| /* |
| * ARM implementation of KVM hooks |
| * |
| * Copyright Christoffer Dall 2009-2010 |
| * Copyright Mian-M. Hamayun 2013, Virtual Open Systems |
| * Copyright Alex Bennée 2014, Linaro |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <sys/ioctl.h> |
| |
| #include <linux/kvm.h> |
| |
| #include "qemu/timer.h" |
| #include "qemu/error-report.h" |
| #include "qemu/main-loop.h" |
| #include "qom/object.h" |
| #include "qapi/error.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/kvm_int.h" |
| #include "kvm_arm.h" |
| #include "cpu.h" |
| #include "trace.h" |
| #include "internals.h" |
| #include "hw/pci/pci.h" |
| #include "exec/memattrs.h" |
| #include "exec/address-spaces.h" |
| #include "gdbstub/enums.h" |
| #include "hw/boards.h" |
| #include "hw/irq.h" |
| #include "qapi/visitor.h" |
| #include "qemu/log.h" |
| #include "hw/acpi/acpi.h" |
| #include "hw/acpi/ghes.h" |
| #include "target/arm/gtimer.h" |
| #include "migration/blocker.h" |
| |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
| KVM_CAP_INFO(DEVICE_CTRL), |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static bool cap_has_mp_state; |
| static bool cap_has_inject_serror_esr; |
| static bool cap_has_inject_ext_dabt; |
| |
| /** |
| * ARMHostCPUFeatures: information about the host CPU (identified |
| * by asking the host kernel) |
| */ |
| typedef struct ARMHostCPUFeatures { |
| ARMISARegisters isar; |
| uint64_t features; |
| uint32_t target; |
| const char *dtb_compatible; |
| } ARMHostCPUFeatures; |
| |
| static ARMHostCPUFeatures arm_host_cpu_features; |
| |
| /** |
| * kvm_arm_vcpu_init: |
| * @cpu: ARMCPU |
| * |
| * Initialize (or reinitialize) the VCPU by invoking the |
| * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature |
| * bitmask specified in the CPUState. |
| * |
| * Returns: 0 if success else < 0 error code |
| */ |
| static int kvm_arm_vcpu_init(ARMCPU *cpu) |
| { |
| struct kvm_vcpu_init init; |
| |
| init.target = cpu->kvm_target; |
| memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init); |
| } |
| |
| /** |
| * kvm_arm_vcpu_finalize: |
| * @cpu: ARMCPU |
| * @feature: feature to finalize |
| * |
| * Finalizes the configuration of the specified VCPU feature by |
| * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring |
| * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of |
| * KVM's API documentation. |
| * |
| * Returns: 0 if success else < 0 error code |
| */ |
| static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature) |
| { |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature); |
| } |
| |
| bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
| int *fdarray, |
| struct kvm_vcpu_init *init) |
| { |
| int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; |
| int max_vm_pa_size; |
| |
| kvmfd = qemu_open_old("/dev/kvm", O_RDWR); |
| if (kvmfd < 0) { |
| goto err; |
| } |
| max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); |
| if (max_vm_pa_size < 0) { |
| max_vm_pa_size = 0; |
| } |
| do { |
| vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); |
| } while (vmfd == -1 && errno == EINTR); |
| if (vmfd < 0) { |
| goto err; |
| } |
| |
| /* |
| * The MTE capability must be enabled by the VMM before creating |
| * any VCPUs in order to allow the MTE bits of the ID_AA64PFR1 |
| * register to be probed correctly, as they are masked if MTE |
| * is not enabled. |
| */ |
| if (kvm_arm_mte_supported()) { |
| KVMState kvm_state; |
| |
| kvm_state.fd = kvmfd; |
| kvm_state.vmfd = vmfd; |
| kvm_vm_enable_cap(&kvm_state, KVM_CAP_ARM_MTE, 0); |
| } |
| |
| cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); |
| if (cpufd < 0) { |
| goto err; |
| } |
| |
| if (!init) { |
| /* Caller doesn't want the VCPU to be initialized, so skip it */ |
| goto finish; |
| } |
| |
| if (init->target == -1) { |
| struct kvm_vcpu_init preferred; |
| |
| ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); |
| if (!ret) { |
| init->target = preferred.target; |
| } |
| } |
| if (ret >= 0) { |
| ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); |
| if (ret < 0) { |
| goto err; |
| } |
| } else if (cpus_to_try) { |
| /* Old kernel which doesn't know about the |
| * PREFERRED_TARGET ioctl: we know it will only support |
| * creating one kind of guest CPU which is its preferred |
| * CPU type. |
| */ |
| struct kvm_vcpu_init try; |
| |
| while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { |
| try.target = *cpus_to_try++; |
| memcpy(try.features, init->features, sizeof(init->features)); |
| ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); |
| if (ret >= 0) { |
| break; |
| } |
| } |
| if (ret < 0) { |
| goto err; |
| } |
| init->target = try.target; |
| } else { |
| /* Treat a NULL cpus_to_try argument the same as an empty |
| * list, which means we will fail the call since this must |
| * be an old kernel which doesn't support PREFERRED_TARGET. |
| */ |
| goto err; |
| } |
| |
| finish: |
| fdarray[0] = kvmfd; |
| fdarray[1] = vmfd; |
| fdarray[2] = cpufd; |
| |
| return true; |
| |
| err: |
| if (cpufd >= 0) { |
| close(cpufd); |
| } |
| if (vmfd >= 0) { |
| close(vmfd); |
| } |
| if (kvmfd >= 0) { |
| close(kvmfd); |
| } |
| |
| return false; |
| } |
| |
| void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) |
| { |
| int i; |
| |
| for (i = 2; i >= 0; i--) { |
| close(fdarray[i]); |
| } |
| } |
| |
| static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id) |
| { |
| uint64_t ret; |
| struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret }; |
| int err; |
| |
| assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); |
| err = ioctl(fd, KVM_GET_ONE_REG, &idreg); |
| if (err < 0) { |
| return -1; |
| } |
| *pret = ret; |
| return 0; |
| } |
| |
| static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id) |
| { |
| struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret }; |
| |
| assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); |
| return ioctl(fd, KVM_GET_ONE_REG, &idreg); |
| } |
| |
| static bool kvm_arm_pauth_supported(void) |
| { |
| return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) && |
| kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC)); |
| } |
| |
| static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) |
| { |
| /* Identify the feature bits corresponding to the host CPU, and |
| * fill out the ARMHostCPUClass fields accordingly. To do this |
| * we have to create a scratch VM, create a single CPU inside it, |
| * and then query that CPU for the relevant ID registers. |
| */ |
| int fdarray[3]; |
| bool sve_supported; |
| bool pmu_supported = false; |
| uint64_t features = 0; |
| int err; |
| |
| /* Old kernels may not know about the PREFERRED_TARGET ioctl: however |
| * we know these will only support creating one kind of guest CPU, |
| * which is its preferred CPU type. Fortunately these old kernels |
| * support only a very limited number of CPUs. |
| */ |
| static const uint32_t cpus_to_try[] = { |
| KVM_ARM_TARGET_AEM_V8, |
| KVM_ARM_TARGET_FOUNDATION_V8, |
| KVM_ARM_TARGET_CORTEX_A57, |
| QEMU_KVM_ARM_TARGET_NONE |
| }; |
| /* |
| * target = -1 informs kvm_arm_create_scratch_host_vcpu() |
| * to use the preferred target |
| */ |
| struct kvm_vcpu_init init = { .target = -1, }; |
| |
| /* |
| * Ask for SVE if supported, so that we can query ID_AA64ZFR0, |
| * which is otherwise RAZ. |
| */ |
| sve_supported = kvm_arm_sve_supported(); |
| if (sve_supported) { |
| init.features[0] |= 1 << KVM_ARM_VCPU_SVE; |
| } |
| |
| /* |
| * Ask for Pointer Authentication if supported, so that we get |
| * the unsanitized field values for AA64ISAR1_EL1. |
| */ |
| if (kvm_arm_pauth_supported()) { |
| init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | |
| 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); |
| } |
| |
| if (kvm_arm_pmu_supported()) { |
| init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; |
| pmu_supported = true; |
| features |= 1ULL << ARM_FEATURE_PMU; |
| } |
| |
| if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { |
| return false; |
| } |
| |
| ahcf->target = init.target; |
| ahcf->dtb_compatible = "arm,arm-v8"; |
| |
