| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/config-file.h" |
| #include "cpu.h" |
| #include "monitor/monitor.h" |
| #include "qapi/error.h" |
| #include "qapi/qapi-commands-misc.h" |
| #include "qapi/qapi-events-run-state.h" |
| #include "qapi/qmp/qerror.h" |
| #include "qemu/error-report.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/block-backend.h" |
| #include "exec/gdbstub.h" |
| #include "sysemu/dma.h" |
| #include "sysemu/hw_accel.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/hax.h" |
| #include "sysemu/hvf.h" |
| #include "sysemu/whpx.h" |
| #include "exec/exec-all.h" |
| |
| #include "qemu/thread.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/qtest.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/option.h" |
| #include "qemu/bitmap.h" |
| #include "qemu/seqlock.h" |
| #include "tcg.h" |
| #include "hw/nmi.h" |
| #include "sysemu/replay.h" |
| #include "hw/boards.h" |
| |
| #ifdef CONFIG_LINUX |
| |
| #include <sys/prctl.h> |
| |
| #ifndef PR_MCE_KILL |
| #define PR_MCE_KILL 33 |
| #endif |
| |
| #ifndef PR_MCE_KILL_SET |
| #define PR_MCE_KILL_SET 1 |
| #endif |
| |
| #ifndef PR_MCE_KILL_EARLY |
| #define PR_MCE_KILL_EARLY 1 |
| #endif |
| |
| #endif /* CONFIG_LINUX */ |
| |
| int64_t max_delay; |
| int64_t max_advance; |
| |
| /* vcpu throttling controls */ |
| static QEMUTimer *throttle_timer; |
| static unsigned int throttle_percentage; |
| |
| #define CPU_THROTTLE_PCT_MIN 1 |
| #define CPU_THROTTLE_PCT_MAX 99 |
| #define CPU_THROTTLE_TIMESLICE_NS 10000000 |
| |
| bool cpu_is_stopped(CPUState *cpu) |
| { |
| return cpu->stopped || !runstate_is_running(); |
| } |
| |
| static bool cpu_thread_is_idle(CPUState *cpu) |
| { |
| if (cpu->stop || cpu->queued_work_first) { |
| return false; |
| } |
| if (cpu_is_stopped(cpu)) { |
| return true; |
| } |
| if (!cpu->halted || cpu_has_work(cpu) || |
| kvm_halt_in_kernel()) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool all_cpu_threads_idle(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (!cpu_thread_is_idle(cpu)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /***********************************************************/ |
| /* guest cycle counter */ |
| |
| /* Protected by TimersState seqlock */ |
| |
| static bool icount_sleep = true; |
| /* Conversion factor from emulated instructions to virtual clock ticks. */ |
| static int icount_time_shift; |
| /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ |
| #define MAX_ICOUNT_SHIFT 10 |
| |
| typedef struct TimersState { |
| /* Protected by BQL. */ |
| int64_t cpu_ticks_prev; |
| int64_t cpu_ticks_offset; |
| |
| /* cpu_clock_offset can be read out of BQL, so protect it with |
| * this lock. |
| */ |
| QemuSeqLock vm_clock_seqlock; |
| int64_t cpu_clock_offset; |
| int32_t cpu_ticks_enabled; |
| int64_t dummy; |
| |
| /* Compensate for varying guest execution speed. */ |
| int64_t qemu_icount_bias; |
| /* Only written by TCG thread */ |
| int64_t qemu_icount; |
| /* for adjusting icount */ |
| int64_t vm_clock_warp_start; |
| QEMUTimer *icount_rt_timer; |
| QEMUTimer *icount_vm_timer; |
| QEMUTimer *icount_warp_timer; |
| } TimersState; |
| |
| static TimersState timers_state; |
| bool mttcg_enabled; |
| |
| /* |
| * We default to false if we know other options have been enabled |
| * which are currently incompatible with MTTCG. Otherwise when each |
| * guest (target) has been updated to support: |
| * - atomic instructions |
| * - memory ordering primitives (barriers) |
| * they can set the appropriate CONFIG flags in ${target}-softmmu.mak |
| * |
| * Once a guest architecture has been converted to the new primitives |
| * there are two remaining limitations to check. |
| * |
| * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host) |
| * - The host must have a stronger memory order than the guest |
| * |
| * It may be possible in future to support strong guests on weak hosts |
| * but that will require tagging all load/stores in a guest with their |
| * implicit memory order requirements which would likely slow things |
| * down a lot. |
| */ |
| |
| static bool check_tcg_memory_orders_compatible(void) |
| { |
| #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO) |
| return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0; |
| #else |
| return false; |
| #endif |
| } |
| |
| static bool default_mttcg_enabled(void) |
| { |
| if (use_icount || TCG_OVERSIZED_GUEST) { |
| return false; |
| } else { |
| #ifdef TARGET_SUPPORTS_MTTCG |
| return check_tcg_memory_orders_compatible(); |
| #else |
| return false; |
| #endif |
| } |
| } |
| |
| void qemu_tcg_configure(QemuOpts *opts, Error **errp) |
| { |
| const char *t = qemu_opt_get(opts, "thread"); |
| if (t) { |
| if (strcmp(t, "multi") == 0) { |
| if (TCG_OVERSIZED_GUEST) { |
| error_setg(errp, "No MTTCG when guest word size > hosts"); |
| } else if (use_icount) { |
| error_setg(errp, "No MTTCG when icount is enabled"); |
| } else { |
| #ifndef TARGET_SUPPORTS_MTTCG |
| error_report("Guest not yet converted to MTTCG - " |
| "you may get unexpected results"); |
| #endif |
| if (!check_tcg_memory_orders_compatible()) { |
| error_report("Guest expects a stronger memory ordering " |
| "than the host provides"); |
| error_printf("This may cause strange/hard to debug errors\n"); |
| } |
| mttcg_enabled = true; |
| } |
| } else if (strcmp(t, "single") == 0) { |
| mttcg_enabled = false; |
| } else { |
| error_setg(errp, "Invalid 'thread' setting %s", t); |
| } |
| } else { |
| mttcg_enabled = default_mttcg_enabled(); |
| } |
| } |
| |
| /* The current number of executed instructions is based on what we |
| * originally budgeted minus the current state of the decrementing |
| * icount counters in extra/u16.low. |
| */ |
| static int64_t cpu_get_icount_executed(CPUState *cpu) |
| { |
| return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra); |
| } |
| |
| /* |
| * Update the global shared timer_state.qemu_icount to take into |
| * account executed instructions. This is done by the TCG vCPU |
| * thread so the main-loop can see time has moved forward. |
| */ |
| void cpu_update_icount(CPUState *cpu) |
| { |
| int64_t executed = cpu_get_icount_executed(cpu); |
| cpu->icount_budget -= executed; |
| |
| #ifdef CONFIG_ATOMIC64 |
| atomic_set__nocheck(&timers_state.qemu_icount, |
| atomic_read__nocheck(&timers_state.qemu_icount) + |
| executed); |
| #else /* FIXME: we need 64bit atomics to do this safely */ |
| timers_state.qemu_icount += executed; |
| #endif |
| } |
| |
| int64_t cpu_get_icount_raw(void) |
| { |
| CPUState *cpu = current_cpu; |
| |
| if (cpu && cpu->running) { |
| if (!cpu->can_do_io) { |
| error_report("Bad icount read"); |
| exit(1); |
| } |
| /* Take into account what has run */ |
| cpu_update_icount(cpu); |
| } |
| #ifdef CONFIG_ATOMIC64 |
| return atomic_read__nocheck(&timers_state.qemu_icount); |
| #else /* FIXME: we need 64bit atomics to do this safely */ |
| return timers_state.qemu_icount; |
| #endif |
| } |
| |
| /* Return the virtual CPU time, based on the instruction counter. */ |
| static int64_t cpu_get_icount_locked(void) |
| { |
| int64_t icount = cpu_get_icount_raw(); |
