| /* |
| * Helpers for emulation of FPU-related MIPS instructions. |
| * |
| * Copyright (C) 2004-2005 Jocelyn Mayer |
| * Copyright (C) 2020 Wave Computing, Inc. |
| * Copyright (C) 2020 Aleksandar Markovic <amarkovic@wavecomp.com> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internal.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "fpu/softfloat.h" |
| #include "fpu_helper.h" |
| |
| |
| /* Complex FPU operations which may need stack space. */ |
| |
| #define FLOAT_TWO32 make_float32(1 << 30) |
| #define FLOAT_TWO64 make_float64(1ULL << 62) |
| |
| #define FP_TO_INT32_OVERFLOW 0x7fffffff |
| #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL |
| |
| target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg) |
| { |
| target_ulong arg1 = 0; |
| |
| switch (reg) { |
| case 0: |
| arg1 = (int32_t)env->active_fpu.fcr0; |
| break; |
| case 1: |
| /* UFR Support - Read Status FR */ |
| if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) { |
| if (env->CP0_Config5 & (1 << CP0C5_UFR)) { |
| arg1 = (int32_t) |
| ((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR); |
| } else { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| } |
| break; |
| case 5: |
| /* FRE Support - read Config5.FRE bit */ |
| if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { |
| if (env->CP0_Config5 & (1 << CP0C5_UFE)) { |
| arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1; |
| } else { |
| helper_raise_exception(env, EXCP_RI); |
| } |
| } |
| break; |
| case 25: |
| arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | |
| ((env->active_fpu.fcr31 >> 23) & 0x1); |
| break; |
| case 26: |
| arg1 = env->active_fpu.fcr31 & 0x0003f07c; |
| break; |
| case 28: |
| arg1 = (env->active_fpu.fcr31 & 0x00000f83) | |
| ((env->active_fpu.fcr31 >> 22) & 0x4); |
| break; |
| default: |
| arg1 = (int32_t)env->active_fpu.fcr31; |
| break; |
| } |
| |
| return arg1; |
| } |
| |
| void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt) |
| { |
| switch (fs) { |
| case 1: |
| /* UFR Alias - Reset Status FR */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFR)) { |
| env->CP0_Status &= ~(1 << CP0St_FR); |
| compute_hflags(env); |
| } else { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| break; |
| case 4: |
| /* UNFR Alias - Set Status FR */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFR)) { |
| env->CP0_Status |= (1 << CP0St_FR); |
| compute_hflags(env); |
| } else { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| break; |
| case 5: |
| /* FRE Support - clear Config5.FRE bit */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFE)) { |
| env->CP0_Config5 &= ~(1 << CP0C5_FRE); |
| compute_hflags(env); |
| } else { |
| helper_raise_exception(env, EXCP_RI); |
| } |
| break; |
| case 6: |
| /* FRE Support - set Config5.FRE bit */ |
| if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) { |
| return; |
| } |
| if (env->CP0_Config5 & (1 << CP0C5_UFE)) { |
| env->CP0_Config5 |= (1 << CP0C5_FRE); |
| compute_hflags(env); |
| } else { |
| helper_raise_exception(env, EXCP_RI); |
| } |
| break; |
| case 25: |
| if ((env->insn_flags & ISA_MIPS_R6) || (arg1 & 0xffffff00)) { |
| return; |
| } |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | |
| ((arg1 & 0xfe) << 24) | |
| ((arg1 & 0x1) << 23); |
| break; |
| case 26: |
| if (arg1 & 0x007c0000) { |
| return; |
| } |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | |
| (arg1 & 0x0003f07c); |
| break; |
| case 28: |
| if (arg1 & 0x007c0000) { |
| return; |
| } |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | |
| (arg1 & 0x00000f83) | |
| ((arg1 & 0x4) << 22); |
| break; |
| case 31: |
| env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) | |
| (env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask)); |
| break; |
| default: |
| if (env->insn_flags & ISA_MIPS_R6) { |
| do_raise_exception(env, EXCP_RI, GETPC()); |
| } |
| return; |
| } |
| restore_fp_status(env); |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & |
| GET_FP_CAUSE(env->active_fpu.fcr31)) { |
| do_raise_exception(env, EXCP_FPE, GETPC()); |
| } |
| } |
| |
| static inline int ieee_to_mips_xcpt(int ieee_xcpt) |
| { |
| int mips_xcpt = 0; |
| |
| if (ieee_xcpt & float_flag_invalid) { |
| mips_xcpt |= FP_INVALID; |
| } |
| if (ieee_xcpt & float_flag_overflow) { |
| mips_xcpt |= FP_OVERFLOW; |
| } |
| if (ieee_xcpt & float_flag_underflow) { |
| mips_xcpt |= FP_UNDERFLOW; |
| } |
| if (ieee_xcpt & float_flag_divbyzero) { |