| err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0, |
| ARM64_SYS_REG(3, 0, 0, 4, 0)); |
| if (unlikely(err < 0)) { |
| /* |
| * Before v4.15, the kernel only exposed a limited number of system |
| * registers, not including any of the interesting AArch64 ID regs. |
| * For the most part we could leave these fields as zero with minimal |
| * effect, since this does not affect the values seen by the guest. |
| * |
| * However, it could cause problems down the line for QEMU, |
| * so provide a minimal v8.0 default. |
| * |
| * ??? Could read MIDR and use knowledge from cpu64.c. |
| * ??? Could map a page of memory into our temp guest and |
| * run the tiniest of hand-crafted kernels to extract |
| * the values seen by the guest. |
| * ??? Either of these sounds like too much effort just |
| * to work around running a modern host kernel. |
| */ |
| ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */ |
| err = 0; |
| } else { |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1, |
| ARM64_SYS_REG(3, 0, 0, 4, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0, |
| ARM64_SYS_REG(3, 0, 0, 4, 5)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0, |
| ARM64_SYS_REG(3, 0, 0, 5, 0)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1, |
| ARM64_SYS_REG(3, 0, 0, 5, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0, |
| ARM64_SYS_REG(3, 0, 0, 6, 0)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1, |
| ARM64_SYS_REG(3, 0, 0, 6, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2, |
| ARM64_SYS_REG(3, 0, 0, 6, 2)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0, |
| ARM64_SYS_REG(3, 0, 0, 7, 0)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1, |
| ARM64_SYS_REG(3, 0, 0, 7, 1)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2, |
| ARM64_SYS_REG(3, 0, 0, 7, 2)); |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr3, |
| ARM64_SYS_REG(3, 0, 0, 7, 3)); |
| |
| /* |
| * Note that if AArch32 support is not present in the host, |
| * the AArch32 sysregs are present to be read, but will |
| * return UNKNOWN values. This is neither better nor worse |
| * than skipping the reads and leaving 0, as we must avoid |
| * considering the values in every case. |
| */ |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0, |
| ARM64_SYS_REG(3, 0, 0, 1, 0)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1, |
| ARM64_SYS_REG(3, 0, 0, 1, 1)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0, |
| ARM64_SYS_REG(3, 0, 0, 1, 2)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0, |
| ARM64_SYS_REG(3, 0, 0, 1, 4)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1, |
| ARM64_SYS_REG(3, 0, 0, 1, 5)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2, |
| ARM64_SYS_REG(3, 0, 0, 1, 6)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3, |
| ARM64_SYS_REG(3, 0, 0, 1, 7)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0, |
| ARM64_SYS_REG(3, 0, 0, 2, 0)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1, |
| ARM64_SYS_REG(3, 0, 0, 2, 1)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2, |
| ARM64_SYS_REG(3, 0, 0, 2, 2)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3, |
| ARM64_SYS_REG(3, 0, 0, 2, 3)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4, |
| ARM64_SYS_REG(3, 0, 0, 2, 4)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5, |
| ARM64_SYS_REG(3, 0, 0, 2, 5)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4, |
| ARM64_SYS_REG(3, 0, 0, 2, 6)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6, |
| ARM64_SYS_REG(3, 0, 0, 2, 7)); |
| |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0, |
| ARM64_SYS_REG(3, 0, 0, 3, 0)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1, |
| ARM64_SYS_REG(3, 0, 0, 3, 1)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2, |
| ARM64_SYS_REG(3, 0, 0, 3, 2)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2, |
| ARM64_SYS_REG(3, 0, 0, 3, 4)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1, |
| ARM64_SYS_REG(3, 0, 0, 3, 5)); |
| err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5, |
| ARM64_SYS_REG(3, 0, 0, 3, 6)); |
| |
| /* |
| * DBGDIDR is a bit complicated because the kernel doesn't |
| * provide an accessor for it in 64-bit mode, which is what this |
| * scratch VM is in, and there's no architected "64-bit sysreg |
| * which reads the same as the 32-bit register" the way there is |
| * for other ID registers. Instead we synthesize a value from the |
| * AArch64 ID_AA64DFR0, the same way the kernel code in |
| * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does. |
| * We only do this if the CPU supports AArch32 at EL1. |
| */ |
| if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) { |
| int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS); |
| int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS); |
| int ctx_cmps = |
| FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS); |
| int version = 6; /* ARMv8 debug architecture */ |
| bool has_el3 = |
| !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3); |
| uint32_t dbgdidr = 0; |
| |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3); |
| dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3); |
| dbgdidr |= (1 << 15); /* RES1 bit */ |
| ahcf->isar.dbgdidr = dbgdidr; |
| } |
| |
| if (pmu_supported) { |
| /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */ |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0, |
| ARM64_SYS_REG(3, 3, 9, 12, 0)); |
| } |
| |
| if (sve_supported) { |
| /* |
| * There is a range of kernels between kernel commit 73433762fcae |
| * and f81cb2c3ad41 which have a bug where the kernel doesn't |
| * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has |
| * enabled SVE support, which resulted in an error rather than RAZ. |
| * So only read the register if we set KVM_ARM_VCPU_SVE above. |
| */ |
| err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0, |
| ARM64_SYS_REG(3, 0, 0, 4, 4)); |
| } |
| } |
| |
| kvm_arm_destroy_scratch_host_vcpu(fdarray); |
| |
| if (err < 0) { |
| return false; |
| } |
| |
| /* |
| * We can assume any KVM supporting CPU is at least a v8 |
| * with VFPv4+Neon; this in turn implies most of the other |
| * feature bits. |
| */ |
| features |= 1ULL << ARM_FEATURE_V8; |
| features |= 1ULL << ARM_FEATURE_NEON; |
| features |= 1ULL << ARM_FEATURE_AARCH64; |
| features |= 1ULL << ARM_FEATURE_GENERIC_TIMER; |
| |
| ahcf->features = features; |
| |
| return true; |
| } |
| |
| void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| |
| if (!arm_host_cpu_features.dtb_compatible) { |
| if (!kvm_enabled() || |
| !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { |
| /* We can't report this error yet, so flag that we need to |
| * in arm_cpu_realizefn(). |
| */ |
| cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; |
| cpu->host_cpu_probe_failed = true; |
| return; |
| } |
| } |
| |
| cpu->kvm_target = arm_host_cpu_features.target; |
| cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; |
| cpu->isar = arm_host_cpu_features.isar; |
| env->features = arm_host_cpu_features.features; |
| } |
| |
| static bool kvm_no_adjvtime_get(Object *obj, Error **errp) |
| { |
| return !ARM_CPU(obj)->kvm_adjvtime; |
| } |
| |
| static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) |
| { |
| ARM_CPU(obj)->kvm_adjvtime = !value; |
| } |
| |
| static bool kvm_steal_time_get(Object *obj, Error **errp) |
| { |
| return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; |
| } |
| |
| static void kvm_steal_time_set(Object *obj, bool value, Error **errp) |
| { |
| ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; |
| } |
| |
| /* KVM VCPU properties should be prefixed with "kvm-". */ |
| void kvm_arm_add_vcpu_properties(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| Object *obj = OBJECT(cpu); |
| |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| cpu->kvm_adjvtime = true; |
| object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, |
| kvm_no_adjvtime_set); |
| object_property_set_description(obj, "kvm-no-adjvtime", |
| "Set on to disable the adjustment of " |
| "the virtual counter. VM stopped time " |
| "will be counted."); |
| } |
| |
| cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; |
| object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, |
| kvm_steal_time_set); |
| object_property_set_description(obj, "kvm-steal-time", |
| "Set off to disable KVM steal time."); |
| } |
| |
| bool kvm_arm_pmu_supported(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); |
| } |
| |
| int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) |
| { |
| KVMState *s = KVM_STATE(ms->accelerator); |
| int ret; |
| |
| ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); |
| *fixed_ipa = ret <= 0; |
| |
| return ret > 0 ? ret : 40; |
| } |
| |
| int kvm_arch_get_default_type(MachineState *ms) |
| { |
| bool fixed_ipa; |
| int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); |
| return fixed_ipa ? 0 : size; |
| } |
| |
| int kvm_arch_init(MachineState *ms, KVMState *s) |
| { |
| int ret = 0; |
| /* For ARM interrupt delivery is always asynchronous, |
| * whether we are using an in-kernel VGIC or not. |
| */ |
| kvm_async_interrupts_allowed = true; |
| |
| /* |
| * PSCI wakes up secondary cores, so we always need to |
| * have vCPUs waiting in kernel space |
| */ |
| kvm_halt_in_kernel_allowed = true; |
| |
| cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); |
| |
| /* Check whether user space can specify guest syndrome value */ |
| cap_has_inject_serror_esr = |
| kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR); |
| |
| if (ms->smp.cpus > 256 && |
| !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { |
| error_report("Using more than 256 vcpus requires a host kernel " |
| "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); |
| ret = -EINVAL; |
| } |
| |
| if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { |
| if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { |
| error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); |
| } else { |
| /* Set status for supporting the external dabt injection */ |
| cap_has_inject_ext_dabt = kvm_check_extension(s, |
| KVM_CAP_ARM_INJECT_EXT_DABT); |
| } |
| } |
| |
| if (s->kvm_eager_split_size) { |
| uint32_t sizes; |
| |
| sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES); |
| if (!sizes) { |
| s->kvm_eager_split_size = 0; |
| warn_report("Eager Page Split support not available"); |
| } else if (!(s->kvm_eager_split_size & sizes)) { |
| error_report("Eager Page Split requested chunk size not valid"); |
| ret = -EINVAL; |
| } else { |
| ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0, |
| s->kvm_eager_split_size); |
| if (ret < 0) { |
| error_report("Enabling of Eager Page Split failed: %s", |
| strerror(-ret)); |
| } |
| } |
| } |
| |
| max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS); |
| hw_watchpoints = g_array_sized_new(true, true, |
| sizeof(HWWatchpoint), max_hw_wps); |
| |
| max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS); |
| hw_breakpoints = g_array_sized_new(true, true, |
| sizeof(HWBreakpoint), max_hw_bps); |
| |
| return ret; |
| } |
| |
| unsigned long kvm_arch_vcpu_id(CPUState *cpu) |
| { |
| return cpu->cpu_index; |
| } |
| |
| /* We track all the KVM devices which need their memory addresses |
| * passing to the kernel in a list of these structures. |
| * When board init is complete we run through the list and |
| * tell the kernel the base addresses of the memory regions. |
| * We use a MemoryListener to track mapping and unmapping of |
| * the regions during board creation, so the board models don't |
| * need to do anything special for the KVM case. |
| * |
| * Sometimes the address must be OR'ed with some other fields |
| * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). |
| * @kda_addr_ormask aims at storing the value of those fields. |
| */ |
| typedef struct KVMDevice { |
| struct kvm_arm_device_addr kda; |
| struct kvm_device_attr kdattr; |
| uint64_t kda_addr_ormask; |
| MemoryRegion *mr; |
| QSLIST_ENTRY(KVMDevice) entries; |
| int dev_fd; |
| } KVMDevice; |
| |
| static QSLIST_HEAD(, KVMDevice) kvm_devices_head; |
| |
| static void kvm_arm_devlistener_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMDevice *kd; |
| |
| QSLIST_FOREACH(kd, &kvm_devices_head, entries) { |
| if (section->mr == kd->mr) { |
| kd->kda.addr = section->offset_within_address_space; |
| } |
| } |
| } |
| |
| static void kvm_arm_devlistener_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| KVMDevice *kd; |
| |
| QSLIST_FOREACH(kd, &kvm_devices_head, entries) { |
| if (section->mr == kd->mr) { |
| kd->kda.addr = -1; |
| } |
| } |
| } |
| |
| static MemoryListener devlistener = { |
| .name = "kvm-arm", |
| .region_add = kvm_arm_devlistener_add, |
| .region_del = kvm_arm_devlistener_del, |
| .priority = MEMORY_LISTENER_PRIORITY_MIN, |
| }; |
| |
| static void kvm_arm_set_device_addr(KVMDevice *kd) |
| { |
| struct kvm_device_attr *attr = &kd->kdattr; |
| int ret; |
| uint64_t addr = kd->kda.addr; |
| |
| addr |= kd->kda_addr_ormask; |
| attr->addr = (uintptr_t)&addr; |
| ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to set device address: %s\n", |
| strerror(-ret)); |
| abort(); |
| } |
| } |
| |
| static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
| { |
| KVMDevice *kd, *tkd; |
| |
| QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { |
| if (kd->kda.addr != -1) { |
| kvm_arm_set_device_addr(kd); |
| } |
| memory_region_unref(kd->mr); |
| QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); |
| g_free(kd); |
| } |
| memory_listener_unregister(&devlistener); |
| } |
| |
| static Notifier notify = { |
| .notify = kvm_arm_machine_init_done, |
| }; |
| |
| void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
| uint64_t attr, int dev_fd, uint64_t addr_ormask) |
| { |
| KVMDevice *kd; |
| |
| if (!kvm_irqchip_in_kernel()) { |
| return; |
| } |
| |
| if (QSLIST_EMPTY(&kvm_devices_head)) { |
| memory_listener_register(&devlistener, &address_space_memory); |
| qemu_add_machine_init_done_notifier(¬ify); |
| } |
| kd = g_new0(KVMDevice, 1); |
| kd->mr = mr; |
| kd->kda.id = devid; |
| kd->kda.addr = -1; |
| kd->kdattr.flags = 0; |
| kd->kdattr.group = group; |
| kd->kdattr.attr = attr; |
| kd->dev_fd = dev_fd; |
| kd->kda_addr_ormask = addr_ormask; |
| QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
| memory_region_ref(kd->mr); |
| } |
| |
| static int compare_u64(const void *a, const void *b) |
| { |
| if (*(uint64_t *)a > *(uint64_t *)b) { |
| return 1; |
| } |
| if (*(uint64_t *)a < *(uint64_t *)b) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * cpreg_values are sorted in ascending order by KVM register ID |
| * (see kvm_arm_init_cpreg_list). This allows us to cheaply find |
| * the storage for a KVM register by ID with a binary search. |
| */ |
| static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) |
| { |
| uint64_t *res; |
| |
| res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, |
| sizeof(uint64_t), compare_u64); |
| assert(res); |
| |
| return &cpu->cpreg_values[res - cpu->cpreg_indexes]; |
| } |
| |
| /** |
| * kvm_arm_reg_syncs_via_cpreg_list: |
| * @regidx: KVM register index |
| * |
| * Return true if this KVM register should be synchronized via the |
| * cpreg list of arbitrary system registers, false if it is synchronized |
| * by hand using code in kvm_arch_get/put_registers(). |
| */ |
| static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) |
| { |
| switch (regidx & KVM_REG_ARM_COPROC_MASK) { |
| case KVM_REG_ARM_CORE: |
| case KVM_REG_ARM64_SVE: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| /** |
| * kvm_arm_init_cpreg_list: |
| * @cpu: ARMCPU |
| * |
| * Initialize the ARMCPU cpreg list according to the kernel's |
| * definition of what CPU registers it knows about (and throw away |
| * the previous TCG-created cpreg list). |
| * |
| * Returns: 0 if success, else < 0 error code |
| */ |
| static int kvm_arm_init_cpreg_list(ARMCPU *cpu) |
| { |
| struct kvm_reg_list rl; |
| struct kvm_reg_list *rlp; |
| int i, ret, arraylen; |
| CPUState *cs = CPU(cpu); |
| |
| rl.n = 0; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); |
| if (ret != -E2BIG) { |
| return ret; |
| } |
| rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); |