| return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount); |
| } |
| |
| int64_t cpu_get_icount(void) |
| { |
| int64_t icount; |
| unsigned start; |
| |
| do { |
| start = seqlock_read_begin(&timers_state.vm_clock_seqlock); |
| icount = cpu_get_icount_locked(); |
| } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); |
| |
| return icount; |
| } |
| |
| int64_t cpu_icount_to_ns(int64_t icount) |
| { |
| return icount << icount_time_shift; |
| } |
| |
| /* return the time elapsed in VM between vm_start and vm_stop. Unless |
| * icount is active, cpu_get_ticks() uses units of the host CPU cycle |
| * counter. |
| * |
| * Caller must hold the BQL |
| */ |
| int64_t cpu_get_ticks(void) |
| { |
| int64_t ticks; |
| |
| if (use_icount) { |
| return cpu_get_icount(); |
| } |
| |
| ticks = timers_state.cpu_ticks_offset; |
| if (timers_state.cpu_ticks_enabled) { |
| ticks += cpu_get_host_ticks(); |
| } |
| |
| if (timers_state.cpu_ticks_prev > ticks) { |
| /* Note: non increasing ticks may happen if the host uses |
| software suspend */ |
| timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; |
| ticks = timers_state.cpu_ticks_prev; |
| } |
| |
| timers_state.cpu_ticks_prev = ticks; |
| return ticks; |
| } |
| |
| static int64_t cpu_get_clock_locked(void) |
| { |
| int64_t time; |
| |
| time = timers_state.cpu_clock_offset; |
| if (timers_state.cpu_ticks_enabled) { |
| time += get_clock(); |
| } |
| |
| return time; |
| } |
| |
| /* Return the monotonic time elapsed in VM, i.e., |
| * the time between vm_start and vm_stop |
| */ |
| int64_t cpu_get_clock(void) |
| { |
| int64_t ti; |
| unsigned start; |
| |
| do { |
| start = seqlock_read_begin(&timers_state.vm_clock_seqlock); |
| ti = cpu_get_clock_locked(); |
| } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); |
| |
| return ti; |
| } |
| |
| /* enable cpu_get_ticks() |
| * Caller must hold BQL which serves as mutex for vm_clock_seqlock. |
| */ |
| void cpu_enable_ticks(void) |
| { |
| /* Here, the really thing protected by seqlock is cpu_clock_offset. */ |
| seqlock_write_begin(&timers_state.vm_clock_seqlock); |
| if (!timers_state.cpu_ticks_enabled) { |
| timers_state.cpu_ticks_offset -= cpu_get_host_ticks(); |
| timers_state.cpu_clock_offset -= get_clock(); |
| timers_state.cpu_ticks_enabled = 1; |
| } |
| seqlock_write_end(&timers_state.vm_clock_seqlock); |
| } |
| |
| /* disable cpu_get_ticks() : the clock is stopped. You must not call |
| * cpu_get_ticks() after that. |
| * Caller must hold BQL which serves as mutex for vm_clock_seqlock. |
| */ |
| void cpu_disable_ticks(void) |
| { |
| /* Here, the really thing protected by seqlock is cpu_clock_offset. */ |
| seqlock_write_begin(&timers_state.vm_clock_seqlock); |
| if (timers_state.cpu_ticks_enabled) { |
| timers_state.cpu_ticks_offset += cpu_get_host_ticks(); |
| timers_state.cpu_clock_offset = cpu_get_clock_locked(); |
| timers_state.cpu_ticks_enabled = 0; |
| } |
| seqlock_write_end(&timers_state.vm_clock_seqlock); |
| } |
| |
| /* Correlation between real and virtual time is always going to be |
| fairly approximate, so ignore small variation. |
| When the guest is idle real and virtual time will be aligned in |
| the IO wait loop. */ |
| #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10) |
| |
| static void icount_adjust(void) |
| { |
| int64_t cur_time; |
| int64_t cur_icount; |
| int64_t delta; |
| |
| /* Protected by TimersState mutex. */ |
| static int64_t last_delta; |
| |
| /* If the VM is not running, then do nothing. */ |
| if (!runstate_is_running()) { |
| return; |
| } |
| |
| seqlock_write_begin(&timers_state.vm_clock_seqlock); |
| cur_time = cpu_get_clock_locked(); |
| cur_icount = cpu_get_icount_locked(); |
| |
| delta = cur_icount - cur_time; |
| /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ |
| if (delta > 0 |
| && last_delta + ICOUNT_WOBBLE < delta * 2 |
| && icount_time_shift > 0) { |
| /* The guest is getting too far ahead. Slow time down. */ |
| icount_time_shift--; |
| } |
| if (delta < 0 |
| && last_delta - ICOUNT_WOBBLE > delta * 2 |
| && icount_time_shift < MAX_ICOUNT_SHIFT) { |
| /* The guest is getting too far behind. Speed time up. */ |
| icount_time_shift++; |
| } |
| last_delta = delta; |
| timers_state.qemu_icount_bias = cur_icount |
| - (timers_state.qemu_icount << icount_time_shift); |
| seqlock_write_end(&timers_state.vm_clock_seqlock); |
| } |
| |
| static void icount_adjust_rt(void *opaque) |
| { |
| timer_mod(timers_state.icount_rt_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); |
| icount_adjust(); |
| } |
| |
| static void icount_adjust_vm(void *opaque) |
| { |
| timer_mod(timers_state.icount_vm_timer, |
| qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| NANOSECONDS_PER_SECOND / 10); |
| icount_adjust(); |
| } |
| |
| static int64_t qemu_icount_round(int64_t count) |
| { |
| return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; |
| } |
| |
| static void icount_warp_rt(void) |
| { |
| unsigned seq; |
| int64_t warp_start; |
| |
| /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start |
| * changes from -1 to another value, so the race here is okay. |
| */ |
| do { |
| seq = seqlock_read_begin(&timers_state.vm_clock_seqlock); |
| warp_start = timers_state.vm_clock_warp_start; |
| } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq)); |
| |
| if (warp_start == -1) { |
| return; |
| } |
| |
| seqlock_write_begin(&timers_state.vm_clock_seqlock); |
| if (runstate_is_running()) { |
| int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT, |
| cpu_get_clock_locked()); |
| int64_t warp_delta; |
| |
| warp_delta = clock - timers_state.vm_clock_warp_start; |
| if (use_icount == 2) { |
| /* |
| * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too |
| * far ahead of real time. |
| */ |
| int64_t cur_icount = cpu_get_icount_locked(); |
| int64_t delta = clock - cur_icount; |
| warp_delta = MIN(warp_delta, delta); |
| } |
| timers_state.qemu_icount_bias += warp_delta; |
| } |
| timers_state.vm_clock_warp_start = -1; |
| seqlock_write_end(&timers_state.vm_clock_seqlock); |
| |
| if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } |
| } |
| |
| static void icount_timer_cb(void *opaque) |
| { |
| /* No need for a checkpoint because the timer already synchronizes |
| * with CHECKPOINT_CLOCK_VIRTUAL_RT. |
| */ |
| icount_warp_rt(); |
| } |
| |
| void qtest_clock_warp(int64_t dest) |
| { |
| int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| AioContext *aio_context; |
| assert(qtest_enabled()); |
| aio_context = qemu_get_aio_context(); |
| while (clock < dest) { |
| int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| int64_t warp = qemu_soonest_timeout(dest - clock, deadline); |
| |
| seqlock_write_begin(&timers_state.vm_clock_seqlock); |
| timers_state.qemu_icount_bias += warp; |
| seqlock_write_end(&timers_state.vm_clock_seqlock); |
| |
| qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); |
| timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); |
| clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| } |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } |
| |
| void qemu_start_warp_timer(void) |
| { |
| int64_t clock; |
| int64_t deadline; |
| |
| if (!use_icount) { |
| return; |
| } |
| |
| /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers |
| * do not fire, so computing the deadline does not make sense. |
| */ |
| if (!runstate_is_running()) { |
| return; |
| } |
| |
| /* warp clock deterministically in record/replay mode */ |
| if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) { |
| return; |
| } |
| |
| if (!all_cpu_threads_idle()) { |
| return; |
| } |
| |
| if (qtest_enabled()) { |
| /* When testing, qtest commands advance icount. */ |
| return; |
| } |
| |
| /* We want to use the earliest deadline from ALL vm_clocks */ |
| clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); |
| deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| if (deadline < 0) { |
| static bool notified; |
| if (!icount_sleep && !notified) { |
| warn_report("icount sleep disabled and no active timers"); |
| notified = true; |
| } |
| return; |
| } |
| |
| if (deadline > 0) { |
| /* |
| * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to |
| * sleep. Otherwise, the CPU might be waiting for a future timer |
| * interrupt to wake it up, but the interrupt never comes because |
| * the vCPU isn't running any insns and thus doesn't advance the |
| * QEMU_CLOCK_VIRTUAL. |
| */ |
| if (!icount_sleep) { |
| /* |
| * We never let VCPUs sleep in no sleep icount mode. |
| * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance |
| * to the next QEMU_CLOCK_VIRTUAL event and notify it. |
| * It is useful when we want a deterministic execution time, |
| * isolated from host latencies. |
| */ |
| seqlock_write_begin(&timers_state.vm_clock_seqlock); |
| timers_state.qemu_icount_bias += deadline; |
| seqlock_write_end(&timers_state.vm_clock_seqlock); |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } else { |
| /* |
| * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some |
| * "real" time, (related to the time left until the next event) has |
| * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this. |
| * This avoids that the warps are visible externally; for example, |
| * you will not be sending network packets continuously instead of |
| * every 100ms. |
| */ |
| seqlock_write_begin(&timers_state.vm_clock_seqlock); |
| if (timers_state.vm_clock_warp_start == -1 |
| || timers_state.vm_clock_warp_start > clock) { |
| timers_state.vm_clock_warp_start = clock; |
| } |
| seqlock_write_end(&timers_state.vm_clock_seqlock); |
| timer_mod_anticipate(timers_state.icount_warp_timer, |
| clock + deadline); |
| } |
| } else if (deadline == 0) { |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| } |
| } |
| |
| static void qemu_account_warp_timer(void) |
| { |
| if (!use_icount || !icount_sleep) { |
| return; |
| } |
| |
| /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers |
| * do not fire, so computing the deadline does not make sense. |
| */ |
| if (!runstate_is_running()) { |
| return; |
| } |
| |
| /* warp clock deterministically in record/replay mode */ |
| if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) { |
| return; |
| } |
| |
| timer_del(timers_state.icount_warp_timer); |
| icount_warp_rt(); |
| } |
| |
| static bool icount_state_needed(void *opaque) |
| { |
| return use_icount; |
| } |
| |
| static bool warp_timer_state_needed(void *opaque) |
| { |
| TimersState *s = opaque; |
| return s->icount_warp_timer != NULL; |
| } |
| |
| static bool adjust_timers_state_needed(void *opaque) |
| { |
| TimersState *s = opaque; |
| return s->icount_rt_timer != NULL; |
| } |
| |
| /* |
| * Subsection for warp timer migration is optional, because may not be created |
| */ |
| static const VMStateDescription icount_vmstate_warp_timer = { |
| .name = "timer/icount/warp_timer", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = warp_timer_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT64(vm_clock_warp_start, TimersState), |
| VMSTATE_TIMER_PTR(icount_warp_timer, TimersState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription icount_vmstate_adjust_timers = { |
| .name = "timer/icount/timers", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = adjust_timers_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_TIMER_PTR(icount_rt_timer, TimersState), |
| VMSTATE_TIMER_PTR(icount_vm_timer, TimersState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| /* |
| * This is a subsection for icount migration. |
| */ |
| static const VMStateDescription icount_vmstate_timers = { |
| .name = "timer/icount", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = icount_state_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT64(qemu_icount_bias, TimersState), |
| VMSTATE_INT64(qemu_icount, TimersState), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &icount_vmstate_warp_timer, |
| &icount_vmstate_adjust_timers, |
| NULL |
| } |
| }; |
| |
| static const VMStateDescription vmstate_timers = { |
| .name = "timer", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT64(cpu_ticks_offset, TimersState), |
| VMSTATE_INT64(dummy, TimersState), |
| VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &icount_vmstate_timers, |
| NULL |
| } |
| }; |
| |
| static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque) |
| { |
| double pct; |
| double throttle_ratio; |
| long sleeptime_ns; |
| |
| if (!cpu_throttle_get_percentage()) { |
| return; |
| } |
| |
| pct = (double)cpu_throttle_get_percentage()/100; |
| throttle_ratio = pct / (1 - pct); |
| sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS); |
| |
| qemu_mutex_unlock_iothread(); |
| g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */ |
| qemu_mutex_lock_iothread(); |
| atomic_set(&cpu->throttle_thread_scheduled, 0); |
| } |
| |
| static void cpu_throttle_timer_tick(void *opaque) |
| { |
| CPUState *cpu; |
| double pct; |
| |
| /* Stop the timer if needed */ |
| if (!cpu_throttle_get_percentage()) { |
| return; |
| } |
| CPU_FOREACH(cpu) { |
| if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) { |
| async_run_on_cpu(cpu, cpu_throttle_thread, |
| RUN_ON_CPU_NULL); |
| } |
| } |
| |
| pct = (double)cpu_throttle_get_percentage()/100; |
| timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + |
| CPU_THROTTLE_TIMESLICE_NS / (1-pct)); |
| } |
| |
| void cpu_throttle_set(int new_throttle_pct) |
| { |
| /* Ensure throttle percentage is within valid range */ |
| new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX); |
| new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN); |
| |
| atomic_set(&throttle_percentage, new_throttle_pct); |
| |
| timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + |
| CPU_THROTTLE_TIMESLICE_NS); |
| } |
| |
| void cpu_throttle_stop(void) |
| { |
| atomic_set(&throttle_percentage, 0); |
| } |
| |
| bool cpu_throttle_active(void) |
| { |
| return (cpu_throttle_get_percentage() != 0); |
| } |
| |
| int cpu_throttle_get_percentage(void) |
| { |
| return atomic_read(&throttle_percentage); |
| } |
| |
| void cpu_ticks_init(void) |
| { |
| seqlock_init(&timers_state.vm_clock_seqlock); |
