |
| *data = 0; |
| } else { |
| *data = s->h_lr[lr_idx][cpu]; |
| } |
| break; |
| } |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr); |
| return MEMTX_OK; |
| } |
| |
| trace_gic_hyp_read(addr, *data); |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| GICState *s = ARM_GIC(opaque); |
| int vcpu = cpu + GIC_NCPU; |
| |
| trace_gic_hyp_write(addr, value); |
| |
| switch (addr) { |
| case A_GICH_HCR: /* Hypervisor Control */ |
| s->h_hcr[cpu] = value & GICH_HCR_MASK; |
| break; |
| |
| case A_GICH_VMCR: /* Virtual Machine Control */ |
| gic_vmcr_write(s, value, attrs); |
| break; |
| |
| case A_GICH_APR: /* Active Priorities */ |
| s->h_apr[cpu] = value; |
| s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu); |
| break; |
| |
| case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */ |
| { |
| int lr_idx = (addr - A_GICH_LR0) / 4; |
| |
| if (lr_idx > s->num_lrs) { |
| return MEMTX_OK; |
| } |
| |
| s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK; |
| trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]); |
| break; |
| } |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr); |
| return MEMTX_OK; |
| } |
| |
| gic_update_virt(s); |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| |
| return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs); |
| } |
| |
| static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| GICState *s = (GICState *)opaque; |
| |
| return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs); |
| } |
| |
| static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICState **backref = (GICState **)opaque; |
| GICState *s = *backref; |
| int id = (backref - s->backref); |
| |
| return gic_hyp_read(s, id, addr, data, attrs); |
| } |
| |
| static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| GICState **backref = (GICState **)opaque; |
| GICState *s = *backref; |
| int id = (backref - s->backref); |
| |
| return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs); |
| |
| } |
| |
| static const MemoryRegionOps gic_ops[2] = { |
| { |
| .read_with_attrs = gic_dist_read, |
| .write_with_attrs = gic_dist_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }, |
| { |
| .read_with_attrs = gic_thiscpu_read, |
| .write_with_attrs = gic_thiscpu_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| } |
| }; |
| |
| static const MemoryRegionOps gic_cpu_ops = { |
| .read_with_attrs = gic_do_cpu_read, |
| .write_with_attrs = gic_do_cpu_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static const MemoryRegionOps gic_virt_ops[2] = { |
| { |
| .read_with_attrs = gic_thiscpu_hyp_read, |
| .write_with_attrs = gic_thiscpu_hyp_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }, |
| { |
| .read_with_attrs = gic_thisvcpu_read, |
| .write_with_attrs = gic_thisvcpu_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| } |
| }; |
| |
| static const MemoryRegionOps gic_viface_ops = { |
| .read_with_attrs = gic_do_hyp_read, |
| .write_with_attrs = gic_do_hyp_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static void arm_gic_realize(DeviceState *dev, Error **errp) |
| { |
| /* Device instance realize function for the GIC sysbus device */ |
| int i; |
| GICState *s = ARM_GIC(dev); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| ARMGICClass *agc = ARM_GIC_GET_CLASS(s); |
| Error *local_err = NULL; |
| |
| agc->parent_realize(dev, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| if (kvm_enabled() && !kvm_arm_supports_user_irq()) { |
| error_setg(errp, "KVM with user space irqchip only works when the " |
| "host kernel supports KVM_CAP_ARM_USER_IRQ"); |
| return; |
| } |
| |
| if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS || |
| (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS : |
| s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) { |
| error_setg(errp, "num-priority-bits cannot be greater than %d" |
| " or less than %d", GIC_MAX_PRIORITY_BITS, |
| s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS : |
| GIC_MIN_PRIORITY_BITS); |
| return; |
| } |
| |
| /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if |
| * enabled, virtualization extensions related interfaces (main virtual |
| * interface (s->vifaceiomem[0]) and virtual CPU interface). |
| */ |
| gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops); |
| |
| /* Extra core-specific regions for the CPU interfaces. This is |
| * necessary for "franken-GIC" implementations, for example on |
| * Exynos 4. |
| * NB that the memory region size of 0x100 applies for the 11MPCore |
| * and also cores following the GIC v1 spec (ie A9). |
| * GIC v2 defines a larger memory region (0x1000) so this will need |
| * to be extended when we implement A15. |
| */ |
| for (i = 0; i < s->num_cpu; i++) { |
| s->backref[i] = s; |
| memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops, |
| &s->backref[i], "gic_cpu", 0x100); |
| sysbus_init_mmio(sbd, &s->cpuiomem[i+1]); |
| } |
| |
| /* Extra core-specific regions for virtual interfaces. This is required by |
| * the GICv2 specification. |
| */ |
| if (s->virt_extn) { |
| for (i = 0; i < s->num_cpu; i++) { |
| memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s), |
| &gic_viface_ops, &s->backref[i], |
| "gic_viface", 0x200); |
| sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]); |
| } |
| } |
| |
| } |
| |
| static void arm_gic_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ARMGICClass *agc = ARM_GIC_CLASS(klass); |
| |
| device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize); |
| } |
| |
| static const TypeInfo arm_gic_info = { |
| .name = TYPE_ARM_GIC, |
| .parent = TYPE_ARM_GIC_COMMON, |
| .instance_size = sizeof(GICState), |
| .class_init = arm_gic_class_init, |
| .class_size = sizeof(ARMGICClass), |
| }; |
| |
| static void arm_gic_register_types(void) |
| { |
| type_register_static(&arm_gic_info); |
| } |
| |
| type_init(arm_gic_register_types) |