blob: d7cc4d3ec19bcb40f5fcdfeb56ab9c83655066f6 [file] [log] [blame]
/*
* QEMU Floppy disk emulator (Intel 82078)
*
* Copyright (c) 2003, 2007 Jocelyn Mayer
* Copyright (c) 2008 Hervé Poussineau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* The controller is used in Sun4m systems in a slightly different
* way. There are changes in DOR register and DMA is not available.
*/
#include "qemu/osdep.h"
#include "hw/block/fdc.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "qemu/memalign.h"
#include "hw/irq.h"
#include "hw/isa/isa.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "migration/vmstate.h"
#include "hw/block/block.h"
#include "sysemu/block-backend.h"
#include "sysemu/blockdev.h"
#include "sysemu/sysemu.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "trace.h"
#include "qom/object.h"
#include "fdc-internal.h"
/********************************************************/
/* debug Floppy devices */
#define DEBUG_FLOPPY 0
#define FLOPPY_DPRINTF(fmt, ...) \
do { \
if (DEBUG_FLOPPY) { \
fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
} \
} while (0)
/* Anonymous BlockBackend for empty drive */
static BlockBackend *blk_create_empty_drive(void)
{
return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
}
/********************************************************/
/* qdev floppy bus */
#define TYPE_FLOPPY_BUS "floppy-bus"
OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
static FDrive *get_drv(FDCtrl *fdctrl, int unit);
static const TypeInfo floppy_bus_info = {
.name = TYPE_FLOPPY_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(FloppyBus),
};
static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
{
qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
bus->fdc = fdc;
}
/********************************************************/
/* Floppy drive emulation */
/* In many cases, the total sector size of a format is enough to uniquely
* identify it. However, there are some total sector collisions between
* formats of different physical size, and these are noted below by
* highlighting the total sector size for entries with collisions. */
const FDFormat fd_formats[] = {
/* First entry is default format */
/* 1.44 MB 3"1/2 floppy disks */
{ FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
{ FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
{ FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
/* 2.88 MB 3"1/2 floppy disks */
{ FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
{ FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
{ FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
{ FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
{ FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
/* 720 kB 3"1/2 floppy disks */
{ FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
{ FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
{ FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
{ FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
{ FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
{ FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
/* 1.2 MB 5"1/4 floppy disks */
{ FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
{ FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
{ FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
/* 720 kB 5"1/4 floppy disks */
{ FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
{ FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
/* 360 kB 5"1/4 floppy disks */
{ FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
{ FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
{ FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
{ FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
/* 320 kB 5"1/4 floppy disks */
{ FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
{ FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
/* 360 kB must match 5"1/4 better than 3"1/2... */
{ FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
/* end */
{ FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
};
static FDriveSize drive_size(FloppyDriveType drive)
{
switch (drive) {
case FLOPPY_DRIVE_TYPE_120:
return FDRIVE_SIZE_525;
case FLOPPY_DRIVE_TYPE_144:
case FLOPPY_DRIVE_TYPE_288:
return FDRIVE_SIZE_350;
default:
return FDRIVE_SIZE_UNKNOWN;
}
}
#define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
#define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
/* Will always be a fixed parameter for us */
#define FD_SECTOR_LEN 512
#define FD_SECTOR_SC 2 /* Sector size code */
#define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
static FloppyDriveType get_fallback_drive_type(FDrive *drv);
/* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
* currently goes through some pains to keep seeks within the bounds
* established by last_sect and max_track. Correcting this is difficult,
* as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
*
* For now: allow empty drives to have large bounds so we can seek around,
* with the understanding that when a diskette is inserted, the bounds will
* properly tighten to match the geometry of that inserted medium.
*/
static void fd_empty_seek_hack(FDrive *drv)
{
drv->last_sect = 0xFF;
drv->max_track = 0xFF;
}
static void fd_init(FDrive *drv)
{
/* Drive */
drv->perpendicular = 0;
/* Disk */
drv->disk = FLOPPY_DRIVE_TYPE_NONE;
drv->last_sect = 0;
drv->max_track = 0;
drv->ro = true;
drv->media_changed = 1;
}
#define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
uint8_t last_sect, uint8_t num_sides)
{
return (((track * num_sides) + head) * last_sect) + sect - 1;
}
/* Returns current position, in sectors, for given drive */
static int fd_sector(FDrive *drv)
{
return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
NUM_SIDES(drv));
}
/* Returns current position, in bytes, for given drive */
static int fd_offset(FDrive *drv)
{
g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
return fd_sector(drv) << BDRV_SECTOR_BITS;
}
/* Seek to a new position:
* returns 0 if already on right track
* returns 1 if track changed
* returns 2 if track is invalid
* returns 3 if sector is invalid
* returns 4 if seek is disabled
*/
static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
int enable_seek)
{
uint32_t sector;
int ret;
if (track > drv->max_track ||
(head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 2;
}
if (sect > drv->last_sect) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 3;
}
sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
ret = 0;
if (sector != fd_sector(drv)) {
#if 0
if (!enable_seek) {
FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
" (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track,
drv->last_sect);
return 4;
}
#endif
drv->head = head;
if (drv->track != track) {
if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
drv->media_changed = 0;
}
ret = 1;
}
drv->track = track;
drv->sect = sect;
}
if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
ret = 2;
}
return ret;
}
/* Set drive back to track 0 */
static void fd_recalibrate(FDrive *drv)
{
FLOPPY_DPRINTF("recalibrate\n");
fd_seek(drv, 0, 0, 1, 1);
}
/**
* Determine geometry based on inserted diskette.
* Will not operate on an empty drive.
*
* @return: 0 on success, -1 if the drive is empty.
*/
static int pick_geometry(FDrive *drv)
{
BlockBackend *blk = drv->blk;
const FDFormat *parse;
uint64_t nb_sectors, size;
int i;
int match, size_match, type_match;
bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
/* We can only pick a geometry if we have a diskette. */
if (!drv->blk || !blk_is_inserted(drv->blk) ||
drv->drive == FLOPPY_DRIVE_TYPE_NONE)
{
return -1;
}
/* We need to determine the likely geometry of the inserted medium.
* In order of preference, we look for:
* (1) The same drive type and number of sectors,
* (2) The same diskette size and number of sectors,
* (3) The same drive type.
*
* In all cases, matches that occur higher in the drive table will take
* precedence over matches that occur later in the table.
