blob: d831d984d8e405d1b3a17772f2d1b14fce54ba06 [file] [log] [blame]
/*
* QEMU monitor
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <dirent.h>
#include "hw/hw.h"
#include "monitor/qdev.h"
#include "hw/usb.h"
#include "hw/i386/pc.h"
#include "hw/pci/pci.h"
#include "sysemu/watchdog.h"
#include "hw/loader.h"
#include "exec/gdbstub.h"
#include "net/net.h"
#include "net/slirp.h"
#include "sysemu/char.h"
#include "ui/qemu-spice.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "monitor/monitor.h"
#include "qemu/readline.h"
#include "ui/console.h"
#include "ui/input.h"
#include "sysemu/blockdev.h"
#include "audio/audio.h"
#include "disas/disas.h"
#include "sysemu/balloon.h"
#include "qemu/timer.h"
#include "migration/migration.h"
#include "sysemu/kvm.h"
#include "qemu/acl.h"
#include "sysemu/tpm.h"
#include "qapi/qmp/qint.h"
#include "qapi/qmp/qfloat.h"
#include "qapi/qmp/qlist.h"
#include "qapi/qmp/qbool.h"
#include "qapi/qmp/qstring.h"
#include "qapi/qmp/qjson.h"
#include "qapi/qmp/json-streamer.h"
#include "qapi/qmp/json-parser.h"
#include <qom/object_interfaces.h>
#include "qemu/osdep.h"
#include "cpu.h"
#include "trace.h"
#include "trace/control.h"
#ifdef CONFIG_TRACE_SIMPLE
#include "trace/simple.h"
#endif
#include "exec/memory.h"
#include "exec/cpu_ldst.h"
#include "qmp-commands.h"
#include "hmp.h"
#include "qemu/thread.h"
#include "block/qapi.h"
#include "qapi/qmp-event.h"
#include "qapi-event.h"
#include "sysemu/block-backend.h"
/* for hmp_info_irq/pic */
#if defined(TARGET_SPARC)
#include "hw/sparc/sun4m.h"
#endif
#include "hw/lm32/lm32_pic.h"
//#define DEBUG
//#define DEBUG_COMPLETION
/*
* Supported types:
*
* 'F' filename
* 'B' block device name
* 's' string (accept optional quote)
* 'S' it just appends the rest of the string (accept optional quote)
* 'O' option string of the form NAME=VALUE,...
* parsed according to QemuOptsList given by its name
* Example: 'device:O' uses qemu_device_opts.
* Restriction: only lists with empty desc are supported
* TODO lift the restriction
* 'i' 32 bit integer
* 'l' target long (32 or 64 bit)
* 'M' Non-negative target long (32 or 64 bit), in user mode the
* value is multiplied by 2^20 (think Mebibyte)
* 'o' octets (aka bytes)
* user mode accepts an optional E, e, P, p, T, t, G, g, M, m,
* K, k suffix, which multiplies the value by 2^60 for suffixes E
* and e, 2^50 for suffixes P and p, 2^40 for suffixes T and t,
* 2^30 for suffixes G and g, 2^20 for M and m, 2^10 for K and k
* 'T' double
* user mode accepts an optional ms, us, ns suffix,
* which divides the value by 1e3, 1e6, 1e9, respectively
* '/' optional gdb-like print format (like "/10x")
*
* '?' optional type (for all types, except '/')
* '.' other form of optional type (for 'i' and 'l')
* 'b' boolean
* user mode accepts "on" or "off"
* '-' optional parameter (eg. '-f')
*
*/
typedef struct MonitorCompletionData MonitorCompletionData;
struct MonitorCompletionData {
Monitor *mon;
void (*user_print)(Monitor *mon, const QObject *data);
};
typedef struct mon_cmd_t {
const char *name;
const char *args_type;
const char *params;
const char *help;
void (*user_print)(Monitor *mon, const QObject *data);
union {
void (*cmd)(Monitor *mon, const QDict *qdict);
int (*cmd_new)(Monitor *mon, const QDict *params, QObject **ret_data);
int (*cmd_async)(Monitor *mon, const QDict *params,
MonitorCompletion *cb, void *opaque);
} mhandler;
int flags;
/* @sub_table is a list of 2nd level of commands. If it do not exist,
* mhandler should be used. If it exist, sub_table[?].mhandler should be
* used, and mhandler of 1st level plays the role of help function.