| rlp->n = rl.n; |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); |
| if (ret) { |
| goto out; |
| } |
| /* Sort the list we get back from the kernel, since cpreg_tuples |
| * must be in strictly ascending order. |
| */ |
| qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); |
| |
| for (i = 0, arraylen = 0; i < rlp->n; i++) { |
| if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { |
| continue; |
| } |
| switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| case KVM_REG_SIZE_U64: |
| break; |
| default: |
| fprintf(stderr, "Can't handle size of register in kernel list\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| arraylen++; |
| } |
| |
| cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); |
| cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); |
| cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, |
| arraylen); |
| cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, |
| arraylen); |
| cpu->cpreg_array_len = arraylen; |
| cpu->cpreg_vmstate_array_len = arraylen; |
| |
| for (i = 0, arraylen = 0; i < rlp->n; i++) { |
| uint64_t regidx = rlp->reg[i]; |
| if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { |
| continue; |
| } |
| cpu->cpreg_indexes[arraylen] = regidx; |
| arraylen++; |
| } |
| assert(cpu->cpreg_array_len == arraylen); |
| |
| if (!write_kvmstate_to_list(cpu)) { |
| /* Shouldn't happen unless kernel is inconsistent about |
| * what registers exist. |
| */ |
| fprintf(stderr, "Initial read of kernel register state failed\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| out: |
| g_free(rlp); |
| return ret; |
| } |
| |
| /** |
| * kvm_arm_cpreg_level: |
| * @regidx: KVM register index |
| * |
| * Return the level of this coprocessor/system register. Return value is |
| * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE. |
| */ |
| static int kvm_arm_cpreg_level(uint64_t regidx) |
| { |
| /* |
| * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE. |
| * If a register should be written less often, you must add it here |
| * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. |
| */ |
| switch (regidx) { |
| case KVM_REG_ARM_TIMER_CNT: |
| case KVM_REG_ARM_PTIMER_CNT: |
| return KVM_PUT_FULL_STATE; |
| } |
| return KVM_PUT_RUNTIME_STATE; |
| } |
| |
| bool write_kvmstate_to_list(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint64_t regidx = cpu->cpreg_indexes[i]; |
| uint32_t v32; |
| int ret; |
| |
| switch (regidx & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| ret = kvm_get_one_reg(cs, regidx, &v32); |
| if (!ret) { |
| cpu->cpreg_values[i] = v32; |
| } |
| break; |
| case KVM_REG_SIZE_U64: |
| ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (ret) { |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| bool write_list_to_kvmstate(ARMCPU *cpu, int level) |
| { |
| CPUState *cs = CPU(cpu); |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint64_t regidx = cpu->cpreg_indexes[i]; |
| uint32_t v32; |
| int ret; |
| |
| if (kvm_arm_cpreg_level(regidx) > level) { |
| continue; |
| } |
| |
| switch (regidx & KVM_REG_SIZE_MASK) { |
| case KVM_REG_SIZE_U32: |
| v32 = cpu->cpreg_values[i]; |
| ret = kvm_set_one_reg(cs, regidx, &v32); |
| break; |
| case KVM_REG_SIZE_U64: |
| ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| if (ret) { |
| /* We might fail for "unknown register" and also for |
| * "you tried to set a register which is constant with |
| * a different value from what it actually contains". |
| */ |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| void kvm_arm_cpu_pre_save(ARMCPU *cpu) |
| { |
| /* KVM virtual time adjustment */ |
| if (cpu->kvm_vtime_dirty) { |
| *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; |
| } |
| } |
| |
| void kvm_arm_cpu_post_load(ARMCPU *cpu) |
| { |
| /* KVM virtual time adjustment */ |
| if (cpu->kvm_adjvtime) { |
| cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); |
| cpu->kvm_vtime_dirty = true; |
| } |
| } |
| |
| void kvm_arm_reset_vcpu(ARMCPU *cpu) |
| { |
| int ret; |
| |
| /* Re-init VCPU so that all registers are set to |
| * their respective reset values. |
| */ |
| ret = kvm_arm_vcpu_init(cpu); |
| if (ret < 0) { |
| fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); |
| abort(); |
| } |
| if (!write_kvmstate_to_list(cpu)) { |
| fprintf(stderr, "write_kvmstate_to_list failed\n"); |
| abort(); |
| } |
| /* |
| * Sync the reset values also into the CPUState. This is necessary |
| * because the next thing we do will be a kvm_arch_put_registers() |
| * which will update the list values from the CPUState before copying |
| * the list values back to KVM. It's OK to ignore failure returns here |
| * for the same reason we do so in kvm_arch_get_registers(). |
| */ |
| write_list_to_cpustate(cpu); |
| } |
| |
| /* |
| * Update KVM's MP_STATE based on what QEMU thinks it is |
| */ |
| static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) |
| { |
| if (cap_has_mp_state) { |
| struct kvm_mp_state mp_state = { |
| .mp_state = (cpu->power_state == PSCI_OFF) ? |
| KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE |
| }; |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
| } |
| return 0; |
| } |
| |
| /* |
| * Sync the KVM MP_STATE into QEMU |
| */ |
| static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) |
| { |
| if (cap_has_mp_state) { |
| struct kvm_mp_state mp_state; |
| int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); |
| if (ret) { |
| return ret; |
| } |
| cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? |
| PSCI_OFF : PSCI_ON; |
| } |
| return 0; |
| } |
| |
| /** |
| * kvm_arm_get_virtual_time: |
| * @cpu: ARMCPU |
| * |
| * Gets the VCPU's virtual counter and stores it in the KVM CPU state. |
| */ |
| static void kvm_arm_get_virtual_time(ARMCPU *cpu) |
| { |
| int ret; |
| |
| if (cpu->kvm_vtime_dirty) { |
| return; |
| } |
| |
| ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime); |
| if (ret) { |
| error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); |
| abort(); |
| } |
| |
| cpu->kvm_vtime_dirty = true; |
| } |
| |
| /** |
| * kvm_arm_put_virtual_time: |
| * @cpu: ARMCPU |
| * |
| * Sets the VCPU's virtual counter to the value stored in the KVM CPU state. |
| */ |
| static void kvm_arm_put_virtual_time(ARMCPU *cpu) |
| { |
| int ret; |
| |
| if (!cpu->kvm_vtime_dirty) { |
| return; |
| } |
| |
| ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime); |
| if (ret) { |
| error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); |
| abort(); |
| } |
| |
| cpu->kvm_vtime_dirty = false; |
| } |
| |
| /** |
| * kvm_put_vcpu_events: |
| * @cpu: ARMCPU |
| * |
| * Put VCPU related state to kvm. |
| * |
| * Returns: 0 if success else < 0 error code |
| */ |
| static int kvm_put_vcpu_events(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| struct kvm_vcpu_events events; |
| int ret; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| memset(&events, 0, sizeof(events)); |
| events.exception.serror_pending = env->serror.pending; |
| |
| /* Inject SError to guest with specified syndrome if host kernel |
| * supports it, otherwise inject SError without syndrome. |
| */ |
| if (cap_has_inject_serror_esr) { |
| events.exception.serror_has_esr = env->serror.has_esr; |
| events.exception.serror_esr = env->serror.esr; |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
| if (ret) { |
| error_report("failed to put vcpu events"); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_get_vcpu_events: |
| * @cpu: ARMCPU |
| * |
| * Get VCPU related state from kvm. |
| * |
| * Returns: 0 if success else < 0 error code |
| */ |
| static int kvm_get_vcpu_events(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| struct kvm_vcpu_events events; |
| int ret; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| memset(&events, 0, sizeof(events)); |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
| if (ret) { |
| error_report("failed to get vcpu events"); |
| return ret; |
| } |
| |
| env->serror.pending = events.exception.serror_pending; |
| env->serror.has_esr = events.exception.serror_has_esr; |
| env->serror.esr = events.exception.serror_esr; |
| |
| return 0; |