*/
blk_get_geometry(blk, &nb_sectors);
match = size_match = type_match = -1;
for (i = 0; ; i++) {
parse = &fd_formats[i];
if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
break;
}
size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
if (nb_sectors == size) {
if (magic || parse->drive == drv->drive) {
/* (1) perfect match -- nb_sectors and drive type */
goto out;
} else if (drive_size(parse->drive) == drive_size(drv->drive)) {
/* (2) size match -- nb_sectors and physical medium size */
match = (match == -1) ? i : match;
} else {
/* This is suspicious -- Did the user misconfigure? */
size_match = (size_match == -1) ? i : size_match;
}
} else if (type_match == -1) {
if ((parse->drive == drv->drive) ||
(magic && (parse->drive == get_fallback_drive_type(drv)))) {
/* (3) type match -- nb_sectors mismatch, but matches the type
* specified explicitly by the user, or matches the fallback
* default type when using the drive autodetect mechanism */
type_match = i;
}
}
}
/* No exact match found */
if (match == -1) {
if (size_match != -1) {
parse = &fd_formats[size_match];
FLOPPY_DPRINTF("User requested floppy drive type '%s', "
"but inserted medium appears to be a "
"%"PRId64" sector '%s' type\n",
FloppyDriveType_str(drv->drive),
nb_sectors,
FloppyDriveType_str(parse->drive));
}
assert(type_match != -1 && "misconfigured fd_format");
match = type_match;
}
parse = &(fd_formats[match]);
out:
if (parse->max_head == 0) {
drv->flags &= ~FDISK_DBL_SIDES;
} else {
drv->flags |= FDISK_DBL_SIDES;
}
drv->max_track = parse->max_track;
drv->last_sect = parse->last_sect;
drv->disk = parse->drive;
drv->media_rate = parse->rate;
return 0;
}
static void pick_drive_type(FDrive *drv)
{
if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
return;
}
if (pick_geometry(drv) == 0) {
drv->drive = drv->disk;
} else {
drv->drive = get_fallback_drive_type(drv);
}
g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
}
/* Revalidate a disk drive after a disk change */
static void fd_revalidate(FDrive *drv)
{
int rc;
FLOPPY_DPRINTF("revalidate\n");
if (drv->blk != NULL) {
drv->ro = !blk_is_writable(drv->blk);
if (!blk_is_inserted(drv->blk)) {
FLOPPY_DPRINTF("No disk in drive\n");
drv->disk = FLOPPY_DRIVE_TYPE_NONE;
fd_empty_seek_hack(drv);
} else if (!drv->media_validated) {
rc = pick_geometry(drv);
if (rc) {
FLOPPY_DPRINTF("Could not validate floppy drive media");
} else {
drv->media_validated = true;
FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
(drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
drv->max_track, drv->last_sect,
drv->ro ? "ro" : "rw");
}
}
} else {
FLOPPY_DPRINTF("No drive connected\n");
drv->last_sect = 0;
drv->max_track = 0;
drv->flags &= ~FDISK_DBL_SIDES;
drv->drive = FLOPPY_DRIVE_TYPE_NONE;
drv->disk = FLOPPY_DRIVE_TYPE_NONE;
}
}
static void fd_change_cb(void *opaque, bool load, Error **errp)
{
FDrive *drive = opaque;
if (!load) {
blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
} else {
if (!blkconf_apply_backend_options(drive->conf,
!blk_supports_write_perm(drive->blk),
false, errp)) {
return;
}
}
drive->media_changed = 1;
drive->media_validated = false;
fd_revalidate(drive);
}
static const BlockDevOps fd_block_ops = {
.change_media_cb = fd_change_cb,
};
#define TYPE_FLOPPY_DRIVE "floppy"
OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
struct FloppyDrive {
DeviceState qdev;
uint32_t unit;
BlockConf conf;
FloppyDriveType type;
};
static Property floppy_drive_properties[] = {
DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
FloppyDriveType),
DEFINE_PROP_END_OF_LIST(),
};
static void floppy_drive_realize(DeviceState *qdev, Error **errp)
{
FloppyDrive *dev = FLOPPY_DRIVE(qdev);
FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
FDrive *drive;
bool read_only;
int ret;
if (dev->unit == -1) {
for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
drive = get_drv(bus->fdc, dev->unit);
if (!drive->blk) {
break;
}
}
}
if (dev->unit >= MAX_FD) {
error_setg(errp, "Can't create floppy unit %d, bus supports "
"only %d units", dev->unit, MAX_FD);
return;
}
drive = get_drv(bus->fdc, dev->unit);
if (drive->blk) {
error_setg(errp, "Floppy unit %d is in use", dev->unit);
return;
}
if (!dev->conf.blk) {
dev->conf.blk = blk_create_empty_drive();
ret = blk_attach_dev(dev->conf.blk, qdev);
assert(ret == 0);
/* Don't take write permissions on an empty drive to allow attaching a
* read-only node later */
read_only = true;
} else {
read_only = !blk_bs(dev->conf.blk) ||
!blk_supports_write_perm(dev->conf.blk);
}
if (!blkconf_blocksizes(&dev->conf, errp)) {
return;
}
if (dev->conf.logical_block_size != 512 ||
dev->conf.physical_block_size != 512)
{
error_setg(errp, "Physical and logical block size must "
"be 512 for floppy");
return;
}
/* rerror/werror aren't supported by fdc and therefore not even registered
* with qdev. So set the defaults manually before they are used in
* blkconf_apply_backend_options(). */
dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
return;
}
/* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
* for empty drives. */
if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
error_setg(errp, "fdc doesn't support drive option werror");
return;
}
if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
error_setg(errp, "fdc doesn't support drive option rerror");
return;
}
drive->conf = &dev->conf;
drive->blk = dev->conf.blk;
drive->fdctrl = bus->fdc;
fd_init(drive);
blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
/* Keep 'type' qdev property and FDrive->drive in sync */
drive->drive = dev->type;
pick_drive_type(drive);
dev->type = drive->drive;
fd_revalidate(drive);
}
static void floppy_drive_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
k->realize = floppy_drive_realize;
set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
k->bus_type = TYPE_FLOPPY_BUS;
device_class_set_props(k, floppy_drive_properties);
k->desc = "virtual floppy drive";
}
static const TypeInfo floppy_drive_info = {
.name = TYPE_FLOPPY_DRIVE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(FloppyDrive),
.class_init = floppy_drive_class_init,
};
/********************************************************/
/* Intel 82078 floppy disk controller emulation */
static void fdctrl_to_command_phase(FDCtrl *fdctrl);
static void fdctrl_raise_irq(FDCtrl *fdctrl);
static FDrive *get_cur_drv(FDCtrl *fdctrl);
static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
enum {
FD_DIR_WRITE = 0,
FD_DIR_READ = 1,
FD_DIR_SCANE = 2,
FD_DIR_SCANL = 3,
FD_DIR_SCANH = 4,
FD_DIR_VERIFY = 5,
};
enum {
FD_STATE_MULTI = 0x01, /* multi track flag */
FD_STATE_FORMAT = 0x02, /* format flag */
};
enum {
FD_REG_SRA = 0x00,
FD_REG_SRB = 0x01,
FD_REG_DOR = 0x02,
FD_REG_TDR = 0x03,
FD_REG_MSR = 0x04,
FD_REG_DSR = 0x04,
FD_REG_FIFO = 0x05,
FD_REG_DIR = 0x07,
FD_REG_CCR = 0x07,
};
enum {
FD_CMD_READ_TRACK = 0x02,
FD_CMD_SPECIFY = 0x03,
FD_CMD_SENSE_DRIVE_STATUS = 0x04,
FD_CMD_WRITE = 0x05,
FD_CMD_READ = 0x06,
FD_CMD_RECALIBRATE = 0x07,
FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
FD_CMD_WRITE_DELETED = 0x09,
FD_CMD_READ_ID = 0x0a,
FD_CMD_READ_DELETED = 0x0c,
FD_CMD_FORMAT_TRACK = 0x0d,
FD_CMD_DUMPREG = 0x0e,
FD_CMD_SEEK = 0x0f,
FD_CMD_VERSION = 0x10,
FD_CMD_SCAN_EQUAL = 0x11,
FD_CMD_PERPENDICULAR_MODE = 0x12,
FD_CMD_CONFIGURE = 0x13,
FD_CMD_LOCK = 0x14,
FD_CMD_VERIFY = 0x16,
FD_CMD_POWERDOWN_MODE = 0x17,
FD_CMD_PART_ID = 0x18,
FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
FD_CMD_SAVE = 0x2e,
FD_CMD_OPTION = 0x33,
FD_CMD_RESTORE = 0x4e,
FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
FD_CMD_FORMAT_AND_WRITE = 0xcd,
FD_CMD_RELATIVE_SEEK_IN = 0xcf,
};
enum {
FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
FD_CONFIG_POLL = 0x10, /* Poll enabled */
FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
FD_CONFIG_EIS = 0x40, /* No implied seeks */
};
enum {
FD_SR0_DS0 = 0x01,
FD_SR0_DS1 = 0x02,
FD_SR0_HEAD = 0x04,
FD_SR0_EQPMT = 0x10,
FD_SR0_SEEK = 0x20,
FD_SR0_ABNTERM = 0x40,
FD_SR0_INVCMD = 0x80,
FD_SR0_RDYCHG = 0xc0,
};
enum {
FD_SR1_MA = 0x01, /* Missing address mark */
FD_SR1_NW = 0x02, /* Not writable */
FD_SR1_EC = 0x80, /* End of cylinder */
};
enum {
FD_SR2_SNS = 0x04, /* Scan not satisfied */
FD_SR2_SEH = 0x08, /* Scan equal hit */
};
enum {
FD_SRA_DIR = 0x01,
FD_SRA_nWP = 0x02,
FD_SRA_nINDX = 0x04,
FD_SRA_HDSEL = 0x08,
FD_SRA_nTRK0 = 0x10,
FD_SRA_STEP = 0x20,
FD_SRA_nDRV2 = 0x40,
FD_SRA_INTPEND = 0x80,
};
enum {
FD_SRB_MTR0 = 0x01,
FD_SRB_MTR1 = 0x02,
FD_SRB_WGATE = 0x04,
FD_SRB_RDATA = 0x08,
FD_SRB_WDATA = 0x10,
FD_SRB_DR0 = 0x20,
};
enum {
#if MAX_FD == 4
FD_DOR_SELMASK = 0x03,
#else
FD_DOR_SELMASK = 0x01,
#endif
FD_DOR_nRESET = 0x04,
FD_DOR_DMAEN = 0x08,
FD_DOR_MOTEN0 = 0x10,
FD_DOR_MOTEN1 = 0x20,
FD_DOR_MOTEN2 = 0x40,
FD_DOR_MOTEN3 = 0x80,
};
enum {
#if MAX_FD == 4
FD_TDR_BOOTSEL = 0x0c,
#else
FD_TDR_BOOTSEL = 0x04,
#endif
};
enum {
FD_DSR_DRATEMASK= 0x03,
FD_DSR_PWRDOWN = 0x40,
FD_DSR_SWRESET = 0x80,
};
enum {
FD_MSR_DRV0BUSY = 0x01,
FD_MSR_DRV1BUSY = 0x02,
FD_MSR_DRV2BUSY = 0x04,
FD_MSR_DRV3BUSY = 0x08,
FD_MSR_CMDBUSY = 0x10,
FD_MSR_NONDMA = 0x20,
FD_MSR_DIO = 0x40,
FD_MSR_RQM = 0x80,
};
enum {
FD_DIR_DSKCHG = 0x80,
};
/*
* See chapter 5.0 "Controller phases" of the spec:
*
* Command phase:
* The host writes a command and its parameters into the FIFO. The command
* phase is completed when all parameters for the command have been supplied,
* and execution phase is entered.
*
* Execution phase:
* Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
* contains the payload now, otherwise it's unused. When all bytes of the
* required data have been transferred, the state is switched to either result
* phase (if the command produces status bytes) or directly back into the
* command phase for the next command.
*
* Result phase:
* The host reads out the FIFO, which contains one or more result bytes now.