*/
struct mon_cmd_t *sub_table;
void (*command_completion)(ReadLineState *rs, int nb_args, const char *str);
} mon_cmd_t;
/* file descriptors passed via SCM_RIGHTS */
typedef struct mon_fd_t mon_fd_t;
struct mon_fd_t {
char *name;
int fd;
QLIST_ENTRY(mon_fd_t) next;
};
/* file descriptor associated with a file descriptor set */
typedef struct MonFdsetFd MonFdsetFd;
struct MonFdsetFd {
int fd;
bool removed;
char *opaque;
QLIST_ENTRY(MonFdsetFd) next;
};
/* file descriptor set containing fds passed via SCM_RIGHTS */
typedef struct MonFdset MonFdset;
struct MonFdset {
int64_t id;
QLIST_HEAD(, MonFdsetFd) fds;
QLIST_HEAD(, MonFdsetFd) dup_fds;
QLIST_ENTRY(MonFdset) next;
};
typedef struct MonitorControl {
QObject *id;
JSONMessageParser parser;
int command_mode;
} MonitorControl;
/*
* To prevent flooding clients, events can be throttled. The
* throttling is calculated globally, rather than per-Monitor
* instance.
*/
typedef struct MonitorQAPIEventState {
QAPIEvent event; /* Event being tracked */
int64_t rate; /* Minimum time (in ns) between two events */
int64_t last; /* QEMU_CLOCK_REALTIME value at last emission */
QEMUTimer *timer; /* Timer for handling delayed events */
QObject *data; /* Event pending delayed dispatch */
} MonitorQAPIEventState;
struct Monitor {
CharDriverState *chr;
int reset_seen;
int flags;
int suspend_cnt;
bool skip_flush;
QemuMutex out_lock;
QString *outbuf;
guint out_watch;
/* Read under either BQL or out_lock, written with BQL+out_lock. */
int mux_out;
ReadLineState *rs;
MonitorControl *mc;
CPUState *mon_cpu;
BlockCompletionFunc *password_completion_cb;
void *password_opaque;
mon_cmd_t *cmd_table;
QError *error;
QLIST_HEAD(,mon_fd_t) fds;
QLIST_ENTRY(Monitor) entry;
};
/* QMP checker flags */
#define QMP_ACCEPT_UNKNOWNS 1
/* Protects mon_list, monitor_event_state. */
static QemuMutex monitor_lock;
static QLIST_HEAD(mon_list, Monitor) mon_list;
static QLIST_HEAD(mon_fdsets, MonFdset) mon_fdsets;
static int mon_refcount;
static mon_cmd_t mon_cmds[];
static mon_cmd_t info_cmds[];
static const mon_cmd_t qmp_cmds[];
Monitor *cur_mon;
Monitor *default_mon;
static void monitor_command_cb(void *opaque, const char *cmdline,
void *readline_opaque);
static inline int qmp_cmd_mode(const Monitor *mon)
{
return (mon->mc ? mon->mc->command_mode : 0);
}
/* Return true if in control mode, false otherwise */
static inline int monitor_ctrl_mode(const Monitor *mon)
{
return (mon->flags & MONITOR_USE_CONTROL);
}
/* Return non-zero iff we have a current monitor, and it is in QMP mode. */
int monitor_cur_is_qmp(void)
{
return cur_mon && monitor_ctrl_mode(cur_mon);
}
void monitor_read_command(Monitor *mon, int show_prompt)
{
if (!mon->rs)
return;
readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL);
if (show_prompt)
readline_show_prompt(mon->rs);
}
int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func,
void *opaque)
{
if (mon->rs) {
readline_start(mon->rs, "Password: ", 1, readline_func, opaque);
/* prompt is printed on return from the command handler */
return 0;
} else {
monitor_printf(mon, "terminal does not support password prompting\n");
return -ENOTTY;
}
}
static void monitor_flush_locked(Monitor *mon);
static gboolean monitor_unblocked(GIOChannel *chan, GIOCondition cond,
void *opaque)
{
Monitor *mon = opaque;
qemu_mutex_lock(&mon->out_lock);
mon->out_watch = 0;
monitor_flush_locked(mon);
qemu_mutex_unlock(&mon->out_lock);
return FALSE;
}
/* Called with mon->out_lock held. */
static void monitor_flush_locked(Monitor *mon)
{
int rc;
size_t len;
const char *buf;
if (mon->skip_flush) {