| vmstate_register(NULL, 0, &vmstate_timers, &timers_state); |
| throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, |
| cpu_throttle_timer_tick, NULL); |
| } |
| |
| void configure_icount(QemuOpts *opts, Error **errp) |
| { |
| const char *option; |
| char *rem_str = NULL; |
| |
| option = qemu_opt_get(opts, "shift"); |
| if (!option) { |
| if (qemu_opt_get(opts, "align") != NULL) { |
| error_setg(errp, "Please specify shift option when using align"); |
| } |
| return; |
| } |
| |
| icount_sleep = qemu_opt_get_bool(opts, "sleep", true); |
| if (icount_sleep) { |
| timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, |
| icount_timer_cb, NULL); |
| } |
| |
| icount_align_option = qemu_opt_get_bool(opts, "align", false); |
| |
| if (icount_align_option && !icount_sleep) { |
| error_setg(errp, "align=on and sleep=off are incompatible"); |
| } |
| if (strcmp(option, "auto") != 0) { |
| errno = 0; |
| icount_time_shift = strtol(option, &rem_str, 0); |
| if (errno != 0 || *rem_str != '\0' || !strlen(option)) { |
| error_setg(errp, "icount: Invalid shift value"); |
| } |
| use_icount = 1; |
| return; |
| } else if (icount_align_option) { |
| error_setg(errp, "shift=auto and align=on are incompatible"); |
| } else if (!icount_sleep) { |
| error_setg(errp, "shift=auto and sleep=off are incompatible"); |
| } |
| |
| use_icount = 2; |
| |
| /* 125MIPS seems a reasonable initial guess at the guest speed. |
| It will be corrected fairly quickly anyway. */ |
| icount_time_shift = 3; |
| |
| /* Have both realtime and virtual time triggers for speed adjustment. |
| The realtime trigger catches emulated time passing too slowly, |
| the virtual time trigger catches emulated time passing too fast. |
| Realtime triggers occur even when idle, so use them less frequently |
| than VM triggers. */ |
| timers_state.vm_clock_warp_start = -1; |
| timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT, |
| icount_adjust_rt, NULL); |
| timer_mod(timers_state.icount_rt_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); |
| timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| icount_adjust_vm, NULL); |
| timer_mod(timers_state.icount_vm_timer, |
| qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| NANOSECONDS_PER_SECOND / 10); |
| } |
| |
| /***********************************************************/ |
| /* TCG vCPU kick timer |
| * |
| * The kick timer is responsible for moving single threaded vCPU |
| * emulation on to the next vCPU. If more than one vCPU is running a |
| * timer event with force a cpu->exit so the next vCPU can get |
| * scheduled. |
| * |
| * The timer is removed if all vCPUs are idle and restarted again once |
| * idleness is complete. |
| */ |
| |
| static QEMUTimer *tcg_kick_vcpu_timer; |
| static CPUState *tcg_current_rr_cpu; |
| |
| #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10) |
| |
| static inline int64_t qemu_tcg_next_kick(void) |
| { |
| return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD; |
| } |
| |
| /* Kick the currently round-robin scheduled vCPU */ |
| static void qemu_cpu_kick_rr_cpu(void) |
| { |
| CPUState *cpu; |
| do { |
| cpu = atomic_mb_read(&tcg_current_rr_cpu); |
| if (cpu) { |
| cpu_exit(cpu); |
| } |
| } while (cpu != atomic_mb_read(&tcg_current_rr_cpu)); |
| } |
| |
| static void do_nothing(CPUState *cpu, run_on_cpu_data unused) |
| { |
| } |
| |
| void qemu_timer_notify_cb(void *opaque, QEMUClockType type) |
| { |
| if (!use_icount || type != QEMU_CLOCK_VIRTUAL) { |
| qemu_notify_event(); |
| return; |
| } |
| |
| if (!qemu_in_vcpu_thread() && first_cpu) { |
| /* qemu_cpu_kick is not enough to kick a halted CPU out of |
| * qemu_tcg_wait_io_event. async_run_on_cpu, instead, |
| * causes cpu_thread_is_idle to return false. This way, |
| * handle_icount_deadline can run. |
| */ |
| async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static void kick_tcg_thread(void *opaque) |
| { |
| timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); |
| qemu_cpu_kick_rr_cpu(); |
| } |
| |
| static void start_tcg_kick_timer(void) |
| { |
| assert(!mttcg_enabled); |
| if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) { |
| tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, |
| kick_tcg_thread, NULL); |
| timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick()); |
| } |
| } |
| |
| static void stop_tcg_kick_timer(void) |
| { |
| assert(!mttcg_enabled); |
| if (tcg_kick_vcpu_timer) { |
| timer_del(tcg_kick_vcpu_timer); |
| tcg_kick_vcpu_timer = NULL; |
| } |
| } |
| |
| /***********************************************************/ |
| void hw_error(const char *fmt, ...) |
| { |
| va_list ap; |
| CPUState *cpu; |
| |
| va_start(ap, fmt); |
| fprintf(stderr, "qemu: hardware error: "); |
| vfprintf(stderr, fmt, ap); |
| fprintf(stderr, "\n"); |
| CPU_FOREACH(cpu) { |
| fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); |
| cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); |
| } |
| va_end(ap); |
| abort(); |
| } |
| |
| void cpu_synchronize_all_states(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| cpu_synchronize_state(cpu); |
| /* TODO: move to cpu_synchronize_state() */ |
| if (hvf_enabled()) { |
| hvf_cpu_synchronize_state(cpu); |
| } |
| } |
| } |
| |
| void cpu_synchronize_all_post_reset(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| cpu_synchronize_post_reset(cpu); |
| /* TODO: move to cpu_synchronize_post_reset() */ |
| if (hvf_enabled()) { |
| hvf_cpu_synchronize_post_reset(cpu); |
| } |
| } |
| } |
| |
| void cpu_synchronize_all_post_init(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| cpu_synchronize_post_init(cpu); |
| /* TODO: move to cpu_synchronize_post_init() */ |
| if (hvf_enabled()) { |
| hvf_cpu_synchronize_post_init(cpu); |
| } |
| } |
| } |
| |
| void cpu_synchronize_all_pre_loadvm(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| cpu_synchronize_pre_loadvm(cpu); |
| } |
| } |
| |
| static int do_vm_stop(RunState state) |
| { |
| int ret = 0; |
| |
| if (runstate_is_running()) { |
| cpu_disable_ticks(); |
| pause_all_vcpus(); |
| runstate_set(state); |
| vm_state_notify(0, state); |
| qapi_event_send_stop(&error_abort); |
| } |
| |
| bdrv_drain_all(); |
| replay_disable_events(); |
| ret = bdrv_flush_all(); |
| |
| return ret; |
| } |
| |
| static bool cpu_can_run(CPUState *cpu) |
| { |
| if (cpu->stop) { |
| return false; |
| } |
| if (cpu_is_stopped(cpu)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static void cpu_handle_guest_debug(CPUState *cpu) |
| { |
| gdb_set_stop_cpu(cpu); |
| qemu_system_debug_request(); |
| cpu->stopped = true; |
| } |
| |
| #ifdef CONFIG_LINUX |
| static void sigbus_reraise(void) |
| { |
| sigset_t set; |
| struct sigaction action; |
| |
| memset(&action, 0, sizeof(action)); |
| action.sa_handler = SIG_DFL; |
| if (!sigaction(SIGBUS, &action, NULL)) { |
| raise(SIGBUS); |
| sigemptyset(&set); |
| sigaddset(&set, SIGBUS); |
| pthread_sigmask(SIG_UNBLOCK, &set, NULL); |
| } |
| perror("Failed to re-raise SIGBUS!\n"); |
| abort(); |
| } |
| |
| static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx) |
| { |
| if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) { |