*/
enum {
/* Only for migration: reconstruct phase from registers like qemu 2.3 */
FD_PHASE_RECONSTRUCT = 0,
FD_PHASE_COMMAND = 1,
FD_PHASE_EXECUTION = 2,
FD_PHASE_RESULT = 3,
};
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
static FloppyDriveType get_fallback_drive_type(FDrive *drv)
{
return drv->fdctrl->fallback;
}
uint32_t fdctrl_read(void *opaque, uint32_t reg)
{
FDCtrl *fdctrl = opaque;
uint32_t retval;
reg &= 7;
switch (reg) {
case FD_REG_SRA:
retval = fdctrl_read_statusA(fdctrl);
break;
case FD_REG_SRB:
retval = fdctrl_read_statusB(fdctrl);
break;
case FD_REG_DOR:
retval = fdctrl_read_dor(fdctrl);
break;
case FD_REG_TDR:
retval = fdctrl_read_tape(fdctrl);
break;
case FD_REG_MSR:
retval = fdctrl_read_main_status(fdctrl);
break;
case FD_REG_FIFO:
retval = fdctrl_read_data(fdctrl);
break;
case FD_REG_DIR:
retval = fdctrl_read_dir(fdctrl);
break;
default:
retval = (uint32_t)(-1);
break;
}
trace_fdc_ioport_read(reg, retval);
return retval;
}
void fdctrl_write(void *opaque, uint32_t reg, uint32_t value)
{
FDCtrl *fdctrl = opaque;
reg &= 7;
trace_fdc_ioport_write(reg, value);
switch (reg) {
case FD_REG_DOR:
fdctrl_write_dor(fdctrl, value);
break;
case FD_REG_TDR:
fdctrl_write_tape(fdctrl, value);
break;
case FD_REG_DSR:
fdctrl_write_rate(fdctrl, value);
break;
case FD_REG_FIFO:
fdctrl_write_data(fdctrl, value);
break;
case FD_REG_CCR:
fdctrl_write_ccr(fdctrl, value);
break;
default:
break;
}
}
static bool fdrive_media_changed_needed(void *opaque)
{
FDrive *drive = opaque;
return (drive->blk != NULL && drive->media_changed != 1);
}
static const VMStateDescription vmstate_fdrive_media_changed = {
.name = "fdrive/media_changed",
.version_id = 1,
.minimum_version_id = 1,
.needed = fdrive_media_changed_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(media_changed, FDrive),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_fdrive_media_rate = {
.name = "fdrive/media_rate",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(media_rate, FDrive),
VMSTATE_END_OF_LIST()
}
};
static bool fdrive_perpendicular_needed(void *opaque)
{
FDrive *drive = opaque;
return drive->perpendicular != 0;
}
static const VMStateDescription vmstate_fdrive_perpendicular = {
.name = "fdrive/perpendicular",
.version_id = 1,
.minimum_version_id = 1,
.needed = fdrive_perpendicular_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(perpendicular, FDrive),
VMSTATE_END_OF_LIST()
}
};
static int fdrive_post_load(void *opaque, int version_id)
{
fd_revalidate(opaque);
return 0;
}
static const VMStateDescription vmstate_fdrive = {
.name = "fdrive",
.version_id = 1,
.minimum_version_id = 1,
.post_load = fdrive_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(head, FDrive),
VMSTATE_UINT8(track, FDrive),
VMSTATE_UINT8(sect, FDrive),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_fdrive_media_changed,
&vmstate_fdrive_media_rate,
&vmstate_fdrive_perpendicular,
NULL
}
};
/*
* Reconstructs the phase from register values according to the logic that was
* implemented in qemu 2.3. This is the default value that is used if the phase
* subsection is not present on migration.
*
* Don't change this function to reflect newer qemu versions, it is part of
* the migration ABI.
*/
static int reconstruct_phase(FDCtrl *fdctrl)
{
if (fdctrl->msr & FD_MSR_NONDMA) {
return FD_PHASE_EXECUTION;
} else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
/* qemu 2.3 disabled RQM only during DMA transfers */
return FD_PHASE_EXECUTION;
} else if (fdctrl->msr & FD_MSR_DIO) {
return FD_PHASE_RESULT;
} else {
return FD_PHASE_COMMAND;
}
}
static int fdc_pre_save(void *opaque)
{
FDCtrl *s = opaque;
s->dor_vmstate = s->dor | GET_CUR_DRV(s);
return 0;
}
static int fdc_pre_load(void *opaque)
{
FDCtrl *s = opaque;
s->phase = FD_PHASE_RECONSTRUCT;
return 0;
}
static int fdc_post_load(void *opaque, int version_id)
{
FDCtrl *s = opaque;
SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
if (s->phase == FD_PHASE_RECONSTRUCT) {
s->phase = reconstruct_phase(s);
}
return 0;
}
static bool fdc_reset_sensei_needed(void *opaque)
{
FDCtrl *s = opaque;
return s->reset_sensei != 0;
}
static const VMStateDescription vmstate_fdc_reset_sensei = {
.name = "fdc/reset_sensei",
.version_id = 1,
.minimum_version_id = 1,
.needed = fdc_reset_sensei_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32(reset_sensei, FDCtrl),
VMSTATE_END_OF_LIST()
}
};
static bool fdc_result_timer_needed(void *opaque)
{
FDCtrl *s = opaque;
return timer_pending(s->result_timer);
}
static const VMStateDescription vmstate_fdc_result_timer = {
.name = "fdc/result_timer",
.version_id = 1,
.minimum_version_id = 1,
.needed = fdc_result_timer_needed,
.fields = (VMStateField[]) {
VMSTATE_TIMER_PTR(result_timer, FDCtrl),
VMSTATE_END_OF_LIST()
}
};
static bool fdc_phase_needed(void *opaque)
{
FDCtrl *fdctrl = opaque;
return reconstruct_phase(fdctrl) != fdctrl->phase;
}
static const VMStateDescription vmstate_fdc_phase = {
.name = "fdc/phase",
.version_id = 1,
.minimum_version_id = 1,
.needed = fdc_phase_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(phase, FDCtrl),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_fdc = {
.name = "fdc",
.version_id = 2,
.minimum_version_id = 2,
.pre_save = fdc_pre_save,
.pre_load = fdc_pre_load,
.post_load = fdc_post_load,
.fields = (VMStateField[]) {
/* Controller State */
VMSTATE_UINT8(sra, FDCtrl),
VMSTATE_UINT8(srb, FDCtrl),
VMSTATE_UINT8(dor_vmstate, FDCtrl),
VMSTATE_UINT8(tdr, FDCtrl),
VMSTATE_UINT8(dsr, FDCtrl),
VMSTATE_UINT8(msr, FDCtrl),
VMSTATE_UINT8(status0, FDCtrl),
VMSTATE_UINT8(status1, FDCtrl),
VMSTATE_UINT8(status2, FDCtrl),
/* Command FIFO */
VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
uint8_t),
VMSTATE_UINT32(data_pos, FDCtrl),
VMSTATE_UINT32(data_len, FDCtrl),
VMSTATE_UINT8(data_state, FDCtrl),
VMSTATE_UINT8(data_dir, FDCtrl),
VMSTATE_UINT8(eot, FDCtrl),
/* States kept only to be returned back */
VMSTATE_UINT8(timer0, FDCtrl),
VMSTATE_UINT8(timer1, FDCtrl),
VMSTATE_UINT8(precomp_trk, FDCtrl),
VMSTATE_UINT8(config, FDCtrl),
VMSTATE_UINT8(lock, FDCtrl),
VMSTATE_UINT8(pwrd, FDCtrl),
VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
vmstate_fdrive, FDrive),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_fdc_reset_sensei,
&vmstate_fdc_result_timer,
&vmstate_fdc_phase,
NULL
}
};
/* Change IRQ state */
static void fdctrl_reset_irq(FDCtrl *fdctrl)
{
fdctrl->status0 = 0;
if (!(fdctrl->sra & FD_SRA_INTPEND))
return;
FLOPPY_DPRINTF("Reset interrupt\n");
qemu_set_irq(fdctrl->irq, 0);
fdctrl->sra &= ~FD_SRA_INTPEND;
}
static void fdctrl_raise_irq(FDCtrl *fdctrl)
{
if (!(fdctrl->sra & FD_SRA_INTPEND)) {
qemu_set_irq(fdctrl->irq, 1);
fdctrl->sra |= FD_SRA_INTPEND;
}
fdctrl->reset_sensei = 0;
FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
}
/* Reset controller */
void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
{
int i;
FLOPPY_DPRINTF("reset controller\n");
fdctrl_reset_irq(fdctrl);
/* Initialise controller */
fdctrl->sra = 0;
fdctrl->srb = 0xc0;
if (!fdctrl->drives[1].blk) {
fdctrl->sra |= FD_SRA_nDRV2;
}
fdctrl->cur_drv = 0;
fdctrl->dor = FD_DOR_nRESET;
fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
fdctrl->msr = FD_MSR_RQM;
fdctrl->reset_sensei = 0;
timer_del(fdctrl->result_timer);
/* FIFO state */
fdctrl->data_pos = 0;
fdctrl->data_len = 0;
fdctrl->data_state = 0;
fdctrl->data_dir = FD_DIR_WRITE;
for (i = 0; i < MAX_FD; i++)
fd_recalibrate(&fdctrl->drives[i]);
fdctrl_to_command_phase(fdctrl);
if (do_irq) {
fdctrl->status0 |= FD_SR0_RDYCHG;
fdctrl_raise_irq(fdctrl);
fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
}
}
static inline FDrive *drv0(FDCtrl *fdctrl)
{
return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
}
static inline FDrive *drv1(FDCtrl *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
return &fdctrl->drives[1];
else
return &fdctrl->drives[0];
}
#if MAX_FD == 4
static inline FDrive *drv2(FDCtrl *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
return &fdctrl->drives[2];
else
return &fdctrl->drives[1];
}
static inline FDrive *drv3(FDCtrl *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
return &fdctrl->drives[3];
else
return &fdctrl->drives[2];
}
#endif
static FDrive *get_drv(FDCtrl *fdctrl, int unit)
{
switch (unit) {
case 0: return drv0(fdctrl);
case 1: return drv1(fdctrl);
#if MAX_FD == 4
case 2: return drv2(fdctrl);
case 3: return drv3(fdctrl);
#endif
default: return NULL;
}
}
static FDrive *get_cur_drv(FDCtrl *fdctrl)
{
FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv);
if (!cur_drv->blk) {
/*
* Kludge: empty drive line selected. Create an anonymous
* BlockBackend to avoid NULL deref with various BlockBackend
* API calls within this model (CVE-2021-20196).
* Due to the controller QOM model limitations, we don't
* attach the created to the controller device.
*/
cur_drv->blk = blk_create_empty_drive();
}
return cur_drv;
}
/* Status A register : 0x00 (read-only) */
static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
{
uint32_t retval = fdctrl->sra;
FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
return retval;
}
/* Status B register : 0x01 (read-only) */
static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
{
uint32_t retval = fdctrl->srb;
FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
return retval;
}
/* Digital output register : 0x02 */
static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
{
uint32_t retval = fdctrl->dor;
/* Selected drive */
retval |= fdctrl->cur_drv;
FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
{
FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
/* Motors */
if (value & FD_DOR_MOTEN0)
fdctrl->srb |= FD_SRB_MTR0;
else
fdctrl->srb &= ~FD_SRB_MTR0;
if (value & FD_DOR_MOTEN1)
fdctrl->srb |= FD_SRB_MTR1;
else
fdctrl->srb &= ~FD_SRB_MTR1;
/* Drive */
if (value & 1)
fdctrl->srb |= FD_SRB_DR0;
else
fdctrl->srb &= ~FD_SRB_DR0;
/* Reset */
if (!(value & FD_DOR_nRESET)) {
if (fdctrl->dor & FD_DOR_nRESET) {
FLOPPY_DPRINTF("controller enter RESET state\n");
}
} else {
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("controller out of RESET state\n");
fdctrl_reset(fdctrl, 1);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
}
}
/* Selected drive */
fdctrl->cur_drv = value & FD_DOR_SELMASK;
fdctrl->dor = value;
}
/* Tape drive register : 0x03 */
static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
{
uint32_t retval = fdctrl->tdr;
FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
/* Disk boot selection indicator */
fdctrl->tdr = value & FD_TDR_BOOTSEL;
/* Tape indicators: never allow */
}
/* Main status register : 0x04 (read) */
static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
{
uint32_t retval = fdctrl->msr;
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
fdctrl->dor |= FD_DOR_nRESET;
FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
return retval;
}
/* Data select rate register : 0x04 (write) */
static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
/* Reset: autoclear */
if (value & FD_DSR_SWRESET) {
fdctrl->dor &= ~FD_DOR_nRESET;
fdctrl_reset(fdctrl, 1);
fdctrl->dor |= FD_DOR_nRESET;
}
if (value & FD_DSR_PWRDOWN) {
fdctrl_reset(fdctrl, 1);
}
fdctrl->dsr = value;
}
/* Configuration control register: 0x07 (write) */
static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
/* Only the rate selection bits used in AT mode, and we
* store those in the DSR.
*/
fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
(value & FD_DSR_DRATEMASK);
}
static int fdctrl_media_changed(FDrive *drv)
{
return drv->media_changed;
}
/* Digital input register : 0x07 (read-only) */
static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
{
uint32_t retval = 0;
if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
retval |= FD_DIR_DSKCHG;
}
if (retval != 0) {
FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
}
return retval;
}
/* Clear the FIFO and update the state for receiving the next command */
static void fdctrl_to_command_phase(FDCtrl *fdctrl)
{
fdctrl->phase = FD_PHASE_COMMAND;
fdctrl->data_dir = FD_DIR_WRITE;
fdctrl->data_pos = 0;
fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
fdctrl->msr |= FD_MSR_RQM;
}
/* Update the state to allow the guest to read out the command status.