return;
}
buf = qstring_get_str(mon->outbuf);
len = qstring_get_length(mon->outbuf);
if (len && !mon->mux_out) {
rc = qemu_chr_fe_write(mon->chr, (const uint8_t *) buf, len);
if ((rc < 0 && errno != EAGAIN) || (rc == len)) {
/* all flushed or error */
QDECREF(mon->outbuf);
mon->outbuf = qstring_new();
return;
}
if (rc > 0) {
/* partinal write */
QString *tmp = qstring_from_str(buf + rc);
QDECREF(mon->outbuf);
mon->outbuf = tmp;
}
if (mon->out_watch == 0) {
mon->out_watch = qemu_chr_fe_add_watch(mon->chr, G_IO_OUT|G_IO_HUP,
monitor_unblocked, mon);
}
}
}
void monitor_flush(Monitor *mon)
{
qemu_mutex_lock(&mon->out_lock);
monitor_flush_locked(mon);
qemu_mutex_unlock(&mon->out_lock);
}
/* flush at every end of line */
static void monitor_puts(Monitor *mon, const char *str)
{
char c;
qemu_mutex_lock(&mon->out_lock);
for(;;) {
c = *str++;
if (c == '\0')
break;
if (c == '\n') {
qstring_append_chr(mon->outbuf, '\r');
}
qstring_append_chr(mon->outbuf, c);
if (c == '\n') {
monitor_flush_locked(mon);
}
}
qemu_mutex_unlock(&mon->out_lock);
}
void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap)
{
char *buf;
if (!mon)
return;
if (monitor_ctrl_mode(mon)) {
return;
}
buf = g_strdup_vprintf(fmt, ap);
monitor_puts(mon, buf);
g_free(buf);
}
void monitor_printf(Monitor *mon, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(mon, fmt, ap);
va_end(ap);
}
static int GCC_FMT_ATTR(2, 3) monitor_fprintf(FILE *stream,
const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf((Monitor *)stream, fmt, ap);
va_end(ap);
return 0;
}
static void monitor_user_noop(Monitor *mon, const QObject *data) { }
static inline int handler_is_qobject(const mon_cmd_t *cmd)
{
return cmd->user_print != NULL;
}
static inline bool handler_is_async(const mon_cmd_t *cmd)
{
return cmd->flags & MONITOR_CMD_ASYNC;
}
static inline int monitor_has_error(const Monitor *mon)
{
return mon->error != NULL;
}
static void monitor_json_emitter(Monitor *mon, const QObject *data)
{
QString *json;
json = mon->flags & MONITOR_USE_PRETTY ? qobject_to_json_pretty(data) :
qobject_to_json(data);
assert(json != NULL);
qstring_append_chr(json, '\n');
monitor_puts(mon, qstring_get_str(json));
QDECREF(json);
}
static QDict *build_qmp_error_dict(const QError *err)
{
QObject *obj;
obj = qobject_from_jsonf("{ 'error': { 'class': %s, 'desc': %p } }",
ErrorClass_lookup[err->err_class],
qerror_human(err));
return qobject_to_qdict(obj);
}
static void monitor_protocol_emitter(Monitor *mon, QObject *data)
{
QDict *qmp;
trace_monitor_protocol_emitter(mon);
if (!monitor_has_error(mon)) {
/* success response */
qmp = qdict_new();
if (data) {
qobject_incref(data);
qdict_put_obj(qmp, "return", data);
} else {
/* return an empty QDict by default */
qdict_put(qmp, "return", qdict_new());
}
} else {
/* error response */
qmp = build_qmp_error_dict(mon->error);
QDECREF(mon->error);
mon->error = NULL;
}
if (mon->mc->id) {
qdict_put_obj(qmp, "id", mon->mc->id);
mon->mc->id = NULL;
}
monitor_json_emitter(mon, QOBJECT(qmp));
QDECREF(qmp);
}
static MonitorQAPIEventState monitor_qapi_event_state[QAPI_EVENT_MAX];
/*
* Emits the event to every monitor instance, @event is only used for trace
* Called with monitor_lock held.
*/
static void monitor_qapi_event_emit(QAPIEvent event, QObject *data)
{
Monitor *mon;
trace_monitor_protocol_event_emit(event, data);
QLIST_FOREACH(mon, &mon_list, entry) {
if (monitor_ctrl_mode(mon) && qmp_cmd_mode(mon)) {
monitor_json_emitter(mon, data);
}
}
}
/*
* Queue a new event for emission to Monitor instances,
* applying any rate limiting if required.