| } |
| |
| #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0) |
| #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2) |
| |
| /* |
| * ESR_EL1 |
| * ISS encoding |
| * AARCH64: DFSC, bits [5:0] |
| * AARCH32: |
| * TTBCR.EAE == 0 |
| * FS[4] - DFSR[10] |
| * FS[3:0] - DFSR[3:0] |
| * TTBCR.EAE == 1 |
| * FS, bits [5:0] |
| */ |
| #define ESR_DFSC(aarch64, lpae, v) \ |
| ((aarch64 || (lpae)) ? ((v) & 0x3F) \ |
| : (((v) >> 6) | ((v) & 0x1F))) |
| |
| #define ESR_DFSC_EXTABT(aarch64, lpae) \ |
| ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8) |
| |
| /** |
| * kvm_arm_verify_ext_dabt_pending: |
| * @cpu: ARMCPU |
| * |
| * Verify the fault status code wrt the Ext DABT injection |
| * |
| * Returns: true if the fault status code is as expected, false otherwise |
| */ |
| static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| uint64_t dfsr_val; |
| |
| if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) { |
| CPUARMState *env = &cpu->env; |
| int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64); |
| int lpae = 0; |
| |
| if (!aarch64_mode) { |
| uint64_t ttbcr; |
| |
| if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) { |
| lpae = arm_feature(env, ARM_FEATURE_LPAE) |
| && (ttbcr & TTBCR_EAE); |
| } |
| } |
| /* |
| * The verification here is based on the DFSC bits |
| * of the ESR_EL1 reg only |
| */ |
| return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) == |
| ESR_DFSC_EXTABT(aarch64_mode, lpae)); |
| } |
| return false; |
| } |
| |
| void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (unlikely(env->ext_dabt_raised)) { |
| /* |
| * Verifying that the ext DABT has been properly injected, |
| * otherwise risking indefinitely re-running the faulting instruction |
| * Covering a very narrow case for kernels 5.5..5.5.4 |
| * when injected abort was misconfigured to be |
| * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) |
| */ |
| if (!arm_feature(env, ARM_FEATURE_AARCH64) && |
| unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) { |
| |
| error_report("Data abort exception with no valid ISS generated by " |
| "guest memory access. KVM unable to emulate faulting " |
| "instruction. Failed to inject an external data abort " |
| "into the guest."); |
| abort(); |
| } |
| /* Clear the status */ |
| env->ext_dabt_raised = 0; |
| } |
| } |
| |
| MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
| { |
| ARMCPU *cpu; |
| uint32_t switched_level; |
| |
| if (kvm_irqchip_in_kernel()) { |
| /* |
| * We only need to sync timer states with user-space interrupt |
| * controllers, so return early and save cycles if we don't. |
| */ |
| return MEMTXATTRS_UNSPECIFIED; |
| } |
| |
| cpu = ARM_CPU(cs); |
| |
| /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ |
| if (run->s.regs.device_irq_level != cpu->device_irq_level) { |
| switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; |
| |
| bql_lock(); |
| |
| if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { |
| qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], |
| !!(run->s.regs.device_irq_level & |
| KVM_ARM_DEV_EL1_VTIMER)); |
| switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; |
| } |
| |
| if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { |
| qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], |
| !!(run->s.regs.device_irq_level & |
| KVM_ARM_DEV_EL1_PTIMER)); |
| switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; |
| } |
| |
| if (switched_level & KVM_ARM_DEV_PMU) { |
| qemu_set_irq(cpu->pmu_interrupt, |
| !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); |
| switched_level &= ~KVM_ARM_DEV_PMU; |
| } |
| |
| if (switched_level) { |
| qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", |
| __func__, switched_level); |
| } |
| |
| /* We also mark unknown levels as processed to not waste cycles */ |
| cpu->device_irq_level = run->s.regs.device_irq_level; |
| bql_unlock(); |
| } |
| |
| return MEMTXATTRS_UNSPECIFIED; |
| } |
| |
| static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) |
| { |
| ARMCPU *cpu = opaque; |
| |
| if (running) { |
| if (cpu->kvm_adjvtime) { |
| kvm_arm_put_virtual_time(cpu); |
| } |
| } else { |
| if (cpu->kvm_adjvtime) { |
| kvm_arm_get_virtual_time(cpu); |
| } |
| } |
| } |
| |
| /** |
| * kvm_arm_handle_dabt_nisv: |
| * @cpu: ARMCPU |
| * @esr_iss: ISS encoding (limited) for the exception from Data Abort |
| * ISV bit set to '0b0' -> no valid instruction syndrome |
| * @fault_ipa: faulting address for the synchronous data abort |
| * |
| * Returns: 0 if the exception has been handled, < 0 otherwise |
| */ |
| static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss, |
| uint64_t fault_ipa) |
| { |
| CPUARMState *env = &cpu->env; |
| /* |
| * Request KVM to inject the external data abort into the guest |
| */ |
| if (cap_has_inject_ext_dabt) { |
| struct kvm_vcpu_events events = { }; |
| /* |
| * The external data abort event will be handled immediately by KVM |
| * using the address fault that triggered the exit on given VCPU. |
| * Requesting injection of the external data abort does not rely |
| * on any other VCPU state. Therefore, in this particular case, the VCPU |
| * synchronization can be exceptionally skipped. |
| */ |
| events.exception.ext_dabt_pending = 1; |
| /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ |
| if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) { |
| env->ext_dabt_raised = 1; |
| return 0; |
| } |
| } else { |
| error_report("Data abort exception triggered by guest memory access " |
| "at physical address: 0x" TARGET_FMT_lx, |
| (target_ulong)fault_ipa); |
| error_printf("KVM unable to emulate faulting instruction.\n"); |
| } |
| return -1; |
| } |
| |
| /** |
| * kvm_arm_handle_debug: |
| * @cpu: ARMCPU |
| * @debug_exit: debug part of the KVM exit structure |
| * |
| * Returns: TRUE if the debug exception was handled. |
| * |
| * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register |
| * |
| * To minimise translating between kernel and user-space the kernel |
| * ABI just provides user-space with the full exception syndrome |
| * register value to be decoded in QEMU. |
| */ |
| static bool kvm_arm_handle_debug(ARMCPU *cpu, |
| struct kvm_debug_exit_arch *debug_exit) |
| { |
| int hsr_ec = syn_get_ec(debug_exit->hsr); |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| |
| /* Ensure PC is synchronised */ |
| kvm_cpu_synchronize_state(cs); |
| |
| switch (hsr_ec) { |
| case EC_SOFTWARESTEP: |
| if (cs->singlestep_enabled) { |
| return true; |
| } else { |
| /* |
| * The kernel should have suppressed the guest's ability to |
| * single step at this point so something has gone wrong. |
| */ |
| error_report("%s: guest single-step while debugging unsupported" |
| " (%"PRIx64", %"PRIx32")", |
| __func__, env->pc, debug_exit->hsr); |
| return false; |
| } |
| break; |
| case EC_AA64_BKPT: |
| if (kvm_find_sw_breakpoint(cs, env->pc)) { |
| return true; |
| } |
| break; |
| case EC_BREAKPOINT: |
| if (find_hw_breakpoint(cs, env->pc)) { |
| return true; |
| } |
| break; |
| case EC_WATCHPOINT: |
| { |
| CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far); |
| if (wp) { |
| cs->watchpoint_hit = wp; |
| return true; |
| } |
| break; |
| } |
| default: |
| error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")", |
| __func__, debug_exit->hsr, env->pc); |
| } |
| |
| /* If we are not handling the debug exception it must belong to |
| * the guest. Let's re-use the existing TCG interrupt code to set |
| * everything up properly. |
| */ |
| cs->exception_index = EXCP_BKPT; |
| env->exception.syndrome = debug_exit->hsr; |
| env->exception.vaddress = debug_exit->far; |
| env->exception.target_el = 1; |
| bql_lock(); |
| arm_cpu_do_interrupt(cs); |
| bql_unlock(); |
| |
| return false; |
| } |
| |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| int ret = 0; |
| |
| switch (run->exit_reason) { |
| case KVM_EXIT_DEBUG: |
| if (kvm_arm_handle_debug(cpu, &run->debug.arch)) { |
| ret = EXCP_DEBUG; |
| } /* otherwise return to guest */ |
| break; |
| case KVM_EXIT_ARM_NISV: |
| /* External DABT with no valid iss to decode */ |
| ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss, |
| run->arm_nisv.fault_ipa); |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", |
| __func__, run->exit_reason); |
| break; |
| } |
| return ret; |
| } |
| |
| bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
| { |
| return true; |
| } |
| |
| int kvm_arch_process_async_events(CPUState *cs) |
| { |
| return 0; |
| } |
| |
| /** |
| * kvm_arm_hw_debug_active: |
| * @cpu: ARMCPU |
| * |
| * Return: TRUE if any hardware breakpoints in use. |
| */ |
| static bool kvm_arm_hw_debug_active(ARMCPU *cpu) |
| { |
| return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); |
| } |
| |
| /** |
| * kvm_arm_copy_hw_debug_data: |
| * @ptr: kvm_guest_debug_arch structure |
| * |
| * Copy the architecture specific debug registers into the |
| * kvm_guest_debug ioctl structure. |
| */ |
| static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) |
| { |
| int i; |
| memset(ptr, 0, sizeof(struct kvm_guest_debug_arch)); |
| |
| for (i = 0; i < max_hw_wps; i++) { |
| HWWatchpoint *wp = get_hw_wp(i); |
| ptr->dbg_wcr[i] = wp->wcr; |
| ptr->dbg_wvr[i] = wp->wvr; |
| } |
| for (i = 0; i < max_hw_bps; i++) { |
| HWBreakpoint *bp = get_hw_bp(i); |
| ptr->dbg_bcr[i] = bp->bcr; |
| ptr->dbg_bvr[i] = bp->bvr; |
| } |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
| { |
| if (kvm_sw_breakpoints_active(cs)) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
| } |
| if (kvm_arm_hw_debug_active(ARM_CPU(cs))) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; |
| kvm_arm_copy_hw_debug_data(&dbg->arch); |
| } |
| } |
| |
| void kvm_arch_init_irq_routing(KVMState *s) |
| { |
| } |
| |
| int kvm_arch_irqchip_create(KVMState *s) |
| { |
| if (kvm_kernel_irqchip_split()) { |
| error_report("-machine kernel_irqchip=split is not supported on ARM."); |
| exit(1); |
| } |
| |
| /* If we can create the VGIC using the newer device control API, we |
| * let the device do this when it initializes itself, otherwise we |
| * fall back to the old API */ |
| return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); |
| } |
| |
| int kvm_arm_vgic_probe(void) |
| { |
| int val = 0; |
| |
| if (kvm_create_device(kvm_state, |
| KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { |
| val |= KVM_ARM_VGIC_V3; |
| } |
| if (kvm_create_device(kvm_state, |
| KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { |
| val |= KVM_ARM_VGIC_V2; |
| } |
| return val; |
| } |
| |
| int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) |
| { |
| int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; |
| int cpu_idx1 = cpu % 256; |
| int cpu_idx2 = cpu / 256; |
| |
| kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | |
| (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); |
| |
| return kvm_set_irq(kvm_state, kvm_irq, !!level); |
| } |
| |
| int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, |
| uint64_t address, uint32_t data, PCIDevice *dev) |
| { |
| AddressSpace *as = pci_device_iommu_address_space(dev); |
| hwaddr xlat, len, doorbell_gpa; |
| MemoryRegionSection mrs; |
| MemoryRegion *mr; |
| |
| if (as == &address_space_memory) { |
| return 0; |
| } |
| |
| /* MSI doorbell address is translated by an IOMMU */ |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| mr = address_space_translate(as, address, &xlat, &len, true, |
| MEMTXATTRS_UNSPECIFIED); |
| |
| if (!mr) { |
| return 1; |
| } |
| |
| mrs = memory_region_find(mr, xlat, 1); |
| |
| if (!mrs.mr) { |
| return 1; |
| } |
| |
| doorbell_gpa = mrs.offset_within_address_space; |
| memory_region_unref(mrs.mr); |
| |
| route->u.msi.address_lo = doorbell_gpa; |
| route->u.msi.address_hi = doorbell_gpa >> 32; |
| |
| trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); |
| |
| return 0; |
| } |
| |
| int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
| int vector, PCIDevice *dev) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_release_virq_post(int virq) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_msi_data_to_gsi(uint32_t data) |
| { |
| return (data - 32) & 0xffff; |
| } |
| |
| static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| uint64_t value = s->kvm_eager_split_size; |
| |
| visit_type_size(v, name, &value, errp); |
| } |
| |
| static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v, |
| const char *name, void *opaque, |
| Error **errp) |
| { |
| KVMState *s = KVM_STATE(obj); |
| uint64_t value; |
| |
| if (s->fd != -1) { |
| error_setg(errp, "Unable to set early-split-size after KVM has been initialized"); |
| return; |
| } |
| |
| if (!visit_type_size(v, name, &value, errp)) { |
| return; |
| } |
| |
| if (value && !is_power_of_2(value)) { |
| error_setg(errp, "early-split-size must be a power of two"); |
| return; |
| } |
| |
| s->kvm_eager_split_size = value; |
| } |
| |
| void kvm_arch_accel_class_init(ObjectClass *oc) |
| { |
| object_class_property_add(oc, "eager-split-size", "size", |
| kvm_arch_get_eager_split_size, |
| kvm_arch_set_eager_split_size, NULL, NULL); |
| |
| object_class_property_set_description(oc, "eager-split-size", |
| "Eager Page Split chunk size for hugepages. (default: 0, disabled)"); |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| return insert_hw_breakpoint(addr); |
| break; |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| return insert_hw_watchpoint(addr, len, type); |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| return delete_hw_breakpoint(addr); |
| case GDB_WATCHPOINT_READ: |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| return delete_hw_watchpoint(addr, len, type); |
| default: |
| return -ENOSYS; |
| } |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| if (cur_hw_wps > 0) { |
| g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); |
| } |
| if (cur_hw_bps > 0) { |
| g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); |
| } |
| } |
| |
| static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr, |
| const char *name) |
| { |
| int err; |
| |
| err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr); |
| if (err != 0) { |
| error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err)); |
| return false; |
| } |
| |
| err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr); |
| if (err != 0) { |
| error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void kvm_arm_pmu_init(ARMCPU *cpu) |
| { |
| struct kvm_device_attr attr = { |
| .group = KVM_ARM_VCPU_PMU_V3_CTRL, |
| .attr = KVM_ARM_VCPU_PMU_V3_INIT, |
| }; |
| |
| if (!cpu->has_pmu) { |
| return; |
| } |
| if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) { |
| error_report("failed to init PMU"); |
| abort(); |
| } |
| } |
| |
| void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq) |
| { |
| struct kvm_device_attr attr = { |
| .group = KVM_ARM_VCPU_PMU_V3_CTRL, |
| .addr = (intptr_t)&irq, |
| .attr = KVM_ARM_VCPU_PMU_V3_IRQ, |
| }; |
| |
| if (!cpu->has_pmu) { |
| return; |
| } |
| if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) { |
| error_report("failed to set irq for PMU"); |
| abort(); |
| } |
| } |
| |
| void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa) |
| { |
| struct kvm_device_attr attr = { |
| .group = KVM_ARM_VCPU_PVTIME_CTRL, |
| .attr = KVM_ARM_VCPU_PVTIME_IPA, |
| .addr = (uint64_t)&ipa, |
| }; |
| |
| if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) { |
| return; |
| } |
| if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) { |
| error_report("failed to init PVTIME IPA"); |
| abort(); |
| } |
| } |
| |
| void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp) |
| { |
| bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME); |
| |
| if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) { |
| if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| cpu->kvm_steal_time = ON_OFF_AUTO_OFF; |
| } else { |
| cpu->kvm_steal_time = ON_OFF_AUTO_ON; |
| } |
| } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) { |
| if (!has_steal_time) { |
| error_setg(errp, "'kvm-steal-time' cannot be enabled " |
| "on this host"); |
| return; |
| } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| /* |
| * DEN0057A chapter 2 says "This specification only covers |