* @fifo_len is the number of result bytes to be read out. */
static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
{
fdctrl->phase = FD_PHASE_RESULT;
fdctrl->data_dir = FD_DIR_READ;
fdctrl->data_len = fifo_len;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
}
/* Set an error: unimplemented/unknown command */
static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
{
qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
fdctrl->fifo[0]);
fdctrl->fifo[0] = FD_SR0_INVCMD;
fdctrl_to_result_phase(fdctrl, 1);
}
/* Seek to next sector
* returns 0 when end of track reached (for DBL_SIDES on head 1)
* otherwise returns 1
*/
static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
{
FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track, cur_drv->sect,
fd_sector(cur_drv));
/* XXX: cur_drv->sect >= cur_drv->last_sect should be an
error in fact */
uint8_t new_head = cur_drv->head;
uint8_t new_track = cur_drv->track;
uint8_t new_sect = cur_drv->sect;
int ret = 1;
if (new_sect >= cur_drv->last_sect ||
new_sect == fdctrl->eot) {
new_sect = 1;
if (FD_MULTI_TRACK(fdctrl->data_state)) {
if (new_head == 0 &&
(cur_drv->flags & FDISK_DBL_SIDES) != 0) {
new_head = 1;
} else {
new_head = 0;
new_track++;
fdctrl->status0 |= FD_SR0_SEEK;
if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
ret = 0;
}
}
} else {
fdctrl->status0 |= FD_SR0_SEEK;
new_track++;
ret = 0;
}
if (ret == 1) {
FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
new_head, new_track, new_sect, fd_sector(cur_drv));
}
} else {
new_sect++;
}
fd_seek(cur_drv, new_head, new_track, new_sect, 1);
return ret;
}
/* Callback for transfer end (stop or abort) */
static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
uint8_t status1, uint8_t status2)
{
FDrive *cur_drv;
cur_drv = get_cur_drv(fdctrl);
fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
fdctrl->status0 |= GET_CUR_DRV(fdctrl);
if (cur_drv->head) {
fdctrl->status0 |= FD_SR0_HEAD;
}
fdctrl->status0 |= status0;
FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
status0, status1, status2, fdctrl->status0);
fdctrl->fifo[0] = fdctrl->status0;
fdctrl->fifo[1] = status1;
fdctrl->fifo[2] = status2;
fdctrl->fifo[3] = cur_drv->track;
fdctrl->fifo[4] = cur_drv->head;
fdctrl->fifo[5] = cur_drv->sect;
fdctrl->fifo[6] = FD_SECTOR_SC;
fdctrl->data_dir = FD_DIR_READ;
if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
}
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->msr &= ~FD_MSR_NONDMA;
fdctrl_to_result_phase(fdctrl, 7);
fdctrl_raise_irq(fdctrl);
}
/* Prepare a data transfer (either DMA or FIFO) */
static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv;
uint8_t kh, kt, ks;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[2];
kh = fdctrl->fifo[3];
ks = fdctrl->fifo[4];
FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
NUM_SIDES(cur_drv)));
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
fdctrl->status0 |= FD_SR0_SEEK;
break;
default:
break;
}
/* Check the data rate. If the programmed data rate does not match
* the currently inserted medium, the operation has to fail. */
if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
}
/* Set the FIFO state */
fdctrl->data_dir = direction;
fdctrl->data_pos = 0;
assert(fdctrl->msr & FD_MSR_CMDBUSY);
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
if (fdctrl->fifo[5] == 0) {
fdctrl->data_len = fdctrl->fifo[8];
} else {
int tmp;
fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
tmp = (fdctrl->fifo[6] - ks + 1);
if (tmp < 0) {
FLOPPY_DPRINTF("invalid EOT: %d\n", tmp);
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
}
if (fdctrl->fifo[0] & 0x80)
tmp += fdctrl->fifo[6];
fdctrl->data_len *= tmp;
}
fdctrl->eot = fdctrl->fifo[6];
if (fdctrl->dor & FD_DOR_DMAEN) {
/* DMA transfer is enabled. */
IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
direction, (128 << fdctrl->fifo[5]) *
(cur_drv->last_sect - ks + 1), fdctrl->data_len);
/* No access is allowed until DMA transfer has completed */
fdctrl->msr &= ~FD_MSR_RQM;
if (direction != FD_DIR_VERIFY) {
/*
* Now, we just have to wait for the DMA controller to
* recall us...
*/
k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
k->schedule(fdctrl->dma);
} else {
/* Start transfer */
fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
fdctrl->data_len);
}
return;
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
if (direction != FD_DIR_WRITE)
fdctrl->msr |= FD_MSR_DIO;
/* IO based transfer: calculate len */
fdctrl_raise_irq(fdctrl);
}
/* Prepare a transfer of deleted data */
static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
{
qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
/* We don't handle deleted data,
* so we don't return *ANYTHING*
*/
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
}
/* handlers for DMA transfers */
int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len)
{
FDCtrl *fdctrl;
FDrive *cur_drv;
int len, start_pos, rel_pos;
uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
IsaDmaClass *k;
fdctrl = opaque;
if (fdctrl->msr & FD_MSR_RQM) {
FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
return 0;
}
k = ISADMA_GET_CLASS(fdctrl->dma);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SNS;
if (dma_len > fdctrl->data_len)
dma_len = fdctrl->data_len;
if (cur_drv->blk == NULL) {
if (fdctrl->data_dir == FD_DIR_WRITE)
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
len = 0;
goto transfer_error;
}
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
len = dma_len - fdctrl->data_pos;
if (len + rel_pos > FD_SECTOR_LEN)
len = FD_SECTOR_LEN - rel_pos;
FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
"(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
fd_sector(cur_drv) * FD_SECTOR_LEN);
if (fdctrl->data_dir != FD_DIR_WRITE ||
len < FD_SECTOR_LEN || rel_pos != 0) {
/* READ & SCAN commands and realign to a sector for WRITE */
if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
fdctrl->fifo, 0) < 0) {
FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
switch (fdctrl->data_dir) {
case FD_DIR_READ:
/* READ commands */
k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
break;
case FD_DIR_WRITE:
/* WRITE commands */
if (cur_drv->ro) {
/* Handle readonly medium early, no need to do DMA, touch the
* LED or attempt any writes. A real floppy doesn't attempt
* to write to readonly media either. */
fdctrl_stop_transfer(fdctrl,
FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
0x00);
goto transfer_error;
}
k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
fdctrl->fifo, 0) < 0) {
FLOPPY_DPRINTF("error writing sector %d\n",
fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
goto transfer_error;
}
break;
case FD_DIR_VERIFY:
/* VERIFY commands */
break;
default:
/* SCAN commands */
{
uint8_t tmpbuf[FD_SECTOR_LEN];
int ret;
k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
len);
ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
if (ret == 0) {
status2 = FD_SR2_SEH;
goto end_transfer;
}
if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
(ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
status2 = 0x00;