*/
static void
monitor_qapi_event_queue(QAPIEvent event, QDict *data, Error **errp)
{
MonitorQAPIEventState *evstate;
assert(event < QAPI_EVENT_MAX);
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
evstate = &(monitor_qapi_event_state[event]);
trace_monitor_protocol_event_queue(event,
data,
evstate->rate,
evstate->last,
now);
/* Rate limit of 0 indicates no throttling */
qemu_mutex_lock(&monitor_lock);
if (!evstate->rate) {
monitor_qapi_event_emit(event, QOBJECT(data));
evstate->last = now;
} else {
int64_t delta = now - evstate->last;
if (evstate->data ||
delta < evstate->rate) {
/* If there's an existing event pending, replace
* it with the new event, otherwise schedule a
* timer for delayed emission
*/
if (evstate->data) {
qobject_decref(evstate->data);
} else {
int64_t then = evstate->last + evstate->rate;
timer_mod_ns(evstate->timer, then);
}
evstate->data = QOBJECT(data);
qobject_incref(evstate->data);
} else {
monitor_qapi_event_emit(event, QOBJECT(data));
evstate->last = now;
}
}
qemu_mutex_unlock(&monitor_lock);
}
/*
* The callback invoked by QemuTimer when a delayed
* event is ready to be emitted
*/
static void monitor_qapi_event_handler(void *opaque)
{
MonitorQAPIEventState *evstate = opaque;
int64_t now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
trace_monitor_protocol_event_handler(evstate->event,
evstate->data,
evstate->last,
now);
qemu_mutex_lock(&monitor_lock);
if (evstate->data) {
monitor_qapi_event_emit(evstate->event, evstate->data);
qobject_decref(evstate->data);
evstate->data = NULL;
}
evstate->last = now;
qemu_mutex_unlock(&monitor_lock);
}
/*
* @event: the event ID to be limited
* @rate: the rate limit in milliseconds
*
* Sets a rate limit on a particular event, so no
* more than 1 event will be emitted within @rate
* milliseconds
*/
static void
monitor_qapi_event_throttle(QAPIEvent event, int64_t rate)
{
MonitorQAPIEventState *evstate;
assert(event < QAPI_EVENT_MAX);
evstate = &(monitor_qapi_event_state[event]);
trace_monitor_protocol_event_throttle(event, rate);
evstate->event = event;
assert(rate * SCALE_MS <= INT64_MAX);
evstate->rate = rate * SCALE_MS;
evstate->last = 0;
evstate->data = NULL;
evstate->timer = timer_new(QEMU_CLOCK_REALTIME,
SCALE_MS,
monitor_qapi_event_handler,
evstate);
}
static void monitor_qapi_event_init(void)
{
/* Limit guest-triggerable events to 1 per second */
monitor_qapi_event_throttle(QAPI_EVENT_RTC_CHANGE, 1000);
monitor_qapi_event_throttle(QAPI_EVENT_WATCHDOG, 1000);
monitor_qapi_event_throttle(QAPI_EVENT_BALLOON_CHANGE, 1000);
monitor_qapi_event_throttle(QAPI_EVENT_QUORUM_REPORT_BAD, 1000);
monitor_qapi_event_throttle(QAPI_EVENT_QUORUM_FAILURE, 1000);
monitor_qapi_event_throttle(QAPI_EVENT_VSERPORT_CHANGE, 1000);
qmp_event_set_func_emit(monitor_qapi_event_queue);
}
static int do_qmp_capabilities(Monitor *mon, const QDict *params,
QObject **ret_data)
{
/* Will setup QMP capabilities in the future */
if (monitor_ctrl_mode(mon)) {
mon->mc->command_mode = 1;
}
return 0;
}
static void handle_user_command(Monitor *mon, const char *cmdline);
static void monitor_data_init(Monitor *mon)
{
memset(mon, 0, sizeof(Monitor));
qemu_mutex_init(&mon->out_lock);
mon->outbuf = qstring_new();
/* Use *mon_cmds by default. */
mon->cmd_table = mon_cmds;
}
static void monitor_data_destroy(Monitor *mon)
{
QDECREF(mon->outbuf);
qemu_mutex_destroy(&mon->out_lock);
}
char *qmp_human_monitor_command(const char *command_line, bool has_cpu_index,
int64_t cpu_index, Error **errp)
{
