| /* |
| * x86 exception helpers |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "qemu/log.h" |
| #include "sysemu/sysemu.h" |
| #include "exec/helper-proto.h" |
| |
| void helper_raise_interrupt(CPUX86State *env, int intno, int next_eip_addend) |
| { |
| raise_interrupt(env, intno, 1, 0, next_eip_addend); |
| } |
| |
| void helper_raise_exception(CPUX86State *env, int exception_index) |
| { |
| raise_exception(env, exception_index); |
| } |
| |
| /* |
| * Check nested exceptions and change to double or triple fault if |
| * needed. It should only be called, if this is not an interrupt. |
| * Returns the new exception number. |
| */ |
| static int check_exception(CPUX86State *env, int intno, int *error_code, |
| uintptr_t retaddr) |
| { |
| int first_contributory = env->old_exception == 0 || |
| (env->old_exception >= 10 && |
| env->old_exception <= 13); |
| int second_contributory = intno == 0 || |
| (intno >= 10 && intno <= 13); |
| |
| qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n", |
| env->old_exception, intno); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->old_exception == EXCP08_DBLE) { |
| if (env->hflags & HF_SVMI_MASK) { |
| cpu_vmexit(env, SVM_EXIT_SHUTDOWN, 0, retaddr); /* does not return */ |
| } |
| |
| qemu_log_mask(CPU_LOG_RESET, "Triple fault\n"); |
| |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| return EXCP_HLT; |
| } |
| #endif |
| |
| if ((first_contributory && second_contributory) |
| || (env->old_exception == EXCP0E_PAGE && |
| (second_contributory || (intno == EXCP0E_PAGE)))) { |
| intno = EXCP08_DBLE; |
| *error_code = 0; |
| } |
| |
| if (second_contributory || (intno == EXCP0E_PAGE) || |
| (intno == EXCP08_DBLE)) { |
| env->old_exception = intno; |
| } |
| |
| return intno; |
| } |
| |
| /* |
| * Signal an interruption. It is executed in the main CPU loop. |
| * is_int is TRUE if coming from the int instruction. next_eip is the |
| * env->eip value AFTER the interrupt instruction. It is only relevant if |
| * is_int is TRUE. |
| */ |
| static void QEMU_NORETURN raise_interrupt2(CPUX86State *env, int intno, |
| int is_int, int error_code, |
| int next_eip_addend, |
| uintptr_t retaddr) |
| { |
| CPUState *cs = CPU(x86_env_get_cpu(env)); |
| |
| if (!is_int) { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_EXCP_BASE + intno, |
| error_code, retaddr); |
| intno = check_exception(env, intno, &error_code, retaddr); |
| } else { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_SWINT, 0, retaddr); |
| } |
| |
| cs->exception_index = intno; |
| env->error_code = error_code; |
| env->exception_is_int = is_int; |
| env->exception_next_eip = env->eip + next_eip_addend; |
| cpu_loop_exit_restore(cs, retaddr); |
| } |
| |
| /* shortcuts to generate exceptions */ |
| |
| void QEMU_NORETURN raise_interrupt(CPUX86State *env, int intno, int is_int, |
| int error_code, int next_eip_addend) |
| { |
| raise_interrupt2(env, intno, is_int, error_code, next_eip_addend, 0); |
| } |
| |
| void raise_exception_err(CPUX86State *env, int exception_index, |
| int error_code) |
| { |
| raise_interrupt2(env, exception_index, 0, error_code, 0, 0); |
| } |
| |
| void raise_exception_err_ra(CPUX86State *env, int exception_index, |
| int error_code, uintptr_t retaddr) |