goto end_transfer;
}
}
break;
}
fdctrl->data_pos += len;
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
if (rel_pos == 0) {
/* Seek to next sector */
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
break;
}
}
end_transfer:
len = fdctrl->data_pos - start_pos;
FLOPPY_DPRINTF("end transfer %d %d %d\n",
fdctrl->data_pos, len, fdctrl->data_len);
if (fdctrl->data_dir == FD_DIR_SCANE ||
fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SEH;
fdctrl->data_len -= len;
fdctrl_stop_transfer(fdctrl, status0, status1, status2);
transfer_error:
return len;
}
/* Data register : 0x05 */
static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
{
FDrive *cur_drv;
uint32_t retval = 0;
uint32_t pos;
cur_drv = get_cur_drv(fdctrl);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_DPRINTF("error: controller not ready for reading\n");
return 0;
}
/* If data_len spans multiple sectors, the current position in the FIFO
* wraps around while fdctrl->data_pos is the real position in the whole
* request. */
pos = fdctrl->data_pos;
pos %= FD_SECTOR_LEN;
switch (fdctrl->phase) {
case FD_PHASE_EXECUTION:
assert(fdctrl->msr & FD_MSR_NONDMA);
if (pos == 0) {
if (fdctrl->data_pos != 0)
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return 0;
}
if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
fdctrl->fifo, 0)
< 0) {
FLOPPY_DPRINTF("error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->msr &= ~FD_MSR_RQM;
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
break;
case FD_PHASE_RESULT:
assert(!(fdctrl->msr & FD_MSR_NONDMA));
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->msr &= ~FD_MSR_RQM;
fdctrl_to_command_phase(fdctrl);
fdctrl_reset_irq(fdctrl);
}
break;
case FD_PHASE_COMMAND:
default:
abort();
}
retval = fdctrl->fifo[pos];
FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_format_sector(FDCtrl *fdctrl)
{
FDrive *cur_drv;
uint8_t kh, kt, ks;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[6];
kh = fdctrl->fifo[7];
ks = fdctrl->fifo[8];
FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
NUM_SIDES(cur_drv)));
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
fdctrl->status0 |= FD_SR0_SEEK;
break;
default:
break;
}
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
if (cur_drv->blk == NULL ||
blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
fdctrl->fifo, 0) < 0) {
FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
} else {
if (cur_drv->sect == cur_drv->last_sect) {
fdctrl->data_state &= ~FD_STATE_FORMAT;
/* Last sector done */
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
/* More to do */
fdctrl->data_pos = 0;
fdctrl->data_len = 4;
}
}
}
static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
{
fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
fdctrl->fifo[0] = fdctrl->lock << 4;
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
fdctrl->fifo[0] = drv0(fdctrl)->track;
fdctrl->fifo[1] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[2] = drv2(fdctrl)->track;
fdctrl->fifo[3] = drv3(fdctrl)->track;
#else
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
#endif
/* timers */
fdctrl->fifo[4] = fdctrl->timer0;
fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
fdctrl->fifo[6] = cur_drv->last_sect;
fdctrl->fifo[7] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[8] = fdctrl->config;
fdctrl->fifo[9] = fdctrl->precomp_trk;
fdctrl_to_result_phase(fdctrl, 10);
}
static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
{
/* Controller's version */
fdctrl->fifo[0] = fdctrl->version;
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
{
fdctrl->fifo[0] = 0x41; /* Stepping 1 */
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
drv0(fdctrl)->track = fdctrl->fifo[3];
drv1(fdctrl)->track = fdctrl->fifo[4];
#if MAX_FD == 4
drv2(fdctrl)->track = fdctrl->fifo[5];
drv3(fdctrl)->track = fdctrl->fifo[6];
#endif
/* timers */
fdctrl->timer0 = fdctrl->fifo[7];
fdctrl->timer1 = fdctrl->fifo[8];
cur_drv->last_sect = fdctrl->fifo[9];
fdctrl->lock = fdctrl->fifo[10] >> 7;
cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
fdctrl->config = fdctrl->fifo[11];
fdctrl->precomp_trk = fdctrl->fifo[12];
fdctrl->pwrd = fdctrl->fifo[13];
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv = get_cur_drv(fdctrl);
fdctrl->fifo[0] = 0;
fdctrl->fifo[1] = 0;
/* Drives position */
fdctrl->fifo[2] = drv0(fdctrl)->track;
fdctrl->fifo[3] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[4] = drv2(fdctrl)->track;
fdctrl->fifo[5] = drv3(fdctrl)->track;
#else
fdctrl->fifo[4] = 0;
fdctrl->fifo[5] = 0;
#endif
/* timers */
fdctrl->fifo[6] = fdctrl->timer0;
fdctrl->fifo[7] = fdctrl->timer1;
fdctrl->fifo[8] = cur_drv->last_sect;
fdctrl->fifo[9] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[10] = fdctrl->config;
fdctrl->fifo[11] = fdctrl->precomp_trk;
fdctrl->fifo[12] = fdctrl->pwrd;
fdctrl->fifo[13] = 0;
fdctrl->fifo[14] = 0;
fdctrl_to_result_phase(fdctrl, 15);
}
static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv = get_cur_drv(fdctrl);
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND / 50));
}
static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl->data_state |= FD_STATE_FORMAT;
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
cur_drv->bps =
fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
#if 0
cur_drv->last_sect =
cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
fdctrl->fifo[3] / 2;
#else
cur_drv->last_sect = fdctrl->fifo[3];
#endif
/* TODO: implement format using DMA expected by the Bochs BIOS
* and Linux fdformat (read 3 bytes per sector via DMA and fill
* the sector with the specified fill byte
*/
fdctrl->data_state &= ~FD_STATE_FORMAT;
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
{
fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
fdctrl->timer1 = fdctrl->fifo[2] >> 1;
if (fdctrl->fifo[2] & 1)
fdctrl->dor &= ~FD_DOR_DMAEN;
else
fdctrl->dor |= FD_DOR_DMAEN;
/* No result back */
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
/* 1 Byte status back */
fdctrl->fifo[0] = (cur_drv->ro << 6) |
(cur_drv->track == 0 ? 0x10 : 0x00) |
(cur_drv->head << 2) |
GET_CUR_DRV(fdctrl) |
0x28;
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fd_recalibrate(cur_drv);
fdctrl_to_command_phase(fdctrl);
/* Raise Interrupt */
fdctrl->status0 |= FD_SR0_SEEK;
fdctrl_raise_irq(fdctrl);
}
static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->reset_sensei > 0) {
fdctrl->fifo[0] =
FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
fdctrl->reset_sensei--;
} else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
fdctrl->fifo[0] = FD_SR0_INVCMD;
fdctrl_to_result_phase(fdctrl, 1);
return;
} else {
fdctrl->fifo[0] =
(fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
| GET_CUR_DRV(fdctrl);
}
fdctrl->fifo[1] = cur_drv->track;
fdctrl_to_result_phase(fdctrl, 2);
fdctrl_reset_irq(fdctrl);
fdctrl->status0 = FD_SR0_RDYCHG;
}
static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl_to_command_phase(fdctrl);
/* The seek command just sends step pulses to the drive and doesn't care if
* there is a medium inserted of if it's banging the head against the drive.