| mips_xcpt |= FP_DIV0; |
| } |
| if (ieee_xcpt & float_flag_inexact) { |
| mips_xcpt |= FP_INEXACT; |
| } |
| |
| return mips_xcpt; |
| } |
| |
| static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc) |
| { |
| int ieee_exception_flags = get_float_exception_flags( |
| &env->active_fpu.fp_status); |
| int mips_exception_flags = 0; |
| |
| if (ieee_exception_flags) { |
| mips_exception_flags = ieee_to_mips_xcpt(ieee_exception_flags); |
| } |
| |
| SET_FP_CAUSE(env->active_fpu.fcr31, mips_exception_flags); |
| |
| if (mips_exception_flags) { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| |
| if (GET_FP_ENABLE(env->active_fpu.fcr31) & mips_exception_flags) { |
| do_raise_exception(env, EXCP_FPE, pc); |
| } else { |
| UPDATE_FP_FLAGS(env->active_fpu.fcr31, mips_exception_flags); |
| } |
| } |
| } |
| |
| /* |
| * Float support. |
| * Single precition routines have a "s" suffix, double precision a |
| * "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", |
| * paired single lower "pl", paired single upper "pu". |
| */ |
| |
| /* unary operations, modifying fp status */ |
| uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt0; |
| } |
| |
| uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| uint32_t wth2; |
| int excp, excph; |
| |
| wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| excp = get_float_exception_flags(&env->active_fpu.fp_status); |
| if (excp & (float_flag_overflow | float_flag_invalid)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); |
| excph = get_float_exception_flags(&env->active_fpu.fp_status); |
| if (excph & (float_flag_overflow | float_flag_invalid)) { |
| wth2 = FP_TO_INT32_OVERFLOW; |
| } |
| |
| set_float_exception_flags(excp | excph, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| |
| return ((uint64_t)wth2 << 32) | wt2; |
| } |
| |
| uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0) |
| { |
| uint32_t fst2; |
| |
| fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0) |
| { |
| uint32_t fst2; |
| |
| fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = wt0; |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0) |
| { |
| uint32_t wt2; |
| |
| wt2 = wth0; |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64_round_to_zero(fdt0, |
| &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| dt2 = FP_TO_INT64_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & (float_flag_invalid | float_flag_overflow)) { |
| wt2 = FP_TO_INT32_OVERFLOW; |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, |
| &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| dt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float64_is_any_nan(fdt0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| restore_rounding_mode(env); |
| if (get_float_exception_flags(&env->active_fpu.fp_status) |
| & float_flag_invalid) { |
| if (float32_is_any_nan(fst0)) { |
| wt2 = 0; |
| } |
| } |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| /* unary operations, not modifying fp status */ |
| |
| uint64_t helper_float_abs_d(uint64_t fdt0) |
| { |
| return float64_abs(fdt0); |
| } |
| |
| uint32_t helper_float_abs_s(uint32_t fst0) |
| { |
| return float32_abs(fst0); |
| } |
| |
| uint64_t helper_float_abs_ps(uint64_t fdt0) |
| { |
| uint32_t wt0; |
| uint32_t wth0; |
| |
| wt0 = float32_abs(fdt0 & 0XFFFFFFFF); |
| wth0 = float32_abs(fdt0 >> 32); |
| return ((uint64_t)wth0 << 32) | wt0; |
| } |
| |
| uint64_t helper_float_chs_d(uint64_t fdt0) |
| { |
| return float64_chs(fdt0); |
| } |
| |
| uint32_t helper_float_chs_s(uint32_t fst0) |
| { |
| return float32_chs(fst0); |
| } |
| |
| uint64_t helper_float_chs_ps(uint64_t fdt0) |
| { |
| uint32_t wt0; |
| uint32_t wth0; |
| |
| wt0 = float32_chs(fdt0 & 0XFFFFFFFF); |
| wth0 = float32_chs(fdt0 >> 32); |
| return ((uint64_t)wth0 << 32) | wt0; |
| } |
| |
| /* MIPS specific unary operations */ |
| uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t fstl2; |
| uint32_t fsth2; |
| |
| fstl2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, |
| &env->active_fpu.fp_status); |
| fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fstl2; |
| } |
| |
| uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0) |
| { |
| uint32_t fstl2; |
| uint32_t fsth2; |
| |
| fstl2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); |
| fstl2 = float32_div(float32_one, fstl2, &env->active_fpu.fp_status); |
| fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fstl2; |
| } |
| |