| { |
| raise_interrupt2(env, exception_index, 0, error_code, 0, retaddr); |
| } |
| |
| void raise_exception(CPUX86State *env, int exception_index) |
| { |
| raise_interrupt2(env, exception_index, 0, 0, 0, 0); |
| } |
| |
| void raise_exception_ra(CPUX86State *env, int exception_index, uintptr_t retaddr) |
| { |
| raise_interrupt2(env, exception_index, 0, 0, 0, retaddr); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int size, |
| int is_write, int mmu_idx) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| /* user mode only emulation */ |
| is_write &= 1; |
| env->cr[2] = addr; |
| env->error_code = (is_write << PG_ERROR_W_BIT); |
| env->error_code |= PG_ERROR_U_MASK; |
| cs->exception_index = EXCP0E_PAGE; |
| env->exception_is_int = 0; |
| env->exception_next_eip = -1; |
| return 1; |
| } |
| |
| #else |
| |
| /* return value: |
| * -1 = cannot handle fault |
| * 0 = nothing more to do |
| * 1 = generate PF fault |
| */ |
| int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int size, |
| int is_write1, int mmu_idx) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| uint64_t ptep, pte; |
| int32_t a20_mask; |
| target_ulong pde_addr, pte_addr; |
| int error_code = 0; |
| int is_dirty, prot, page_size, is_write, is_user; |
| hwaddr paddr; |
| uint64_t rsvd_mask = PG_HI_RSVD_MASK; |
| uint32_t page_offset; |
| target_ulong vaddr; |
| |
| is_user = mmu_idx == MMU_USER_IDX; |
| #if defined(DEBUG_MMU) |
| printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n", |
| addr, is_write1, is_user, env->eip); |
| #endif |
| is_write = is_write1 & 1; |
| |
| a20_mask = x86_get_a20_mask(env); |
| if (!(env->cr[0] & CR0_PG_MASK)) { |
| pte = addr; |
| #ifdef TARGET_X86_64 |
| if (!(env->hflags & HF_LMA_MASK)) { |
| /* Without long mode we can only address 32bits in real mode */ |
| pte = (uint32_t)pte; |
| } |
| #endif |
| prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| page_size = 4096; |
| goto do_mapping; |
| } |
| |
| if (!(env->efer & MSR_EFER_NXE)) { |
| rsvd_mask |= PG_NX_MASK; |
| } |
| |
| if (env->cr[4] & CR4_PAE_MASK) { |
| uint64_t pde, pdpe; |
| target_ulong pdpe_addr; |
| |
| #ifdef TARGET_X86_64 |
| if (env->hflags & HF_LMA_MASK) { |
| bool la57 = env->cr[4] & CR4_LA57_MASK; |
| uint64_t pml5e_addr, pml5e; |
| uint64_t pml4e_addr, pml4e; |
| int32_t sext; |
| |
| /* test virtual address sign extension */ |
| sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47; |
| if (sext != 0 && sext != -1) { |
| env->error_code = 0; |
| cs->exception_index = EXCP0D_GPF; |
| return 1; |
| } |
| |
| if (la57) { |
| pml5e_addr = ((env->cr[3] & ~0xfff) + |
| (((addr >> 48) & 0x1ff) << 3)) & a20_mask; |
| pml5e = x86_ldq_phys(cs, pml5e_addr); |
| if (!(pml5e & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| if (pml5e & (rsvd_mask | PG_PSE_MASK)) { |
| goto do_fault_rsvd; |
| } |
| if (!(pml5e & PG_ACCESSED_MASK)) { |
| pml5e |= PG_ACCESSED_MASK; |
| x86_stl_phys_notdirty(cs, pml5e_addr, pml5e); |
| } |
| ptep = pml5e ^ PG_NX_MASK; |
| } else { |
| pml5e = env->cr[3]; |
| ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; |
| } |
| |
| pml4e_addr = ((pml5e & PG_ADDRESS_MASK) + |
| (((addr >> 39) & 0x1ff) << 3)) & a20_mask; |
| pml4e = x86_ldq_phys(cs, pml4e_addr); |