*/
fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
/* Raise Interrupt */
fdctrl->status0 |= FD_SR0_SEEK;
fdctrl_raise_irq(fdctrl);
}
static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[1] & 0x80)
cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
/* No result back */
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
{
fdctrl->config = fdctrl->fifo[2];
fdctrl->precomp_trk = fdctrl->fifo[3];
/* No result back */
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
{
fdctrl->pwrd = fdctrl->fifo[1];
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl_to_result_phase(fdctrl, 1);
}
static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
{
/* No result back */
fdctrl_to_command_phase(fdctrl);
}
static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv = get_cur_drv(fdctrl);
uint32_t pos;
pos = fdctrl->data_pos - 1;
pos %= FD_SECTOR_LEN;
if (fdctrl->fifo[pos] & 0x80) {
/* Command parameters done */
if (fdctrl->fifo[pos] & 0x40) {
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
fdctrl_to_result_phase(fdctrl, 4);
} else {
fdctrl_to_command_phase(fdctrl);
}
} else if (fdctrl->data_len > 7) {
/* ERROR */
fdctrl->fifo[0] = 0x80 |
(cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl_to_result_phase(fdctrl, 1);
}
}
static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
cur_drv->sect, 1);
} else {
fd_seek(cur_drv, cur_drv->head,
cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
}
fdctrl_to_command_phase(fdctrl);
/* Raise Interrupt */
fdctrl->status0 |= FD_SR0_SEEK;
fdctrl_raise_irq(fdctrl);
}
static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
{
FDrive *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] > cur_drv->track) {
fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
} else {
fd_seek(cur_drv, cur_drv->head,
cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
}
fdctrl_to_command_phase(fdctrl);
/* Raise Interrupt */
fdctrl->status0 |= FD_SR0_SEEK;
fdctrl_raise_irq(fdctrl);
}
/*
* Handlers for the execution phase of each command
*/
typedef struct FDCtrlCommand {
uint8_t value;
uint8_t mask;
const char* name;
int parameters;
void (*handler)(FDCtrl *fdctrl, int direction);
int direction;
} FDCtrlCommand;
static const FDCtrlCommand handlers[] = {
{ FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
{ FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
{ FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
{ FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
{ FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
{ FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
{ FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
{ FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
{ FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
{ FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
{ FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
{ FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
{ FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
{ FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
{ FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
{ FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
{ FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
{ FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
{ FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
{ FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
{ FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
{ FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
{ FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
{ FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
{ FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
{ FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
{ FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
{ FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
{ FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
{ 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
};
/* Associate command to an index in the 'handlers' array */
static uint8_t command_to_handler[256];
static const FDCtrlCommand *get_command(uint8_t cmd)
{
int idx;
idx = command_to_handler[cmd];
FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
return &handlers[idx];
}
static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
{
FDrive *cur_drv;
const FDCtrlCommand *cmd;
uint32_t pos;
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_DPRINTF("error: controller not ready for writing\n");
return;
}
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
/* If data_len spans multiple sectors, the current position in the FIFO
* wraps around while fdctrl->data_pos is the real position in the whole
* request. */
pos = fdctrl->data_pos++;
pos %= FD_SECTOR_LEN;
fdctrl->fifo[pos] = value;
if (fdctrl->data_pos == fdctrl->data_len) {
fdctrl->msr &= ~FD_MSR_RQM;
}
switch (fdctrl->phase) {
case FD_PHASE_EXECUTION:
/* For DMA requests, RQM should be cleared during execution phase, so
* we would have errored out above. */
assert(fdctrl->msr & FD_MSR_NONDMA);
/* FIFO data write */
if (pos == FD_SECTOR_LEN - 1 ||
fdctrl->data_pos == fdctrl->data_len) {
cur_drv = get_cur_drv(fdctrl);
if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
fdctrl->fifo, 0) < 0) {
FLOPPY_DPRINTF("error writing sector %d\n",
fd_sector(cur_drv));
break;
}
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
break;
}
}
/* Switch to result phase when done with the transfer */
if (fdctrl->data_pos == fdctrl->data_len) {
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
break;
case FD_PHASE_COMMAND:
assert(!(fdctrl->msr & FD_MSR_NONDMA));
assert(fdctrl->data_pos < FD_SECTOR_LEN);
if (pos == 0) {
/* The first byte specifies the command. Now we start reading
* as many parameters as this command requires. */
cmd = get_command(value);
fdctrl->data_len = cmd->parameters + 1;
if (cmd->parameters) {
fdctrl->msr |= FD_MSR_RQM;
}
fdctrl->msr |= FD_MSR_CMDBUSY;
}
if (fdctrl->data_pos == fdctrl->data_len) {
/* We have all parameters now, execute the command */
fdctrl->phase = FD_PHASE_EXECUTION;
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
break;
}
cmd = get_command(fdctrl->fifo[0]);
FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
cmd->handler(fdctrl, cmd->direction);
}
break;
case FD_PHASE_RESULT:
default:
abort();
}
}
static void fdctrl_result_timer(void *opaque)
{
FDCtrl *fdctrl = opaque;
FDrive *cur_drv = get_cur_drv(fdctrl);
/* Pretend we are spinning.
* This is needed for Coherent, which uses READ ID to check for
* sector interleaving.
*/
if (cur_drv->last_sect != 0) {
cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
}
/* READ_ID can't automatically succeed! */
if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
} else {
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
}
/* Init functions */
void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
{
DeviceState *dev;
int i;
for (i = 0; i < MAX_FD; i++) {
if (fds[i]) {
dev = qdev_new("floppy");
qdev_prop_set_uint32(dev, "unit", i);
qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
&error_fatal);
qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
}
}
}
void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp)
{
int i, j;
FDrive *drive;
static int command_tables_inited = 0;
if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
return;
}
/* Fill 'command_to_handler' lookup table */
if (!command_tables_inited) {
command_tables_inited = 1;
for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
for (j = 0; j < sizeof(command_to_handler); j++) {
if ((j & handlers[i].mask) == handlers[i].value) {
command_to_handler[j] = i;
}
}
}
}
FLOPPY_DPRINTF("init controller\n");
fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
fdctrl->fifo_size = 512;
fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
fdctrl_result_timer, fdctrl);
fdctrl->version = 0x90; /* Intel 82078 controller */
fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
fdctrl->num_floppies = MAX_FD;
floppy_bus_create(fdctrl, &fdctrl->bus, dev);
for (i = 0; i < MAX_FD; i++) {
drive = &fdctrl->drives[i];
drive->fdctrl = fdctrl;
fd_init(drive);
fd_revalidate(drive);
}
}
static void fdc_register_types(void)
{
type_register_static(&floppy_bus_info);
type_register_static(&floppy_drive_info);
}
type_init(fdc_register_types)