char *output = NULL;
Monitor *old_mon, hmp;
monitor_data_init(&hmp);
hmp.skip_flush = true;
old_mon = cur_mon;
cur_mon = &hmp;
if (has_cpu_index) {
int ret = monitor_set_cpu(cpu_index);
if (ret < 0) {
cur_mon = old_mon;
error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
"a CPU number");
goto out;
}
}
handle_user_command(&hmp, command_line);
cur_mon = old_mon;
qemu_mutex_lock(&hmp.out_lock);
if (qstring_get_length(hmp.outbuf) > 0) {
output = g_strdup(qstring_get_str(hmp.outbuf));
} else {
output = g_strdup("");
}
qemu_mutex_unlock(&hmp.out_lock);
out:
monitor_data_destroy(&hmp);
return output;
}
static int compare_cmd(const char *name, const char *list)
{
const char *p, *pstart;
int len;
len = strlen(name);
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
if ((p - pstart) == len && !memcmp(pstart, name, len))
return 1;
if (*p == '\0')
break;
p++;
}
return 0;
}
static int get_str(char *buf, int buf_size, const char **pp)
{
const char *p;
char *q;
int c;
q = buf;
p = *pp;
while (qemu_isspace(*p)) {
p++;
}
if (*p == '\0') {
fail:
*q = '\0';
*pp = p;
return -1;
}
if (*p == '\"') {
p++;
while (*p != '\0' && *p != '\"') {
if (*p == '\\') {
p++;
c = *p++;
switch (c) {
case 'n':
c = '\n';
break;
case 'r':
c = '\r';
break;
case '\\':
case '\'':
case '\"':
break;
default:
qemu_printf("unsupported escape code: '\\%c'\n", c);
goto fail;
}
if ((q - buf) < buf_size - 1) {
*q++ = c;
}
} else {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
if (*p != '\"') {
qemu_printf("unterminated string\n");
goto fail;
}
p++;
} else {
while (*p != '\0' && !qemu_isspace(*p)) {
if ((q - buf) < buf_size - 1) {
*q++ = *p;
}
p++;
}
}
*q = '\0';
*pp = p;
return 0;
}
#define MAX_ARGS 16
static void free_cmdline_args(char **args, int nb_args)
{
int i;
assert(nb_args <= MAX_ARGS);
for (i = 0; i < nb_args; i++) {
g_free(args[i]);
}
}
/*
* Parse the command line to get valid args.
* @cmdline: command line to be parsed.
* @pnb_args: location to store the number of args, must NOT be NULL.
* @args: location to store the args, which should be freed by caller, must
* NOT be NULL.
*
* Returns 0 on success, negative on failure.
*
* NOTE: this parser is an approximate form of the real command parser. Number
* of args have a limit of MAX_ARGS. If cmdline contains more, it will
* return with failure.
*/
static int parse_cmdline(const char *cmdline,
int *pnb_args, char **args)
{
const char *p;
int nb_args, ret;
char buf[1024];
p = cmdline;
nb_args = 0;
for (;;) {
while (qemu_isspace(*p)) {
p++;
}
if (*p == '\0') {
break;
}
if (nb_args >= MAX_ARGS) {
goto fail;
}
ret = get_str(buf, sizeof(buf), &p);
if (ret < 0) {
goto fail;
}
args[nb_args] = g_strdup(buf);
nb_args++;
}
*pnb_args = nb_args;
return 0;
fail:
free_cmdline_args(args, nb_args);
return -1;
}
static void help_cmd_dump_one(Monitor *mon,
const mon_cmd_t *cmd,
char **prefix_args,
int prefix_args_nb)
{
int i;
for (i = 0; i < prefix_args_nb; i++) {
monitor_printf(mon, "%s ", prefix_args[i]);
}
monitor_printf(mon, "%s %s -- %s\n", cmd->name, cmd->params, cmd->help);
}
/* @args[@arg_index] is the valid command need to find in @cmds */
static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds,
char **args, int nb_args, int arg_index)
{
const mon_cmd_t *cmd;
/* No valid arg need to compare with, dump all in *cmds */
if (arg_index >= nb_args) {
for (cmd = cmds; cmd->name != NULL; cmd++) {
help_cmd_dump_one(mon, cmd, args, arg_index);
}
return;
}
/* Find one entry to dump */
for (cmd = cmds; cmd->name != NULL; cmd++) {