| * systems in which the Execution state of the hypervisor |
| * as well as EL1 of virtual machines is AArch64.". And, |
| * to ensure that, the smc/hvc calls are only specified as |
| * smc64/hvc64. |
| */ |
| error_setg(errp, "'kvm-steal-time' cannot be enabled " |
| "for AArch32 guests"); |
| return; |
| } |
| } |
| } |
| |
| bool kvm_arm_aarch32_supported(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT); |
| } |
| |
| bool kvm_arm_sve_supported(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE); |
| } |
| |
| bool kvm_arm_mte_supported(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_ARM_MTE); |
| } |
| |
| QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1); |
| |
| uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu) |
| { |
| /* Only call this function if kvm_arm_sve_supported() returns true. */ |
| static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS]; |
| static bool probed; |
| uint32_t vq = 0; |
| int i; |
| |
| /* |
| * KVM ensures all host CPUs support the same set of vector lengths. |
| * So we only need to create the scratch VCPUs once and then cache |
| * the results. |
| */ |
| if (!probed) { |
| struct kvm_vcpu_init init = { |
| .target = -1, |
| .features[0] = (1 << KVM_ARM_VCPU_SVE), |
| }; |
| struct kvm_one_reg reg = { |
| .id = KVM_REG_ARM64_SVE_VLS, |
| .addr = (uint64_t)&vls[0], |
| }; |
| int fdarray[3], ret; |
| |
| probed = true; |
| |
| if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) { |
| error_report("failed to create scratch VCPU with SVE enabled"); |
| abort(); |
| } |
| ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®); |
| kvm_arm_destroy_scratch_host_vcpu(fdarray); |
| if (ret) { |
| error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s", |
| strerror(errno)); |
| abort(); |
| } |
| |
| for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) { |
| if (vls[i]) { |
| vq = 64 - clz64(vls[i]) + i * 64; |
| break; |
| } |
| } |
| if (vq > ARM_MAX_VQ) { |
| warn_report("KVM supports vector lengths larger than " |
| "QEMU can enable"); |
| vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ); |
| } |
| } |
| |
| return vls[0]; |
| } |
| |
| static int kvm_arm_sve_set_vls(ARMCPU *cpu) |
| { |
| uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map }; |
| |
| assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX); |
| |
| return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]); |
| } |
| |
| #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 |
| |
| int kvm_arch_init_vcpu(CPUState *cs) |
| { |
| int ret; |
| uint64_t mpidr; |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint64_t psciver; |
| |
| if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || |
| !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { |
| error_report("KVM is not supported for this guest CPU type"); |
| return -EINVAL; |
| } |
| |
| qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu); |
| |
| /* Determine init features for this CPU */ |
| memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); |
| if (cs->start_powered_off) { |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; |
| } |
| if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { |
| cpu->psci_version = QEMU_PSCI_VERSION_0_2; |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; |
| } |
| if (!arm_feature(env, ARM_FEATURE_AARCH64)) { |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; |
| } |
| if (cpu->has_pmu) { |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; |
| } |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| assert(kvm_arm_sve_supported()); |
| cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE; |
| } |
| if (cpu_isar_feature(aa64_pauth, cpu)) { |
| cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | |
| 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); |
| } |
| |
| /* Do KVM_ARM_VCPU_INIT ioctl */ |
| ret = kvm_arm_vcpu_init(cpu); |
| if (ret) { |
| return ret; |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| ret = kvm_arm_sve_set_vls(cpu); |
| if (ret) { |
| return ret; |
| } |
| ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* |
| * KVM reports the exact PSCI version it is implementing via a |
| * special sysreg. If it is present, use its contents to determine |
| * what to report to the guest in the dtb (it is the PSCI version, |
| * in the same 15-bits major 16-bits minor format that PSCI_VERSION |
| * returns). |
| */ |
| if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) { |
| cpu->psci_version = psciver; |
| } |
| |
| /* |
| * When KVM is in use, PSCI is emulated in-kernel and not by qemu. |
| * Currently KVM has its own idea about MPIDR assignment, so we |
| * override our defaults with what we get from KVM. |
| */ |
| ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); |
| if (ret) { |
| return ret; |
| } |
| cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; |
| |
| return kvm_arm_init_cpreg_list(cpu); |
| } |
| |
| int kvm_arch_destroy_vcpu(CPUState *cs) |
| { |
| return 0; |
| } |
| |
| /* Callers must hold the iothread mutex lock */ |
| static void kvm_inject_arm_sea(CPUState *c) |
| { |
| ARMCPU *cpu = ARM_CPU(c); |
| CPUARMState *env = &cpu->env; |
| uint32_t esr; |
| bool same_el; |
| |
| c->exception_index = EXCP_DATA_ABORT; |
| env->exception.target_el = 1; |
| |
| /* |
| * Set the DFSC to synchronous external abort and set FnV to not valid, |
| * this will tell guest the FAR_ELx is UNKNOWN for this abort. |
| */ |
| same_el = arm_current_el(env) == env->exception.target_el; |
| esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10); |
| |
| env->exception.syndrome = esr; |
| |
| arm_cpu_do_interrupt(c); |
| } |
| |
| #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) |
| |
| #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) |
| |
| #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ |
| KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) |
| |
| static int kvm_arch_put_fpsimd(CPUState *cs) |
| { |
| CPUARMState *env = &ARM_CPU(cs)->env; |
| int i, ret; |
| |
| for (i = 0; i < 32; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| #if HOST_BIG_ENDIAN |
| uint64_t fp_val[2] = { q[1], q[0] }; |
| ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), |
| fp_val); |
| #else |
| ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); |
| #endif |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits |
| * and PREGS and the FFR have a slice size of 256 bits. However we simply hard |
| * code the slice index to zero for now as it's unlikely we'll need more than |
| * one slice for quite some time. |
| */ |
| static int kvm_arch_put_sve(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint64_t tmp[ARM_MAX_VQ * 2]; |
| uint64_t *r; |
| int n, ret; |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { |
| r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); |
| ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { |
| r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], |
| DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], |
| DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); |
| if (ret) { |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_put_registers(CPUState *cs, int level, Error **errp) |
| { |
| uint64_t val; |
| uint32_t fpr; |
| int i, ret; |
| unsigned int el; |
| |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| /* If we are in AArch32 mode then we need to copy the AArch32 regs to the |
| * AArch64 registers before pushing them out to 64-bit KVM. |
| */ |
| if (!is_a64(env)) { |
| aarch64_sync_32_to_64(env); |
| } |
| |
| for (i = 0; i < 31; i++) { |
| ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), |
| &env->xregs[i]); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
| * QEMU side we keep the current SP in xregs[31] as well. |
| */ |
| aarch64_save_sp(env, 1); |
| |
| ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ |
| if (is_a64(env)) { |
| val = pstate_read(env); |
| } else { |
| val = cpsr_read(env); |
| } |
| ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Saved Program State Registers |
| * |
| * Before we restore from the banked_spsr[] array we need to |