| uint64_t helper_float_rint_d(CPUMIPSState *env, uint64_t fs) |
| { |
| uint64_t fdret; |
| |
| fdret = float64_round_to_int(fs, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint32_t helper_float_rint_s(CPUMIPSState *env, uint32_t fs) |
| { |
| uint32_t fdret; |
| |
| fdret = float32_round_to_int(fs, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| #define FLOAT_CLASS_SIGNALING_NAN 0x001 |
| #define FLOAT_CLASS_QUIET_NAN 0x002 |
| #define FLOAT_CLASS_NEGATIVE_INFINITY 0x004 |
| #define FLOAT_CLASS_NEGATIVE_NORMAL 0x008 |
| #define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010 |
| #define FLOAT_CLASS_NEGATIVE_ZERO 0x020 |
| #define FLOAT_CLASS_POSITIVE_INFINITY 0x040 |
| #define FLOAT_CLASS_POSITIVE_NORMAL 0x080 |
| #define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100 |
| #define FLOAT_CLASS_POSITIVE_ZERO 0x200 |
| |
| uint64_t float_class_d(uint64_t arg, float_status *status) |
| { |
| if (float64_is_signaling_nan(arg, status)) { |
| return FLOAT_CLASS_SIGNALING_NAN; |
| } else if (float64_is_quiet_nan(arg, status)) { |
| return FLOAT_CLASS_QUIET_NAN; |
| } else if (float64_is_neg(arg)) { |
| if (float64_is_infinity(arg)) { |
| return FLOAT_CLASS_NEGATIVE_INFINITY; |
| } else if (float64_is_zero(arg)) { |
| return FLOAT_CLASS_NEGATIVE_ZERO; |
| } else if (float64_is_zero_or_denormal(arg)) { |
| return FLOAT_CLASS_NEGATIVE_SUBNORMAL; |
| } else { |
| return FLOAT_CLASS_NEGATIVE_NORMAL; |
| } |
| } else { |
| if (float64_is_infinity(arg)) { |
| return FLOAT_CLASS_POSITIVE_INFINITY; |
| } else if (float64_is_zero(arg)) { |
| return FLOAT_CLASS_POSITIVE_ZERO; |
| } else if (float64_is_zero_or_denormal(arg)) { |
| return FLOAT_CLASS_POSITIVE_SUBNORMAL; |
| } else { |
| return FLOAT_CLASS_POSITIVE_NORMAL; |
| } |
| } |
| } |
| |
| uint64_t helper_float_class_d(CPUMIPSState *env, uint64_t arg) |
| { |
| return float_class_d(arg, &env->active_fpu.fp_status); |
| } |
| |
| uint32_t float_class_s(uint32_t arg, float_status *status) |
| { |
| if (float32_is_signaling_nan(arg, status)) { |
| return FLOAT_CLASS_SIGNALING_NAN; |
| } else if (float32_is_quiet_nan(arg, status)) { |
| return FLOAT_CLASS_QUIET_NAN; |
| } else if (float32_is_neg(arg)) { |
| if (float32_is_infinity(arg)) { |
| return FLOAT_CLASS_NEGATIVE_INFINITY; |
| } else if (float32_is_zero(arg)) { |
| return FLOAT_CLASS_NEGATIVE_ZERO; |
| } else if (float32_is_zero_or_denormal(arg)) { |
| return FLOAT_CLASS_NEGATIVE_SUBNORMAL; |
| } else { |
| return FLOAT_CLASS_NEGATIVE_NORMAL; |
| } |
| } else { |
| if (float32_is_infinity(arg)) { |
| return FLOAT_CLASS_POSITIVE_INFINITY; |
| } else if (float32_is_zero(arg)) { |
| return FLOAT_CLASS_POSITIVE_ZERO; |
| } else if (float32_is_zero_or_denormal(arg)) { |
| return FLOAT_CLASS_POSITIVE_SUBNORMAL; |
| } else { |
| return FLOAT_CLASS_POSITIVE_NORMAL; |
| } |
| } |
| } |
| |
| uint32_t helper_float_class_s(CPUMIPSState *env, uint32_t arg) |
| { |
| return float_class_s(arg, &env->active_fpu.fp_status); |
| } |
| |
| /* binary operations */ |
| |
| uint64_t helper_float_add_d(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_add(fdt0, fdt1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_add_s(CPUMIPSState *env, |
| uint32_t fst0, uint32_t fst1) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_add(fst0, fst1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_add_ps(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t wtl2; |
| uint32_t wth2; |
| |
| wtl2 = float32_add(fstl0, fstl1, &env->active_fpu.fp_status); |
| wth2 = float32_add(fsth0, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)wth2 << 32) | wtl2; |
| } |
| |
| uint64_t helper_float_sub_d(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_sub(fdt0, fdt1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_sub_s(CPUMIPSState *env, |
| uint32_t fst0, uint32_t fst1) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_sub(fst0, fst1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_sub_ps(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t wtl2; |
| uint32_t wth2; |
| |
| wtl2 = float32_sub(fstl0, fstl1, &env->active_fpu.fp_status); |
| wth2 = float32_sub(fsth0, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)wth2 << 32) | wtl2; |
| } |
| |
| uint64_t helper_float_mul_d(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_mul(fdt0, fdt1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_mul_s(CPUMIPSState *env, |
| uint32_t fst0, uint32_t fst1) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_mul_ps(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t wtl2; |