if (compare_cmd(args[arg_index], cmd->name)) {
if (cmd->sub_table) {
/* continue with next arg */
help_cmd_dump(mon, cmd->sub_table,
args, nb_args, arg_index + 1);
} else {
help_cmd_dump_one(mon, cmd, args, arg_index);
}
break;
}
}
}
static void help_cmd(Monitor *mon, const char *name)
{
char *args[MAX_ARGS];
int nb_args = 0;
/* 1. parse user input */
if (name) {
/* special case for log, directly dump and return */
if (!strcmp(name, "log")) {
const QEMULogItem *item;
monitor_printf(mon, "Log items (comma separated):\n");
monitor_printf(mon, "%-10s %s\n", "none", "remove all logs");
for (item = qemu_log_items; item->mask != 0; item++) {
monitor_printf(mon, "%-10s %s\n", item->name, item->help);
}
return;
}
if (parse_cmdline(name, &nb_args, args) < 0) {
return;
}
}
/* 2. dump the contents according to parsed args */
help_cmd_dump(mon, mon->cmd_table, args, nb_args, 0);
free_cmdline_args(args, nb_args);
}
static void do_help_cmd(Monitor *mon, const QDict *qdict)
{
help_cmd(mon, qdict_get_try_str(qdict, "name"));
}
static void hmp_trace_event(Monitor *mon, const QDict *qdict)
{
const char *tp_name = qdict_get_str(qdict, "name");
bool new_state = qdict_get_bool(qdict, "option");
Error *local_err = NULL;
qmp_trace_event_set_state(tp_name, new_state, true, true, &local_err);
if (local_err) {
error_report_err(local_err);
}
}
#ifdef CONFIG_TRACE_SIMPLE
static void hmp_trace_file(Monitor *mon, const QDict *qdict)
{
const char *op = qdict_get_try_str(qdict, "op");
const char *arg = qdict_get_try_str(qdict, "arg");
if (!op) {
st_print_trace_file_status((FILE *)mon, &monitor_fprintf);
} else if (!strcmp(op, "on")) {
st_set_trace_file_enabled(true);
} else if (!strcmp(op, "off")) {
st_set_trace_file_enabled(false);
} else if (!strcmp(op, "flush")) {
st_flush_trace_buffer();
} else if (!strcmp(op, "set")) {
if (arg) {
st_set_trace_file(arg);
}
} else {
monitor_printf(mon, "unexpected argument \"%s\"\n", op);
help_cmd(mon, "trace-file");
}
}
#endif
static void user_monitor_complete(void *opaque, QObject *ret_data)
{
MonitorCompletionData *data = (MonitorCompletionData *)opaque;
if (ret_data) {
data->user_print(data->mon, ret_data);
}
monitor_resume(data->mon);
g_free(data);
}
static void qmp_monitor_complete(void *opaque, QObject *ret_data)
{
monitor_protocol_emitter(opaque, ret_data);
}
static int qmp_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
return cmd->mhandler.cmd_async(mon, params, qmp_monitor_complete, mon);
}
static void user_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
int ret;
MonitorCompletionData *cb_data = g_malloc(sizeof(*cb_data));
cb_data->mon = mon;
cb_data->user_print = cmd->user_print;
monitor_suspend(mon);
ret = cmd->mhandler.cmd_async(mon, params,
user_monitor_complete, cb_data);
if (ret < 0) {
monitor_resume(mon);
g_free(cb_data);
}
}
static void hmp_info_help(Monitor *mon, const QDict *qdict)
{
help_cmd(mon, "info");
}
CommandInfoList *qmp_query_commands(Error **errp)
{
CommandInfoList *info, *cmd_list = NULL;
const mon_cmd_t *cmd;
for (cmd = qmp_cmds; cmd->name != NULL; cmd++) {
info = g_malloc0(sizeof(*info));
info->value = g_malloc0(sizeof(*info->value));
info->value->name = g_strdup(cmd->name);
info->next = cmd_list;
cmd_list = info;
}
return cmd_list;
}
EventInfoList *qmp_query_events(Error **errp)
{
EventInfoList *info, *ev_list = NULL;
QAPIEvent e;
for (e = 0 ; e < QAPI_EVENT_MAX ; e++) {
const char *event_name = QAPIEvent_lookup[e];
assert(event_name != NULL);
info = g_malloc0(sizeof(*info));
