blob: 97056d00a272f7362c70ddcd7e97aec56769e2d7 [file] [log] [blame]
/*
* MIPS emulation load/store helpers for QEMU.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/memop.h"
#include "internal.h"
#ifndef CONFIG_USER_ONLY
#define HELPER_LD_ATOMIC(name, insn, almask, do_cast) \
target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
{ \
if (arg & almask) { \
if (!(env->hflags & MIPS_HFLAG_DM)) { \
env->CP0_BadVAddr = arg; \
} \
do_raise_exception(env, EXCP_AdEL, GETPC()); \
} \
env->CP0_LLAddr = cpu_mips_translate_address(env, arg, MMU_DATA_LOAD, \
GETPC()); \
env->lladdr = arg; \
env->llval = do_cast cpu_##insn##_mmuidx_ra(env, arg, mem_idx, GETPC()); \
return env->llval; \
}
HELPER_LD_ATOMIC(ll, ldl, 0x3, (target_long)(int32_t))
#ifdef TARGET_MIPS64
HELPER_LD_ATOMIC(lld, ldq, 0x7, (target_ulong))
#endif
#undef HELPER_LD_ATOMIC
#endif /* !CONFIG_USER_ONLY */
static inline bool cpu_is_bigendian(CPUMIPSState *env)
{
return extract32(env->CP0_Config0, CP0C0_BE, 1);
}
static inline target_ulong get_lmask(CPUMIPSState *env,
target_ulong value, unsigned bits)
{
unsigned mask = (bits / BITS_PER_BYTE) - 1;
value &= mask;
if (!cpu_is_bigendian(env)) {
value ^= mask;
}
return value;
}
void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
target_ulong lmask = get_lmask(env, arg2, 32);
int dir = cpu_is_bigendian(env) ? 1 : -1;
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
if (lmask <= 2) {
cpu_stb_mmuidx_ra(env, arg2 + 1 * dir, (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (lmask <= 1) {
cpu_stb_mmuidx_ra(env, arg2 + 2 * dir, (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (lmask == 0) {
cpu_stb_mmuidx_ra(env, arg2 + 3 * dir, (uint8_t)arg1,
mem_idx, GETPC());
}
}
void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
target_ulong lmask = get_lmask(env, arg2, 32);
int dir = cpu_is_bigendian(env) ? 1 : -1;
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
if (lmask >= 1) {
cpu_stb_mmuidx_ra(env, arg2 - 1 * dir, (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (lmask >= 2) {
cpu_stb_mmuidx_ra(env, arg2 - 2 * dir, (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (lmask == 3) {
cpu_stb_mmuidx_ra(env, arg2 - 3 * dir, (uint8_t)(arg1 >> 24),
mem_idx, GETPC());
}
}
#if defined(TARGET_MIPS64)
/*
* "half" load and stores. We must do the memory access inline,
* or fault handling won't work.
*/
void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
target_ulong lmask = get_lmask(env, arg2, 64);
int dir = cpu_is_bigendian(env) ? 1 : -1;
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
if (lmask <= 6) {
cpu_stb_mmuidx_ra(env, arg2 + 1 * dir, (uint8_t)(arg1 >> 48),
mem_idx, GETPC());
}
if (lmask <= 5) {
cpu_stb_mmuidx_ra(env, arg2 + 2 * dir, (uint8_t)(arg1 >> 40),
mem_idx, GETPC());
}
if (lmask <= 4) {
cpu_stb_mmuidx_ra(env, arg2 + 3 * dir, (uint8_t)(arg1 >> 32),
mem_idx, GETPC());
}
if (lmask <= 3) {
cpu_stb_mmuidx_ra(env, arg2 + 4 * dir, (uint8_t)(arg1 >> 24),
mem_idx, GETPC());
}
if (lmask <= 2) {
cpu_stb_mmuidx_ra(env, arg2 + 5 * dir, (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (lmask <= 1) {
cpu_stb_mmuidx_ra(env, arg2 + 6 * dir, (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (lmask <= 0) {
cpu_stb_mmuidx_ra(env, arg2 + 7 * dir, (uint8_t)arg1,
mem_idx, GETPC());
}
}
void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
target_ulong lmask = get_lmask(env, arg2, 64);
int dir = cpu_is_bigendian(env) ? 1 : -1;
cpu_stb_mmuidx_ra(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
if (lmask >= 1) {
cpu_stb_mmuidx_ra(env, arg2 - 1 * dir, (uint8_t)(arg1 >> 8),
mem_idx, GETPC());
}
if (lmask >= 2) {
cpu_stb_mmuidx_ra(env, arg2 - 2 * dir, (uint8_t)(arg1 >> 16),
mem_idx, GETPC());
}
if (lmask >= 3) {
cpu_stb_mmuidx_ra(env, arg2 - 3 * dir, (uint8_t)(arg1 >> 24),
mem_idx, GETPC());
}
if (lmask >= 4) {
cpu_stb_mmuidx_ra(env, arg2 - 4 * dir, (uint8_t)(arg1 >> 32),
mem_idx, GETPC());
}
if (lmask >= 5) {
cpu_stb_mmuidx_ra(env, arg2 - 5 * dir, (uint8_t)(arg1 >> 40),
mem_idx, GETPC());
}
if (lmask >= 6) {
cpu_stb_mmuidx_ra(env, arg2 - 6 * dir, (uint8_t)(arg1 >> 48),
mem_idx, GETPC());
}
if (lmask == 7) {
cpu_stb_mmuidx_ra(env, arg2 - 7 * dir, (uint8_t)(arg1 >> 56),
mem_idx, GETPC());
}
}
#endif /* TARGET_MIPS64 */
static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] =
(target_long)cpu_ldl_mmuidx_ra(env, addr, mem_idx, GETPC());
addr += 4;
}
}
if (do_r31) {
env->active_tc.gpr[31] =
(target_long)cpu_ldl_mmuidx_ra(env, addr, mem_idx, GETPC());
}
}
void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
cpu_stl_mmuidx_ra(env, addr, env->active_tc.gpr[multiple_regs[i]],
mem_idx, GETPC());
addr += 4;
}
}
if (do_r31) {
cpu_stl_mmuidx_ra(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
}
}
#if defined(TARGET_MIPS64)
void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] =
cpu_ldq_mmuidx_ra(env, addr, mem_idx, GETPC());
addr += 8;
}
}
if (do_r31) {
env->active_tc.gpr[31] =
cpu_ldq_mmuidx_ra(env, addr, mem_idx, GETPC());
}
}
void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
cpu_stq_mmuidx_ra(env, addr, env->active_tc.gpr[multiple_regs[i]],
mem_idx, GETPC());
addr += 8;
}
}
if (do_r31) {
cpu_stq_mmuidx_ra(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
}
}
#endif /* TARGET_MIPS64 */