| uint32_t wth2; |
| |
| wtl2 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); |
| wth2 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)wth2 << 32) | wtl2; |
| } |
| |
| uint64_t helper_float_div_d(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_div(fdt0, fdt1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return dt2; |
| } |
| |
| uint32_t helper_float_div_s(CPUMIPSState *env, |
| uint32_t fst0, uint32_t fst1) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_div(fst0, fst1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return wt2; |
| } |
| |
| uint64_t helper_float_div_ps(CPUMIPSState *env, |
| uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t wtl2; |
| uint32_t wth2; |
| |
| wtl2 = float32_div(fstl0, fstl1, &env->active_fpu.fp_status); |
| wth2 = float32_div(fsth0, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)wth2 << 32) | wtl2; |
| } |
| |
| |
| /* MIPS specific binary operations */ |
| uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_sub(fdt2, float64_one, |
| &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) |
| { |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_sub(fst2, float32_one, |
| &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fstl2 = float32_mul(fstl0, fstl2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fstl2 = float32_chs(float32_sub(fstl2, float32_one, |
| &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_sub(fsth2, float32_one, |
| &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fstl2; |
| } |
| |
| uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, |
| &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fdt2; |
| } |
| |
| uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2) |
| { |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, |
| &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return fst2; |
| } |
| |
| uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fstl2 = float32_mul(fstl0, fstl2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fstl2 = float32_sub(fstl2, float32_one, &env->active_fpu.fp_status); |
| fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status); |
| fstl2 = float32_chs(float32_div(fstl2, FLOAT_TWO32, |
| &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, |
| &env->active_fpu.fp_status)); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fstl2; |
| } |
| |
| uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fstl2; |
| uint32_t fsth2; |
| |
| fstl2 = float32_add(fstl0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_add(fstl1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fstl2; |
| } |
| |
| uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fstl2; |
| uint32_t fsth2; |
| |
| fstl2 = float32_mul(fstl0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fstl1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth2 << 32) | fstl2; |
| } |
| |
| |
| uint32_t helper_float_max_s(CPUMIPSState *env, uint32_t fs, uint32_t ft) |
| { |
| uint32_t fdret; |
| |
| fdret = float32_maxnum(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint64_t helper_float_max_d(CPUMIPSState *env, uint64_t fs, uint64_t ft) |
| { |
| uint64_t fdret; |
| |
| fdret = float64_maxnum(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint32_t helper_float_maxa_s(CPUMIPSState *env, uint32_t fs, uint32_t ft) |
| { |
| uint32_t fdret; |
| |
| fdret = float32_maxnummag(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint64_t helper_float_maxa_d(CPUMIPSState *env, uint64_t fs, uint64_t ft) |
| { |
| uint64_t fdret; |
| |
| fdret = float64_maxnummag(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint32_t helper_float_min_s(CPUMIPSState *env, uint32_t fs, uint32_t ft) |
| { |
| uint32_t fdret; |
| |
| fdret = float32_minnum(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint64_t helper_float_min_d(CPUMIPSState *env, uint64_t fs, uint64_t ft) |
| { |
| uint64_t fdret; |
| |
| fdret = float64_minnum(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint32_t helper_float_mina_s(CPUMIPSState *env, uint32_t fs, uint32_t ft) |
| { |
| uint32_t fdret; |
| |
| fdret = float32_minnummag(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint64_t helper_float_mina_d(CPUMIPSState *env, uint64_t fs, uint64_t ft) |
| { |
| uint64_t fdret; |
| |
| fdret = float64_minnummag(fs, ft, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| |
| /* ternary operations */ |