| sigbus_reraise(); |
| } |
| |
| if (current_cpu) { |
| /* Called asynchronously in VCPU thread. */ |
| if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) { |
| sigbus_reraise(); |
| } |
| } else { |
| /* Called synchronously (via signalfd) in main thread. */ |
| if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) { |
| sigbus_reraise(); |
| } |
| } |
| } |
| |
| static void qemu_init_sigbus(void) |
| { |
| struct sigaction action; |
| |
| memset(&action, 0, sizeof(action)); |
| action.sa_flags = SA_SIGINFO; |
| action.sa_sigaction = sigbus_handler; |
| sigaction(SIGBUS, &action, NULL); |
| |
| prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); |
| } |
| #else /* !CONFIG_LINUX */ |
| static void qemu_init_sigbus(void) |
| { |
| } |
| #endif /* !CONFIG_LINUX */ |
| |
| static QemuMutex qemu_global_mutex; |
| |
| static QemuThread io_thread; |
| |
| /* cpu creation */ |
| static QemuCond qemu_cpu_cond; |
| /* system init */ |
| static QemuCond qemu_pause_cond; |
| |
| void qemu_init_cpu_loop(void) |
| { |
| qemu_init_sigbus(); |
| qemu_cond_init(&qemu_cpu_cond); |
| qemu_cond_init(&qemu_pause_cond); |
| qemu_mutex_init(&qemu_global_mutex); |
| |
| qemu_thread_get_self(&io_thread); |
| } |
| |
| void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) |
| { |
| do_run_on_cpu(cpu, func, data, &qemu_global_mutex); |
| } |
| |
| static void qemu_kvm_destroy_vcpu(CPUState *cpu) |
| { |
| if (kvm_destroy_vcpu(cpu) < 0) { |
| error_report("kvm_destroy_vcpu failed"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| static void qemu_tcg_destroy_vcpu(CPUState *cpu) |
| { |
| } |
| |
| static void qemu_cpu_stop(CPUState *cpu, bool exit) |
| { |
| g_assert(qemu_cpu_is_self(cpu)); |
| cpu->stop = false; |
| cpu->stopped = true; |
| if (exit) { |
| cpu_exit(cpu); |
| } |
| qemu_cond_broadcast(&qemu_pause_cond); |
| } |
| |
| static void qemu_wait_io_event_common(CPUState *cpu) |
| { |
| atomic_mb_set(&cpu->thread_kicked, false); |
| if (cpu->stop) { |
| qemu_cpu_stop(cpu, false); |
| } |
| process_queued_cpu_work(cpu); |
| } |
| |
| static void qemu_tcg_rr_wait_io_event(CPUState *cpu) |
| { |
| while (all_cpu_threads_idle()) { |
| stop_tcg_kick_timer(); |
| qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); |
| } |
| |
| start_tcg_kick_timer(); |
| |
| qemu_wait_io_event_common(cpu); |
| } |
| |
| static void qemu_wait_io_event(CPUState *cpu) |
| { |
| while (cpu_thread_is_idle(cpu)) { |
| qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); |
| } |
| |
| #ifdef _WIN32 |
| /* Eat dummy APC queued by qemu_cpu_kick_thread. */ |
| if (!tcg_enabled()) { |
| SleepEx(0, TRUE); |
| } |
| #endif |
| qemu_wait_io_event_common(cpu); |
| } |
| |
| static void *qemu_kvm_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| int r; |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->can_do_io = 1; |
| current_cpu = cpu; |
| |
| r = kvm_init_vcpu(cpu); |
| if (r < 0) { |
| error_report("kvm_init_vcpu failed: %s", strerror(-r)); |
| exit(1); |
| } |
| |
| kvm_init_cpu_signals(cpu); |
| |
| /* signal CPU creation */ |
| cpu->created = true; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| do { |
| if (cpu_can_run(cpu)) { |
| r = kvm_cpu_exec(cpu); |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| } |
| } |
| qemu_wait_io_event(cpu); |
| } while (!cpu->unplug || cpu_can_run(cpu)); |
| |
| qemu_kvm_destroy_vcpu(cpu); |
| cpu->created = false; |
| qemu_cond_signal(&qemu_cpu_cond); |
| qemu_mutex_unlock_iothread(); |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| static void *qemu_dummy_cpu_thread_fn(void *arg) |
| { |
| #ifdef _WIN32 |
| error_report("qtest is not supported under Windows"); |
| exit(1); |
| #else |
| CPUState *cpu = arg; |
| sigset_t waitset; |
| int r; |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->can_do_io = 1; |
| current_cpu = cpu; |
| |
| sigemptyset(&waitset); |
| sigaddset(&waitset, SIG_IPI); |
| |
| /* signal CPU creation */ |
| cpu->created = true; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| do { |
| qemu_mutex_unlock_iothread(); |
| do { |
| int sig; |
| r = sigwait(&waitset, &sig); |
| } while (r == -1 && (errno == EAGAIN || errno == EINTR)); |
| if (r == -1) { |
| perror("sigwait"); |
| exit(1); |
| } |
| qemu_mutex_lock_iothread(); |
| qemu_wait_io_event(cpu); |
| } while (!cpu->unplug); |
| |
| rcu_unregister_thread(); |
| return NULL; |
| #endif |
| } |
| |
| static int64_t tcg_get_icount_limit(void) |
| { |
| int64_t deadline; |
| |
| if (replay_mode != REPLAY_MODE_PLAY) { |
| deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| |
| /* Maintain prior (possibly buggy) behaviour where if no deadline |
| * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than |
| * INT32_MAX nanoseconds ahead, we still use INT32_MAX |
| * nanoseconds. |
| */ |
| if ((deadline < 0) || (deadline > INT32_MAX)) { |
| deadline = INT32_MAX; |
| } |
| |
| return qemu_icount_round(deadline); |
| } else { |
| return replay_get_instructions(); |
| } |
| } |
| |
| static void handle_icount_deadline(void) |
| { |
| assert(qemu_in_vcpu_thread()); |
| if (use_icount) { |
| int64_t deadline = |
| qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); |
| |
| if (deadline == 0) { |
| /* Wake up other AioContexts. */ |
| qemu_clock_notify(QEMU_CLOCK_VIRTUAL); |
| qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); |
| } |
| } |
| } |
| |
| static void prepare_icount_for_run(CPUState *cpu) |
| { |
| if (use_icount) { |
| int insns_left; |
| |
| /* These should always be cleared by process_icount_data after |
| * each vCPU execution. However u16.high can be raised |
| * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt |
| */ |
| g_assert(cpu->icount_decr.u16.low == 0); |
| g_assert(cpu->icount_extra == 0); |
| |
| cpu->icount_budget = tcg_get_icount_limit(); |
| insns_left = MIN(0xffff, cpu->icount_budget); |
| cpu->icount_decr.u16.low = insns_left; |
| cpu->icount_extra = cpu->icount_budget - insns_left; |
| } |
| } |
| |
| static void process_icount_data(CPUState *cpu) |
| { |
| if (use_icount) { |
| /* Account for executed instructions */ |
| cpu_update_icount(cpu); |
| |
| /* Reset the counters */ |
| cpu->icount_decr.u16.low = 0; |
| cpu->icount_extra = 0; |
| cpu->icount_budget = 0; |
| |
| replay_account_executed_instructions(); |
| } |
| } |
| |
| |
| static int tcg_cpu_exec(CPUState *cpu) |
| { |
| int ret; |
| #ifdef CONFIG_PROFILER |
| int64_t ti; |
| #endif |
| |
| #ifdef CONFIG_PROFILER |
| ti = profile_getclock(); |
| #endif |
| qemu_mutex_unlock_iothread(); |
| cpu_exec_start(cpu); |
| ret = cpu_exec(cpu); |
| cpu_exec_end(cpu); |
| qemu_mutex_lock_iothread(); |
| #ifdef CONFIG_PROFILER |
| tcg_time += profile_getclock() - ti; |
| #endif |
| return ret; |
| } |
| |
| /* Destroy any remaining vCPUs which have been unplugged and have |
| * finished running |
| */ |
| static void deal_with_unplugged_cpus(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (cpu->unplug && !cpu_can_run(cpu)) { |
| qemu_tcg_destroy_vcpu(cpu); |
| cpu->created = false; |
| qemu_cond_signal(&qemu_cpu_cond); |
| break; |
| } |