| if (!(pml4e & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| if (pml4e & (rsvd_mask | PG_PSE_MASK)) { |
| goto do_fault_rsvd; |
| } |
| if (!(pml4e & PG_ACCESSED_MASK)) { |
| pml4e |= PG_ACCESSED_MASK; |
| x86_stl_phys_notdirty(cs, pml4e_addr, pml4e); |
| } |
| ptep &= pml4e ^ PG_NX_MASK; |
| pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) & |
| a20_mask; |
| pdpe = x86_ldq_phys(cs, pdpe_addr); |
| if (!(pdpe & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| if (pdpe & rsvd_mask) { |
| goto do_fault_rsvd; |
| } |
| ptep &= pdpe ^ PG_NX_MASK; |
| if (!(pdpe & PG_ACCESSED_MASK)) { |
| pdpe |= PG_ACCESSED_MASK; |
| x86_stl_phys_notdirty(cs, pdpe_addr, pdpe); |
| } |
| if (pdpe & PG_PSE_MASK) { |
| /* 1 GB page */ |
| page_size = 1024 * 1024 * 1024; |
| pte_addr = pdpe_addr; |
| pte = pdpe; |
| goto do_check_protect; |
| } |
| } else |
| #endif |
| { |
| /* XXX: load them when cr3 is loaded ? */ |
| pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & |
| a20_mask; |
| pdpe = x86_ldq_phys(cs, pdpe_addr); |
| if (!(pdpe & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| rsvd_mask |= PG_HI_USER_MASK; |
| if (pdpe & (rsvd_mask | PG_NX_MASK)) { |
| goto do_fault_rsvd; |
| } |
| ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; |
| } |
| |
| pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) & |
| a20_mask; |
| pde = x86_ldq_phys(cs, pde_addr); |
| if (!(pde & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| if (pde & rsvd_mask) { |
| goto do_fault_rsvd; |
| } |
| ptep &= pde ^ PG_NX_MASK; |
| if (pde & PG_PSE_MASK) { |
| /* 2 MB page */ |
| page_size = 2048 * 1024; |
| pte_addr = pde_addr; |
| pte = pde; |
| goto do_check_protect; |
| } |
| /* 4 KB page */ |
| if (!(pde & PG_ACCESSED_MASK)) { |
| pde |= PG_ACCESSED_MASK; |
| x86_stl_phys_notdirty(cs, pde_addr, pde); |
| } |
| pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) & |
| a20_mask; |
| pte = x86_ldq_phys(cs, pte_addr); |
| if (!(pte & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| if (pte & rsvd_mask) { |
| goto do_fault_rsvd; |
| } |
| /* combine pde and pte nx, user and rw protections */ |
| ptep &= pte ^ PG_NX_MASK; |
| page_size = 4096; |
| } else { |
| uint32_t pde; |
| |
| /* page directory entry */ |
| pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & |
| a20_mask; |
| pde = x86_ldl_phys(cs, pde_addr); |
| if (!(pde & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| ptep = pde | PG_NX_MASK; |
| |
| /* if PSE bit is set, then we use a 4MB page */ |
| if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { |
| page_size = 4096 * 1024; |
| pte_addr = pde_addr; |
| |
| /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved. |
| * Leave bits 20-13 in place for setting accessed/dirty bits below. |
| */ |
| pte = pde | ((pde & 0x1fe000LL) << (32 - 13)); |
| rsvd_mask = 0x200000; |
| goto do_check_protect_pse36; |
| } |
| |
| if (!(pde & PG_ACCESSED_MASK)) { |
| pde |= PG_ACCESSED_MASK; |
| x86_stl_phys_notdirty(cs, pde_addr, pde); |
| } |
| |
| /* page directory entry */ |
| pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & |
| a20_mask; |
| pte = x86_ldl_phys(cs, pte_addr); |
| if (!(pte & PG_PRESENT_MASK)) { |
| goto do_fault; |
| } |