| |
| uint64_t helper_float_madd_d(CPUMIPSState *env, uint64_t fst0, |
| uint64_t fst1, uint64_t fst2) |
| { |
| fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float64_add(fst0, fst2, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint32_t helper_float_madd_s(CPUMIPSState *env, uint32_t fst0, |
| uint32_t fst1, uint32_t fst2) |
| { |
| fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float32_add(fst0, fst2, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint64_t helper_float_madd_ps(CPUMIPSState *env, uint64_t fdt0, |
| uint64_t fdt1, uint64_t fdt2) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fstl2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); |
| fstl0 = float32_add(fstl0, fstl2, &env->active_fpu.fp_status); |
| fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); |
| fsth0 = float32_add(fsth0, fsth2, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth0 << 32) | fstl0; |
| } |
| |
| uint64_t helper_float_msub_d(CPUMIPSState *env, uint64_t fst0, |
| uint64_t fst1, uint64_t fst2) |
| { |
| fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float64_sub(fst0, fst2, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint32_t helper_float_msub_s(CPUMIPSState *env, uint32_t fst0, |
| uint32_t fst1, uint32_t fst2) |
| { |
| fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float32_sub(fst0, fst2, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint64_t helper_float_msub_ps(CPUMIPSState *env, uint64_t fdt0, |
| uint64_t fdt1, uint64_t fdt2) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fstl2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); |
| fstl0 = float32_sub(fstl0, fstl2, &env->active_fpu.fp_status); |
| fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); |
| fsth0 = float32_sub(fsth0, fsth2, &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth0 << 32) | fstl0; |
| } |
| |
| uint64_t helper_float_nmadd_d(CPUMIPSState *env, uint64_t fst0, |
| uint64_t fst1, uint64_t fst2) |
| { |
| fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float64_add(fst0, fst2, &env->active_fpu.fp_status); |
| fst0 = float64_chs(fst0); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint32_t helper_float_nmadd_s(CPUMIPSState *env, uint32_t fst0, |
| uint32_t fst1, uint32_t fst2) |
| { |
| fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float32_add(fst0, fst2, &env->active_fpu.fp_status); |
| fst0 = float32_chs(fst0); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint64_t helper_float_nmadd_ps(CPUMIPSState *env, uint64_t fdt0, |
| uint64_t fdt1, uint64_t fdt2) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fstl2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); |
| fstl0 = float32_add(fstl0, fstl2, &env->active_fpu.fp_status); |
| fstl0 = float32_chs(fstl0); |
| fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); |
| fsth0 = float32_add(fsth0, fsth2, &env->active_fpu.fp_status); |
| fsth0 = float32_chs(fsth0); |
| |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth0 << 32) | fstl0; |
| } |
| |
| uint64_t helper_float_nmsub_d(CPUMIPSState *env, uint64_t fst0, |
| uint64_t fst1, uint64_t fst2) |
| { |
| fst0 = float64_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float64_sub(fst0, fst2, &env->active_fpu.fp_status); |
| fst0 = float64_chs(fst0); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint32_t helper_float_nmsub_s(CPUMIPSState *env, uint32_t fst0, |
| uint32_t fst1, uint32_t fst2) |
| { |
| fst0 = float32_mul(fst0, fst1, &env->active_fpu.fp_status); |
| fst0 = float32_sub(fst0, fst2, &env->active_fpu.fp_status); |
| fst0 = float32_chs(fst0); |
| |
| update_fcr31(env, GETPC()); |
| return fst0; |
| } |
| |
| uint64_t helper_float_nmsub_ps(CPUMIPSState *env, uint64_t fdt0, |
| uint64_t fdt1, uint64_t fdt2) |
| { |
| uint32_t fstl0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fstl1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fstl2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| fstl0 = float32_mul(fstl0, fstl1, &env->active_fpu.fp_status); |
| fstl0 = float32_sub(fstl0, fstl2, &env->active_fpu.fp_status); |
| fstl0 = float32_chs(fstl0); |
| fsth0 = float32_mul(fsth0, fsth1, &env->active_fpu.fp_status); |
| fsth0 = float32_sub(fsth0, fsth2, &env->active_fpu.fp_status); |
| fsth0 = float32_chs(fsth0); |
| |
| update_fcr31(env, GETPC()); |
| return ((uint64_t)fsth0 << 32) | fstl0; |
| } |
| |
| |
| uint32_t helper_float_maddf_s(CPUMIPSState *env, uint32_t fs, |