info->value = g_malloc0(sizeof(*info->value));
info->value->name = g_strdup(event_name);
info->next = ev_list;
ev_list = info;
}
return ev_list;
}
/* set the current CPU defined by the user */
int monitor_set_cpu(int cpu_index)
{
CPUState *cpu;
cpu = qemu_get_cpu(cpu_index);
if (cpu == NULL) {
return -1;
}
cur_mon->mon_cpu = cpu;
return 0;
}
static CPUArchState *mon_get_cpu(void)
{
if (!cur_mon->mon_cpu) {
monitor_set_cpu(0);
}
cpu_synchronize_state(cur_mon->mon_cpu);
return cur_mon->mon_cpu->env_ptr;
}
int monitor_get_cpu_index(void)
{
CPUState *cpu = ENV_GET_CPU(mon_get_cpu());
return cpu->cpu_index;
}
static void hmp_info_registers(Monitor *mon, const QDict *qdict)
{
CPUState *cpu;
CPUArchState *env;
env = mon_get_cpu();
cpu = ENV_GET_CPU(env);
cpu_dump_state(cpu, (FILE *)mon, monitor_fprintf, CPU_DUMP_FPU);
}
static void hmp_info_jit(Monitor *mon, const QDict *qdict)
{
dump_exec_info((FILE *)mon, monitor_fprintf);
dump_drift_info((FILE *)mon, monitor_fprintf);
}
static void hmp_info_opcount(Monitor *mon, const QDict *qdict)
{
dump_opcount_info((FILE *)mon, monitor_fprintf);
}
static void hmp_info_history(Monitor *mon, const QDict *qdict)
{
int i;
const char *str;
if (!mon->rs)
return;
i = 0;
for(;;) {
str = readline_get_history(mon->rs, i);
if (!str)
break;
monitor_printf(mon, "%d: '%s'\n", i, str);
i++;
}
}
static void hmp_info_cpustats(Monitor *mon, const QDict *qdict)
{
CPUState *cpu;
CPUArchState *env;
env = mon_get_cpu();
cpu = ENV_GET_CPU(env);
cpu_dump_statistics(cpu, (FILE *)mon, &monitor_fprintf, 0);
}
static void hmp_info_trace_events(Monitor *mon, const QDict *qdict)
{
TraceEventInfoList *events = qmp_trace_event_get_state("*", NULL);
TraceEventInfoList *elem;
for (elem = events; elem != NULL; elem = elem->next) {
monitor_printf(mon, "%s : state %u\n",
elem->value->name,
elem->value->state == TRACE_EVENT_STATE_ENABLED ? 1 : 0);
}
qapi_free_TraceEventInfoList(events);
}
static int client_migrate_info(Monitor *mon, const QDict *qdict,
QObject **ret_data)
{
const char *protocol = qdict_get_str(qdict, "protocol");
const char *hostname = qdict_get_str(qdict, "hostname");
const char *subject = qdict_get_try_str(qdict, "cert-subject");
int port = qdict_get_try_int(qdict, "port", -1);
int tls_port = qdict_get_try_int(qdict, "tls-port", -1);
Error *err = NULL;
int ret;
if (strcmp(protocol, "spice") == 0) {
if (!qemu_using_spice(&err)) {
qerror_report_err(err);
error_free(err);
return -1;
}
if (port == -1 && tls_port == -1) {
qerror_report(QERR_MISSING_PARAMETER, "port/tls-port");
return -1;
}
ret = qemu_spice_migrate_info(hostname, port, tls_port, subject);
if (ret != 0) {
qerror_report(QERR_UNDEFINED_ERROR);
return -1;
}
return 0;
}
qerror_report(QERR_INVALID_PARAMETER, "protocol");
return -1;
}
static void hmp_logfile(Monitor *mon, const QDict *qdict)
{
qemu_set_log_filename(qdict_get_str(qdict, "filename"));
}
static void hmp_log(Monitor *mon, const QDict *qdict)
{
int mask;
const char *items = qdict_get_str(qdict, "items");
if (!strcmp(items, "none")) {
mask = 0;
} else {
mask = qemu_str_to_log_mask(items);
if (!mask) {
help_cmd(mon, "log");
return;
}
}
qemu_set_log(mask);
}
static void hmp_singlestep(Monitor *mon, const QDict *qdict)
{
const char *option = qdict_get_try_str(qdict, "option");
if (!option || !strcmp(option, "on")) {
singlestep = 1;
} else if (!strcmp(option, "off")) {
singlestep = 0;
} else {
monitor_printf(mon, "unexpected option %s\n", option);
}
}
static void hmp_gdbserver(Monitor *mon, const QDict *qdict)