| * ensure that any modifications to env->spsr are correctly |
| * reflected in the banks. |
| */ |
| el = arm_current_el(env); |
| if (el > 0 && !is_a64(env)) { |
| i = bank_number(env->uncached_cpsr & CPSR_M); |
| env->banked_spsr[i] = env->spsr; |
| } |
| |
| /* KVM 0-4 map to QEMU banks 1-5 */ |
| for (i = 0; i < KVM_NR_SPSR; i++) { |
| ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]), |
| &env->banked_spsr[i + 1]); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| ret = kvm_arch_put_sve(cs); |
| } else { |
| ret = kvm_arch_put_fpsimd(cs); |
| } |
| if (ret) { |
| return ret; |
| } |
| |
| fpr = vfp_get_fpsr(env); |
| ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); |
| if (ret) { |
| return ret; |
| } |
| |
| fpr = vfp_get_fpcr(env); |
| ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); |
| if (ret) { |
| return ret; |
| } |
| |
| write_cpustate_to_list(cpu, true); |
| |
| if (!write_list_to_kvmstate(cpu, level)) { |
| return -EINVAL; |
| } |
| |
| /* |
| * Setting VCPU events should be triggered after syncing the registers |
| * to avoid overwriting potential changes made by KVM upon calling |
| * KVM_SET_VCPU_EVENTS ioctl |
| */ |
| ret = kvm_put_vcpu_events(cpu); |
| if (ret) { |
| return ret; |
| } |
| |
| return kvm_arm_sync_mpstate_to_kvm(cpu); |
| } |
| |
| static int kvm_arch_get_fpsimd(CPUState *cs) |
| { |
| CPUARMState *env = &ARM_CPU(cs)->env; |
| int i, ret; |
| |
| for (i = 0; i < 32; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); |
| if (ret) { |
| return ret; |
| } else { |
| #if HOST_BIG_ENDIAN |
| uint64_t t; |
| t = q[0], q[0] = q[1], q[1] = t; |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits |
| * and PREGS and the FFR have a slice size of 256 bits. However we simply hard |
| * code the slice index to zero for now as it's unlikely we'll need more than |
| * one slice for quite some time. |
| */ |
| static int kvm_arch_get_sve(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint64_t *r; |
| int n, ret; |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { |
| r = &env->vfp.zregs[n].d[0]; |
| ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); |
| if (ret) { |
| return ret; |
| } |
| sve_bswap64(r, r, cpu->sve_max_vq * 2); |
| } |
| |
| for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { |
| r = &env->vfp.pregs[n].p[0]; |
| ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); |
| if (ret) { |
| return ret; |
| } |
| sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| } |
| |
| r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; |
| ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); |
| if (ret) { |
| return ret; |
| } |
| sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); |
| |
| return 0; |
| } |
| |
| int kvm_arch_get_registers(CPUState *cs, Error **errp) |
| { |
| uint64_t val; |
| unsigned int el; |
| uint32_t fpr; |
| int i, ret; |
| |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| for (i = 0; i < 31; i++) { |
| ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), |
| &env->xregs[i]); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); |
| if (ret) { |
| return ret; |
| } |
| |
| ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); |
| if (ret) { |
| return ret; |
| } |
| |
| env->aarch64 = ((val & PSTATE_nRW) == 0); |
| if (is_a64(env)) { |
| pstate_write(env, val); |
| } else { |
| cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); |
| } |
| |
| /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the |
| * QEMU side we keep the current SP in xregs[31] as well. |
| */ |
| aarch64_restore_sp(env, 1); |
| |
| ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); |
| if (ret) { |
| return ret; |
| } |
| |
| /* If we are in AArch32 mode then we need to sync the AArch32 regs with the |
| * incoming AArch64 regs received from 64-bit KVM. |
| * We must perform this after all of the registers have been acquired from |
| * the kernel. |
| */ |
| if (!is_a64(env)) { |
| aarch64_sync_64_to_32(env); |
| } |
| |
| ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); |
| if (ret) { |
| return ret; |
| } |
| |
| /* Fetch the SPSR registers |
| * |
| * KVM SPSRs 0-4 map to QEMU banks 1-5 |
| */ |
| for (i = 0; i < KVM_NR_SPSR; i++) { |
| ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]), |
| &env->banked_spsr[i + 1]); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| el = arm_current_el(env); |
| if (el > 0 && !is_a64(env)) { |
| i = bank_number(env->uncached_cpsr & CPSR_M); |
| env->spsr = env->banked_spsr[i]; |
| } |
| |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| ret = kvm_arch_get_sve(cs); |
| } else { |
| ret = kvm_arch_get_fpsimd(cs); |
| } |
| if (ret) { |
| return ret; |
| } |
| |
| ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); |
| if (ret) { |
| return ret; |
| } |
| vfp_set_fpsr(env, fpr); |
| |
| ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); |
| if (ret) { |
| return ret; |
| } |
| vfp_set_fpcr(env, fpr); |
| |
| ret = kvm_get_vcpu_events(cpu); |
| if (ret) { |
| return ret; |
| } |
| |
| if (!write_kvmstate_to_list(cpu)) { |
| return -EINVAL; |
| } |
| /* Note that it's OK to have registers which aren't in CPUState, |
| * so we can ignore a failure return here. |
| */ |
| write_list_to_cpustate(cpu); |
| |
| ret = kvm_arm_sync_mpstate_to_qemu(cpu); |
| |
| /* TODO: other registers */ |
| return ret; |
| } |
| |
| void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
| { |
| ram_addr_t ram_addr; |
| hwaddr paddr; |
| |
| assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
| |
| if (acpi_ghes_present() && addr) { |
| ram_addr = qemu_ram_addr_from_host(addr); |
| if (ram_addr != RAM_ADDR_INVALID && |
| kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
| kvm_hwpoison_page_add(ram_addr); |
| /* |
| * If this is a BUS_MCEERR_AR, we know we have been called |
| * synchronously from the vCPU thread, so we can easily |
| * synchronize the state and inject an error. |
| * |
| * TODO: we currently don't tell the guest at all about |
| * BUS_MCEERR_AO. In that case we might either be being |
| * called synchronously from the vCPU thread, or a bit |
| * later from the main thread, so doing the injection of |
| * the error would be more complicated. |
| */ |
| if (code == BUS_MCEERR_AR) { |
| kvm_cpu_synchronize_state(c); |
| if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) { |
| kvm_inject_arm_sea(c); |
| } else { |
| error_report("failed to record the error"); |
| abort(); |
| } |
| } |
| return; |
| } |
| if (code == BUS_MCEERR_AO) { |
| error_report("Hardware memory error at addr %p for memory used by " |
| "QEMU itself instead of guest system!", addr); |
| } |
| } |
| |
| if (code == BUS_MCEERR_AR) { |
| error_report("Hardware memory error!"); |
| exit(1); |
| } |
| } |
| |
| /* C6.6.29 BRK instruction */ |
| static const uint32_t brk_insn = 0xd4200000; |
| |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || |
| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| static uint32_t brk; |
| |
| if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || |
| brk != brk_insn || |
| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| void kvm_arm_enable_mte(Object *cpuobj, Error **errp) |
| { |
| static bool tried_to_enable; |
| static bool succeeded_to_enable; |
| Error *mte_migration_blocker = NULL; |
| ARMCPU *cpu = ARM_CPU(cpuobj); |
| int ret; |
| |
| if (!tried_to_enable) { |
| /* |
| * MTE on KVM is enabled on a per-VM basis (and retrying doesn't make |
| * sense), and we only want a single migration blocker as well. |
| */ |
| tried_to_enable = true; |
| |
| ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_ARM_MTE, 0); |
| if (ret) { |
| error_setg_errno(errp, -ret, "Failed to enable KVM_CAP_ARM_MTE"); |
| return; |
| } |
| |
| /* TODO: Add migration support with MTE enabled */ |
| error_setg(&mte_migration_blocker, |
| "Live migration disabled due to MTE enabled"); |
| if (migrate_add_blocker(&mte_migration_blocker, errp)) { |
| error_free(mte_migration_blocker); |
| return; |
| } |
| |
| succeeded_to_enable = true; |
| } |
| |
| if (succeeded_to_enable) { |
| cpu->kvm_mte = true; |
| } |
| } |