| uint32_t ft, uint32_t fd) |
| { |
| uint32_t fdret; |
| |
| fdret = float32_muladd(fs, ft, fd, 0, |
| &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint64_t helper_float_maddf_d(CPUMIPSState *env, uint64_t fs, |
| uint64_t ft, uint64_t fd) |
| { |
| uint64_t fdret; |
| |
| fdret = float64_muladd(fs, ft, fd, 0, |
| &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint32_t helper_float_msubf_s(CPUMIPSState *env, uint32_t fs, |
| uint32_t ft, uint32_t fd) |
| { |
| uint32_t fdret; |
| |
| fdret = float32_muladd(fs, ft, fd, float_muladd_negate_product, |
| &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| uint64_t helper_float_msubf_d(CPUMIPSState *env, uint64_t fs, |
| uint64_t ft, uint64_t fd) |
| { |
| uint64_t fdret; |
| |
| fdret = float64_muladd(fs, ft, fd, float_muladd_negate_product, |
| &env->active_fpu.fp_status); |
| |
| update_fcr31(env, GETPC()); |
| return fdret; |
| } |
| |
| |
| /* compare operations */ |
| #define FOP_COND_D(op, cond) \ |
| void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| int c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| int c; \ |
| fdt0 = float64_abs(fdt0); \ |
| fdt1 = float64_abs(fdt1); \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered_quiet() is still called. |
| */ |
| FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_eq_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_le_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered() is still called. |
| */ |
| FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(ngle, float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(seq, float64_eq(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_eq(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(lt, float64_lt(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(nge, float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(le, float64_le(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_le(fdt0, fdt1, |
| &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_S(op, cond) \ |
| void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ |
| uint32_t fst1, int cc) \ |
| { \ |
| int c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ |
| uint32_t fst1, int cc) \ |
| { \ |
| int c; \ |
| fst0 = float32_abs(fst0); \ |
| fst1 = float32_abs(fst1); \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. |
| */ |
| FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_eq_quiet(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(ole, float32_le_quiet(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le_quiet(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. |
| */ |
| FOP_COND_S(sf, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(ngle, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(seq, float32_eq(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(ngl, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_eq(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(lt, float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(nge, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(le, float32_le(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_S(ngt, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le(fst0, fst1, |
| &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_PS(op, condl, condh) \ |
| void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0, fsth0, fst1, fsth1; \ |
| int ch, cl; \ |
| fst0 = fdt0 & 0XFFFFFFFF; \ |
| fsth0 = fdt0 >> 32; \ |
| fst1 = fdt1 & 0XFFFFFFFF; \ |
| fsth1 = fdt1 >> 32; \ |
| cl = condl; \ |
| ch = condh; \ |
| update_fcr31(env, GETPC()); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } \ |
| void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0, fsth0, fst1, fsth1; \ |
| int ch, cl; \ |
| fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ |
| fsth0 = float32_abs(fdt0 >> 32); \ |
| fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ |
| fsth1 = float32_abs(fdt1 >> 32); \ |
| cl = condl; \ |
| ch = condh; \ |
| update_fcr31(env, GETPC()); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } |
| |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. |
| */ |
| FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status), 0), |
| (float32_unordered_quiet(fsth1, fsth0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_eq_quiet(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_eq_quiet(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, |
| &env->active_fpu.fp_status) |