| /* combine pde and pte user and rw protections */ |
| ptep &= pte | PG_NX_MASK; |
| page_size = 4096; |
| rsvd_mask = 0; |
| } |
| |
| do_check_protect: |
| rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK; |
| do_check_protect_pse36: |
| if (pte & rsvd_mask) { |
| goto do_fault_rsvd; |
| } |
| ptep ^= PG_NX_MASK; |
| |
| /* can the page can be put in the TLB? prot will tell us */ |
| if (is_user && !(ptep & PG_USER_MASK)) { |
| goto do_fault_protect; |
| } |
| |
| prot = 0; |
| if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) { |
| prot |= PAGE_READ; |
| if ((ptep & PG_RW_MASK) || (!is_user && !(env->cr[0] & CR0_WP_MASK))) { |
| prot |= PAGE_WRITE; |
| } |
| } |
| if (!(ptep & PG_NX_MASK) && |
| (mmu_idx == MMU_USER_IDX || |
| !((env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)))) { |
| prot |= PAGE_EXEC; |
| } |
| if ((env->cr[4] & CR4_PKE_MASK) && (env->hflags & HF_LMA_MASK) && |
| (ptep & PG_USER_MASK) && env->pkru) { |
| uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT; |
| uint32_t pkru_ad = (env->pkru >> pk * 2) & 1; |
| uint32_t pkru_wd = (env->pkru >> pk * 2) & 2; |
| uint32_t pkru_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| |
| if (pkru_ad) { |
| pkru_prot &= ~(PAGE_READ | PAGE_WRITE); |
| } else if (pkru_wd && (is_user || env->cr[0] & CR0_WP_MASK)) { |
| pkru_prot &= ~PAGE_WRITE; |
| } |
| |
| prot &= pkru_prot; |
| if ((pkru_prot & (1 << is_write1)) == 0) { |
| assert(is_write1 != 2); |
| error_code |= PG_ERROR_PK_MASK; |
| goto do_fault_protect; |
| } |
| } |
| |
| if ((prot & (1 << is_write1)) == 0) { |
| goto do_fault_protect; |
| } |
| |
| /* yes, it can! */ |
| is_dirty = is_write && !(pte & PG_DIRTY_MASK); |
| if (!(pte & PG_ACCESSED_MASK) || is_dirty) { |
| pte |= PG_ACCESSED_MASK; |
| if (is_dirty) { |
| pte |= PG_DIRTY_MASK; |
| } |
| x86_stl_phys_notdirty(cs, pte_addr, pte); |
| } |
| |
| if (!(pte & PG_DIRTY_MASK)) { |
| /* only set write access if already dirty... otherwise wait |
| for dirty access */ |
| assert(!is_write); |
| prot &= ~PAGE_WRITE; |
| } |
| |
| do_mapping: |
| pte = pte & a20_mask; |
| |
| /* align to page_size */ |
| pte &= PG_ADDRESS_MASK & ~(page_size - 1); |
| |
| /* Even if 4MB pages, we map only one 4KB page in the cache to |
| avoid filling it too fast */ |
| vaddr = addr & TARGET_PAGE_MASK; |
| page_offset = vaddr & (page_size - 1); |
| paddr = pte + page_offset; |
| |
| assert(prot & (1 << is_write1)); |
| tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env), |
| prot, mmu_idx, page_size); |
| return 0; |
| do_fault_rsvd: |
| error_code |= PG_ERROR_RSVD_MASK; |
| do_fault_protect: |
| error_code |= PG_ERROR_P_MASK; |
| do_fault: |
| error_code |= (is_write << PG_ERROR_W_BIT); |
| if (is_user) |
| error_code |= PG_ERROR_U_MASK; |
| if (is_write1 == 2 && |
| (((env->efer & MSR_EFER_NXE) && |
| (env->cr[4] & CR4_PAE_MASK)) || |
| (env->cr[4] & CR4_SMEP_MASK))) |
| error_code |= PG_ERROR_I_D_MASK; |
| if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) { |
| /* cr2 is not modified in case of exceptions */ |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), |
| addr); |
| } else { |
| env->cr[2] = addr; |
| } |
| env->error_code = error_code; |
| cs->exception_index = EXCP0E_PAGE; |
| return 1; |
| } |
| #endif |