| } |
| } |
| |
| /* Single-threaded TCG |
| * |
| * In the single-threaded case each vCPU is simulated in turn. If |
| * there is more than a single vCPU we create a simple timer to kick |
| * the vCPU and ensure we don't get stuck in a tight loop in one vCPU. |
| * This is done explicitly rather than relying on side-effects |
| * elsewhere. |
| */ |
| |
| static void *qemu_tcg_rr_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| |
| rcu_register_thread(); |
| tcg_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->created = true; |
| cpu->can_do_io = 1; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| /* wait for initial kick-off after machine start */ |
| while (first_cpu->stopped) { |
| qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); |
| |
| /* process any pending work */ |
| CPU_FOREACH(cpu) { |
| current_cpu = cpu; |
| qemu_wait_io_event_common(cpu); |
| } |
| } |
| |
| start_tcg_kick_timer(); |
| |
| cpu = first_cpu; |
| |
| /* process any pending work */ |
| cpu->exit_request = 1; |
| |
| while (1) { |
| /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ |
| qemu_account_warp_timer(); |
| |
| /* Run the timers here. This is much more efficient than |
| * waking up the I/O thread and waiting for completion. |
| */ |
| handle_icount_deadline(); |
| |
| if (!cpu) { |
| cpu = first_cpu; |
| } |
| |
| while (cpu && !cpu->queued_work_first && !cpu->exit_request) { |
| |
| atomic_mb_set(&tcg_current_rr_cpu, cpu); |
| current_cpu = cpu; |
| |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, |
| (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); |
| |
| if (cpu_can_run(cpu)) { |
| int r; |
| |
| prepare_icount_for_run(cpu); |
| |
| r = tcg_cpu_exec(cpu); |
| |
| process_icount_data(cpu); |
| |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| break; |
| } else if (r == EXCP_ATOMIC) { |
| qemu_mutex_unlock_iothread(); |
| cpu_exec_step_atomic(cpu); |
| qemu_mutex_lock_iothread(); |
| break; |
| } |
| } else if (cpu->stop) { |
| if (cpu->unplug) { |
| cpu = CPU_NEXT(cpu); |
| } |
| break; |
| } |
| |
| cpu = CPU_NEXT(cpu); |
| } /* while (cpu && !cpu->exit_request).. */ |
| |
| /* Does not need atomic_mb_set because a spurious wakeup is okay. */ |
| atomic_set(&tcg_current_rr_cpu, NULL); |
| |
| if (cpu && cpu->exit_request) { |
| atomic_mb_set(&cpu->exit_request, 0); |
| } |
| |
| qemu_tcg_rr_wait_io_event(cpu ? cpu : QTAILQ_FIRST(&cpus)); |
| deal_with_unplugged_cpus(); |
| } |
| |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| static void *qemu_hax_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| int r; |
| |
| rcu_register_thread(); |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->created = true; |
| cpu->halted = 0; |
| current_cpu = cpu; |
| |
| hax_init_vcpu(cpu); |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| do { |
| if (cpu_can_run(cpu)) { |
| r = hax_smp_cpu_exec(cpu); |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| } |
| } |
| |
| qemu_wait_io_event(cpu); |
| } while (!cpu->unplug || cpu_can_run(cpu)); |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| /* The HVF-specific vCPU thread function. This one should only run when the host |
| * CPU supports the VMX "unrestricted guest" feature. */ |
| static void *qemu_hvf_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| |
| int r; |
| |
| assert(hvf_enabled()); |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->can_do_io = 1; |
| current_cpu = cpu; |
| |
| hvf_init_vcpu(cpu); |
| |
| /* signal CPU creation */ |
| cpu->created = true; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| do { |
| if (cpu_can_run(cpu)) { |
| r = hvf_vcpu_exec(cpu); |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| } |
| } |
| qemu_wait_io_event(cpu); |
| } while (!cpu->unplug || cpu_can_run(cpu)); |
| |
| hvf_vcpu_destroy(cpu); |
| cpu->created = false; |
| qemu_cond_signal(&qemu_cpu_cond); |
| qemu_mutex_unlock_iothread(); |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| static void *qemu_whpx_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| int r; |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| cpu->thread_id = qemu_get_thread_id(); |
| current_cpu = cpu; |
| |
| r = whpx_init_vcpu(cpu); |
| if (r < 0) { |
| fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r)); |
| exit(1); |
| } |
| |
| /* signal CPU creation */ |
| cpu->created = true; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| do { |
| if (cpu_can_run(cpu)) { |
| r = whpx_vcpu_exec(cpu); |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| } |
| } |
| while (cpu_thread_is_idle(cpu)) { |
| qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); |
| } |
| qemu_wait_io_event_common(cpu); |
| } while (!cpu->unplug || cpu_can_run(cpu)); |
| |
| whpx_destroy_vcpu(cpu); |
| cpu->created = false; |
| qemu_cond_signal(&qemu_cpu_cond); |
| qemu_mutex_unlock_iothread(); |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| #ifdef _WIN32 |
| static void CALLBACK dummy_apc_func(ULONG_PTR unused) |
| { |
| } |
| #endif |
| |
| /* Multi-threaded TCG |
| * |
| * In the multi-threaded case each vCPU has its own thread. The TLS |
| * variable current_cpu can be used deep in the code to find the |
| * current CPUState for a given thread. |
| */ |
| |
| static void *qemu_tcg_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| |
| g_assert(!use_icount); |
| |
| rcu_register_thread(); |
| tcg_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->created = true; |
| cpu->can_do_io = 1; |
| current_cpu = cpu; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| /* process any pending work */ |
| cpu->exit_request = 1; |
| |
| while (1) { |
| if (cpu_can_run(cpu)) { |
| int r; |
| r = tcg_cpu_exec(cpu); |
| switch (r) { |
| case EXCP_DEBUG: |
| cpu_handle_guest_debug(cpu); |
| break; |
| case EXCP_HALTED: |
| /* during start-up the vCPU is reset and the thread is |
| * kicked several times. If we don't ensure we go back |
| * to sleep in the halted state we won't cleanly |
| * start-up when the vCPU is enabled. |
| * |
| * cpu->halted should ensure we sleep in wait_io_event |
| */ |
| g_assert(cpu->halted); |
| break; |
| case EXCP_ATOMIC: |
| qemu_mutex_unlock_iothread(); |
| cpu_exec_step_atomic(cpu); |
| qemu_mutex_lock_iothread(); |
| default: |
| /* Ignore everything else? */ |
| break; |
| } |
| } |
| |
| atomic_mb_set(&cpu->exit_request, 0); |
| qemu_wait_io_event(cpu); |
| } while (!cpu->unplug || cpu_can_run(cpu)); |
| |
| qemu_tcg_destroy_vcpu(cpu); |
| cpu->created = false; |
| qemu_cond_signal(&qemu_cpu_cond); |
| qemu_mutex_unlock_iothread(); |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| static void qemu_cpu_kick_thread(CPUState *cpu) |
| { |
| #ifndef _WIN32 |
| int err; |
| |
| if (cpu->thread_kicked) { |
| return; |
| } |
| cpu->thread_kicked = true; |
| err = pthread_kill(cpu->thread->thread, SIG_IPI); |
| if (err) { |
| fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); |
| exit(1); |
| } |
| #else /* _WIN32 */ |
| if (!qemu_cpu_is_self(cpu)) { |
| if (whpx_enabled()) { |
| whpx_vcpu_kick(cpu); |
| } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) { |
| fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n", |
| __func__, GetLastError()); |
| exit(1); |
| } |
| } |
| #endif |
| } |
| |
| void qemu_cpu_kick(CPUState *cpu) |
| { |
| qemu_cond_broadcast(cpu->halt_cond); |
| if (tcg_enabled()) { |
| cpu_exit(cpu); |
| /* NOP unless doing single-thread RR */ |
| qemu_cpu_kick_rr_cpu(); |
| } else { |
| if (hax_enabled()) { |
| /* |
| * FIXME: race condition with the exit_request check in |
| * hax_vcpu_hax_exec |
| */ |
| cpu->exit_request = 1; |
| } |
| qemu_cpu_kick_thread(cpu); |
| } |
| } |
| |
| void qemu_cpu_kick_self(void) |
| { |
| assert(current_cpu); |
| qemu_cpu_kick_thread(current_cpu); |
| } |
| |
| bool qemu_cpu_is_self(CPUState *cpu) |
| { |
| return qemu_thread_is_self(cpu->thread); |
| } |
| |
| bool qemu_in_vcpu_thread(void) |
| { |
| return current_cpu && qemu_cpu_is_self(current_cpu); |
| } |
| |
| static __thread bool iothread_locked = false; |
| |
| bool qemu_mutex_iothread_locked(void) |
| { |
| return iothread_locked; |
| } |
| |
| void qemu_mutex_lock_iothread(void) |
| { |
| g_assert(!qemu_mutex_iothread_locked()); |
| qemu_mutex_lock(&qemu_global_mutex); |
| iothread_locked = true; |
| } |
| |
| void qemu_mutex_unlock_iothread(void) |
| { |
| g_assert(qemu_mutex_iothread_locked()); |
| iothread_locked = false; |
| qemu_mutex_unlock(&qemu_global_mutex); |
| } |
| |
| static bool all_vcpus_paused(void) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (!cpu->stopped) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void pause_all_vcpus(void) |
| { |
| CPUState *cpu; |
| |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); |
| CPU_FOREACH(cpu) { |
| if (qemu_cpu_is_self(cpu)) { |
| qemu_cpu_stop(cpu, true); |
| } else { |
| cpu->stop = true; |
| qemu_cpu_kick(cpu); |
| } |
| } |
| |
| while (!all_vcpus_paused()) { |
| qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); |
| CPU_FOREACH(cpu) { |
| qemu_cpu_kick(cpu); |
| } |
| } |
| } |
| |
| void cpu_resume(CPUState *cpu) |
| { |
| cpu->stop = false; |
| cpu->stopped = false; |
| qemu_cpu_kick(cpu); |
| } |
| |
| void resume_all_vcpus(void) |
| { |
| CPUState *cpu; |
| |
| qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); |
| CPU_FOREACH(cpu) { |
| cpu_resume(cpu); |
| } |
| } |
| |
| void cpu_remove_sync(CPUState *cpu) |
| { |
| cpu->stop = true; |
| cpu->unplug = true; |
| qemu_cpu_kick(cpu); |
| qemu_mutex_unlock_iothread(); |
| qemu_thread_join(cpu->thread); |
| qemu_mutex_lock_iothread(); |
| } |
| |
| /* For temporary buffers for forming a name */ |
| #define VCPU_THREAD_NAME_SIZE 16 |
| |
| static void qemu_tcg_init_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| static QemuCond *single_tcg_halt_cond; |
| static QemuThread *single_tcg_cpu_thread; |
| static int tcg_region_inited; |
| |
| /* |
| * Initialize TCG regions--once. Now is a good time, because: |
| * (1) TCG's init context, prologue and target globals have been set up. |
| * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the |
| * -accel flag is processed, so the check doesn't work then). |
| */ |
| if (!tcg_region_inited) { |
| tcg_region_inited = 1; |
| tcg_region_init(); |
| } |
| |
| if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) { |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| |
| if (qemu_tcg_mttcg_enabled()) { |
| /* create a thread per vCPU with TCG (MTTCG) */ |
| parallel_cpus = true; |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", |
| cpu->cpu_index); |
| |
| qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| |
| } else { |
| /* share a single thread for all cpus with TCG */ |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG"); |
| qemu_thread_create(cpu->thread, thread_name, |
| qemu_tcg_rr_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| |
| single_tcg_halt_cond = cpu->halt_cond; |
| single_tcg_cpu_thread = cpu->thread; |
| } |
| #ifdef _WIN32 |
| cpu->hThread = qemu_thread_get_handle(cpu->thread); |
| #endif |
| } else { |
| /* For non-MTTCG cases we share the thread */ |
| cpu->thread = single_tcg_cpu_thread; |
| cpu->halt_cond = single_tcg_halt_cond; |
| cpu->thread_id = first_cpu->thread_id; |
| cpu->can_do_io = 1; |
| cpu->created = true; |
| } |
| } |
| |
| static void qemu_hax_start_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| #ifdef _WIN32 |
| cpu->hThread = qemu_thread_get_handle(cpu->thread); |
| #endif |
| } |
| |
| static void qemu_kvm_start_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| } |
| |
| static void qemu_hvf_start_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| /* HVF currently does not support TCG, and only runs in |
| * unrestricted-guest mode. */ |
| assert(hvf_enabled()); |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| } |
| |
| static void qemu_whpx_start_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| #ifdef _WIN32 |
| cpu->hThread = qemu_thread_get_handle(cpu->thread); |
| #endif |
| } |
| |
| static void qemu_dummy_start_vcpu(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, |
| QEMU_THREAD_JOINABLE); |
| } |
| |
| void qemu_init_vcpu(CPUState *cpu) |
| { |
| cpu->nr_cores = smp_cores; |
| cpu->nr_threads = smp_threads; |
| cpu->stopped = true; |
| |
| if (!cpu->as) { |
| /* If the target cpu hasn't set up any address spaces itself, |
| * give it the default one. |
| */ |
| cpu->num_ases = 1; |
| cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory); |
| } |
| |
| if (kvm_enabled()) { |
| qemu_kvm_start_vcpu(cpu); |
| } else if (hax_enabled()) { |
| qemu_hax_start_vcpu(cpu); |
| } else if (hvf_enabled()) { |
| qemu_hvf_start_vcpu(cpu); |
| } else if (tcg_enabled()) { |
| qemu_tcg_init_vcpu(cpu); |
| } else if (whpx_enabled()) { |
| qemu_whpx_start_vcpu(cpu); |
| } else { |
| qemu_dummy_start_vcpu(cpu); |
| } |
| |
| while (!cpu->created) { |
| qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); |
| } |
| } |
| |
| void cpu_stop_current(void) |
| { |
| if (current_cpu) { |
| qemu_cpu_stop(current_cpu, true); |
| } |
| } |
| |
| int vm_stop(RunState state) |
| { |
| if (qemu_in_vcpu_thread()) { |
| qemu_system_vmstop_request_prepare(); |
| qemu_system_vmstop_request(state); |
| /* |
| * FIXME: should not return to device code in case |
| * vm_stop() has been requested. |
| */ |
| cpu_stop_current(); |
| return 0; |
| } |
| |
| return do_vm_stop(state); |
| } |
| |
| /** |
| * Prepare for (re)starting the VM. |
| * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already |
| * running or in case of an error condition), 0 otherwise. |
| */ |
| int vm_prepare_start(void) |
| { |
| RunState requested; |
| int res = 0; |
| |
| qemu_vmstop_requested(&requested); |
| if (runstate_is_running() && requested == RUN_STATE__MAX) { |
| return -1; |
| } |
| |
| /* Ensure that a STOP/RESUME pair of events is emitted if a |
| * vmstop request was pending. The BLOCK_IO_ERROR event, for |
| * example, according to documentation is always followed by |
| * the STOP event. |
| */ |
| if (runstate_is_running()) { |
| qapi_event_send_stop(&error_abort); |
| res = -1; |
| } else { |
| replay_enable_events(); |
| cpu_enable_ticks(); |
| runstate_set(RUN_STATE_RUNNING); |