| || float32_eq_quiet(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_lt_quiet(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, |
| &env->active_fpu.fp_status) |
| || float32_lt_quiet(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_le_quiet(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le_quiet(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_unordered_quiet(fsth1, fsth0, |
| &env->active_fpu.fp_status) |
| || float32_le_quiet(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. |
| */ |
| FOP_COND_PS(sf, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status), 0), |
| (float32_unordered(fsth1, fsth0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(ngle, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(seq, float32_eq(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_eq(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngl, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_eq(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, |
| &env->active_fpu.fp_status) |
| || float32_eq(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(lt, float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_lt(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(nge, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, |
| &env->active_fpu.fp_status) |
| || float32_lt(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(le, float32_le(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_le(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngt, float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le(fst0, fst1, |
| &env->active_fpu.fp_status), |
| float32_unordered(fsth1, fsth0, |
| &env->active_fpu.fp_status) |
| || float32_le(fsth0, fsth1, |
| &env->active_fpu.fp_status)) |
| |
| /* R6 compare operations */ |
| #define FOP_CONDN_D(op, cond) \ |
| uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \ |
| uint64_t fdt1) \ |
| { \ |
| uint64_t c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) { \ |
| return -1; \ |
| } else { \ |
| return 0; \ |
| } \ |
| } |
| |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered_quiet() is still called. |
| */ |
| FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_eq_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_le_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float64_unordered() is still called.\ |
| */ |
| FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_eq(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sle, (float64_le(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_le(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_le_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt_quiet(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sor, (float64_le(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_le(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0, |
| &env->active_fpu.fp_status) |
| || float64_lt(fdt0, fdt1, |
| &env->active_fpu.fp_status))) |
| |
| #define FOP_CONDN_S(op, cond) \ |
| uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \ |
| uint32_t fst1) \ |
| { \ |
| uint64_t c; \ |
| c = cond; \ |
| update_fcr31(env, GETPC()); \ |
| if (c) { \ |
| return -1; \ |
| } else { \ |
| return 0; \ |
| } \ |
| } |
| |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered_quiet() is still called. |
| */ |
| FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_eq_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| /* |
| * NOTE: the comma operator will make "cond" to eval to false, |
| * but float32_unordered() is still called. |
| */ |
| FOP_CONDN_S(saf, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status), 0)) |
| FOP_CONDN_S(sun, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(seq, (float32_eq(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_eq(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(slt, (float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sult, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sle, (float32_le(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sule, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt_quiet(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sor, (float32_le(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_le(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sune, (float32_unordered(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status))) |
| FOP_CONDN_S(sne, (float32_lt(fst1, fst0, |
| &env->active_fpu.fp_status) |
| || float32_lt(fst0, fst1, |
| &env->active_fpu.fp_status))) |