| vm_state_notify(1, RUN_STATE_RUNNING); |
| } |
| |
| /* We are sending this now, but the CPUs will be resumed shortly later */ |
| qapi_event_send_resume(&error_abort); |
| return res; |
| } |
| |
| void vm_start(void) |
| { |
| if (!vm_prepare_start()) { |
| resume_all_vcpus(); |
| } |
| } |
| |
| /* does a state transition even if the VM is already stopped, |
| current state is forgotten forever */ |
| int vm_stop_force_state(RunState state) |
| { |
| if (runstate_is_running()) { |
| return vm_stop(state); |
| } else { |
| runstate_set(state); |
| |
| bdrv_drain_all(); |
| /* Make sure to return an error if the flush in a previous vm_stop() |
| * failed. */ |
| return bdrv_flush_all(); |
| } |
| } |
| |
| void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) |
| { |
| /* XXX: implement xxx_cpu_list for targets that still miss it */ |
| #if defined(cpu_list) |
| cpu_list(f, cpu_fprintf); |
| #endif |
| } |
| |
| CpuInfoList *qmp_query_cpus(Error **errp) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| MachineClass *mc = MACHINE_GET_CLASS(ms); |
| CpuInfoList *head = NULL, *cur_item = NULL; |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| CpuInfoList *info; |
| #if defined(TARGET_I386) |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86_cpu->env; |
| #elif defined(TARGET_PPC) |
| PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); |
| CPUPPCState *env = &ppc_cpu->env; |
| #elif defined(TARGET_SPARC) |
| SPARCCPU *sparc_cpu = SPARC_CPU(cpu); |
| CPUSPARCState *env = &sparc_cpu->env; |
| #elif defined(TARGET_MIPS) |
| MIPSCPU *mips_cpu = MIPS_CPU(cpu); |
| CPUMIPSState *env = &mips_cpu->env; |
| #elif defined(TARGET_TRICORE) |
| TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu); |
| CPUTriCoreState *env = &tricore_cpu->env; |
| #elif defined(TARGET_S390X) |
| S390CPU *s390_cpu = S390_CPU(cpu); |
| CPUS390XState *env = &s390_cpu->env; |
| #endif |
| |
| cpu_synchronize_state(cpu); |
| |
| info = g_malloc0(sizeof(*info)); |
| info->value = g_malloc0(sizeof(*info->value)); |
| info->value->CPU = cpu->cpu_index; |
| info->value->current = (cpu == first_cpu); |
| info->value->halted = cpu->halted; |
| info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); |
| info->value->thread_id = cpu->thread_id; |
| #if defined(TARGET_I386) |
| info->value->arch = CPU_INFO_ARCH_X86; |
| info->value->u.x86.pc = env->eip + env->segs[R_CS].base; |
| #elif defined(TARGET_PPC) |
| info->value->arch = CPU_INFO_ARCH_PPC; |
| info->value->u.ppc.nip = env->nip; |
| #elif defined(TARGET_SPARC) |
| info->value->arch = CPU_INFO_ARCH_SPARC; |
| info->value->u.q_sparc.pc = env->pc; |
| info->value->u.q_sparc.npc = env->npc; |
| #elif defined(TARGET_MIPS) |
| info->value->arch = CPU_INFO_ARCH_MIPS; |
| info->value->u.q_mips.PC = env->active_tc.PC; |
| #elif defined(TARGET_TRICORE) |
| info->value->arch = CPU_INFO_ARCH_TRICORE; |
| info->value->u.tricore.PC = env->PC; |
| #elif defined(TARGET_S390X) |
| info->value->arch = CPU_INFO_ARCH_S390; |
| info->value->u.s390.cpu_state = env->cpu_state; |
| #else |
| info->value->arch = CPU_INFO_ARCH_OTHER; |
| #endif |
| info->value->has_props = !!mc->cpu_index_to_instance_props; |
| if (info->value->has_props) { |
| CpuInstanceProperties *props; |
| props = g_malloc0(sizeof(*props)); |
| *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index); |
| info->value->props = props; |
| } |
| |
| /* XXX: waiting for the qapi to support GSList */ |
| if (!cur_item) { |
| head = cur_item = info; |
| } else { |
| cur_item->next = info; |
| cur_item = info; |
| } |
| } |
| |
| return head; |
| } |
| |
| /* |
| * fast means: we NEVER interrupt vCPU threads to retrieve |
| * information from KVM. |
| */ |
| CpuInfoFastList *qmp_query_cpus_fast(Error **errp) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| MachineClass *mc = MACHINE_GET_CLASS(ms); |
| CpuInfoFastList *head = NULL, *cur_item = NULL; |
| CPUState *cpu; |
| #if defined(TARGET_S390X) |
| S390CPU *s390_cpu; |
| CPUS390XState *env; |
| #endif |
| |
| CPU_FOREACH(cpu) { |
| CpuInfoFastList *info = g_malloc0(sizeof(*info)); |
| info->value = g_malloc0(sizeof(*info->value)); |
| |
| info->value->cpu_index = cpu->cpu_index; |
| info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); |
| info->value->thread_id = cpu->thread_id; |
| |
| info->value->has_props = !!mc->cpu_index_to_instance_props; |
| if (info->value->has_props) { |
| CpuInstanceProperties *props; |
| props = g_malloc0(sizeof(*props)); |
| *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index); |
| info->value->props = props; |
| } |
| |
| #if defined(TARGET_S390X) |
| s390_cpu = S390_CPU(cpu); |
| env = &s390_cpu->env; |
| info->value->arch = CPU_INFO_ARCH_S390; |
| info->value->u.s390.cpu_state = env->cpu_state; |
| #endif |
| if (!cur_item) { |
| head = cur_item = info; |
| } else { |
| cur_item->next = info; |
| cur_item = info; |
| } |
| } |
| |
| return head; |
| } |
| |
| void qmp_memsave(int64_t addr, int64_t size, const char *filename, |
| bool has_cpu, int64_t cpu_index, Error **errp) |
| { |
| FILE *f; |
| uint32_t l; |
| CPUState *cpu; |
| uint8_t buf[1024]; |
| int64_t orig_addr = addr, orig_size = size; |
| |
| if (!has_cpu) { |
| cpu_index = 0; |
| } |
| |
| cpu = qemu_get_cpu(cpu_index); |
| if (cpu == NULL) { |
| error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", |
| "a CPU number"); |
| return; |
| } |
| |
| f = fopen(filename, "wb"); |
| if (!f) { |
| error_setg_file_open(errp, errno, filename); |
| return; |
| } |
| |
| while (size != 0) { |
| l = sizeof(buf); |
| if (l > size) |
| l = size; |
| if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { |
| error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 |
| " specified", orig_addr, orig_size); |
| goto exit; |
| } |
| if (fwrite(buf, 1, l, f) != l) { |
| error_setg(errp, QERR_IO_ERROR); |
| goto exit; |
| } |
| addr += l; |
| size -= l; |
| } |
| |
| exit: |
| fclose(f); |
| } |
| |
| void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, |
| Error **errp) |
| { |
| FILE *f; |
| uint32_t l; |
| uint8_t buf[1024]; |
| |
| f = fopen(filename, "wb"); |
| if (!f) { |
| error_setg_file_open(errp, errno, filename); |
| return; |
| } |
| |
| while (size != 0) { |
| l = sizeof(buf); |
| if (l > size) |
| l = size; |
| cpu_physical_memory_read(addr, buf, l); |
| if (fwrite(buf, 1, l, f) != l) { |
| error_setg(errp, QERR_IO_ERROR); |
| goto exit; |
| } |
| addr += l; |
| size -= l; |
| } |
| |
| exit: |
| fclose(f); |
| } |
| |
| void qmp_inject_nmi(Error **errp) |
| { |
| nmi_monitor_handle(monitor_get_cpu_index(), errp); |
| } |
| |
| void dump_drift_info(FILE *f, fprintf_function cpu_fprintf) |
| { |
| if (!use_icount) { |
| return; |
| } |
| |
| cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n", |
| (cpu_get_clock() - cpu_get_icount())/SCALE_MS); |
| if (icount_align_option) { |
| cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS); |
| cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS); |
| } else { |
| cpu_fprintf(f, "Max guest delay NA\n"); |
| cpu_fprintf(f, "Max guest advance NA\n"); |
| } |
| } |