{
const char *device = qdict_get_try_str(qdict, "device");
if (!device)
device = "tcp::" DEFAULT_GDBSTUB_PORT;
if (gdbserver_start(device) < 0) {
monitor_printf(mon, "Could not open gdbserver on device '%s'\n",
device);
} else if (strcmp(device, "none") == 0) {
monitor_printf(mon, "Disabled gdbserver\n");
} else {
monitor_printf(mon, "Waiting for gdb connection on device '%s'\n",
device);
}
}
static void hmp_watchdog_action(Monitor *mon, const QDict *qdict)
{
const char *action = qdict_get_str(qdict, "action");
if (select_watchdog_action(action) == -1) {
monitor_printf(mon, "Unknown watchdog action '%s'\n", action);
}
}
static void monitor_printc(Monitor *mon, int c)
{
monitor_printf(mon, "'");
switch(c) {
case '\'':
monitor_printf(mon, "\\'");
break;
case '\\':
monitor_printf(mon, "\\\\");
break;
case '\n':
monitor_printf(mon, "\\n");
break;
case '\r':
monitor_printf(mon, "\\r");
break;
default:
if (c >= 32 && c <= 126) {
monitor_printf(mon, "%c", c);
} else {
monitor_printf(mon, "\\x%02x", c);
}
break;
}
monitor_printf(mon, "'");
}
static void memory_dump(Monitor *mon, int count, int format, int wsize,
hwaddr addr, int is_physical)
{
CPUArchState *env;
int l, line_size, i, max_digits, len;
uint8_t buf[16];
uint64_t v;
if (format == 'i') {
int flags;
flags = 0;
env = mon_get_cpu();
#ifdef TARGET_I386
if (wsize == 2) {
flags = 1;
} else if (wsize == 4) {
flags = 0;
} else {
/* as default we use the current CS size */
flags = 0;
if (env) {
#ifdef TARGET_X86_64
if ((env->efer & MSR_EFER_LMA) &&
(env->segs[R_CS].flags & DESC_L_MASK))
flags = 2;
else
#endif
if (!(env->segs[R_CS].flags & DESC_B_MASK))
flags = 1;
}
}
#endif
#ifdef TARGET_PPC
flags = msr_le << 16;
flags |= env->bfd_mach;
#endif
monitor_disas(mon, env, addr, count, is_physical, flags);
return;
}
len = wsize * count;
if (wsize == 1)
line_size = 8;
else
line_size = 16;
max_digits = 0;
switch(format) {
case 'o':
max_digits = (wsize * 8 + 2) / 3;
break;
default:
case 'x':
max_digits = (wsize * 8) / 4;
break;
case 'u':
case 'd':
max_digits = (wsize * 8 * 10 + 32) / 33;
break;
case 'c':
wsize = 1;
break;
}
while (len > 0) {
if (is_physical)
monitor_printf(mon, TARGET_FMT_plx ":", addr);
else
monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr);
l = len;
if (l > line_size)
l = line_size;
if (is_physical) {
cpu_physical_memory_read(addr, buf, l);
} else {
env = mon_get_cpu();
if (cpu_memory_rw_debug(ENV_GET_CPU(env), addr, buf, l, 0) < 0) {
monitor_printf(mon, " Cannot access memory\n");
break;
}
}
i = 0;
while (i < l) {
switch(wsize) {
default:
case 1:
v = ldub_p(buf + i);
break;
case 2:
v = lduw_p(buf + i);
break;
case 4:
v = (uint32_t)ldl_p(buf + i);
break;
case 8:
v = ldq_p(buf + i);
break;
}
monitor_printf(mon, " ");
switch(format) {
case 'o':
monitor_printf(mon, "%#*" PRIo64, max_digits, v);
break;
case 'x':
monitor_printf(mon, "0x%0*" PRIx64, max_digits, v);
break;
case 'u':
monitor_printf(mon, "%*" PRIu64, max_digits, v);
break;
case 'd':
monitor_printf(mon, "%*" PRId64, max_digits, v);
break;
case 'c':
monitor_printc(mon, v);
break;
}
i += wsize;
}
monitor_printf(mon, "\n");
addr += l;
len -= l;
}
}
static void hmp_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
target_long addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 0);
}
static void hmp_physical_memory_dump(Monitor *mon, const QDict *qdict)
{
int count = qdict_get_int(qdict, "count");
int format = qdict_get_int(qdict, "format");
int size = qdict_get_int(qdict, "size");
hwaddr addr = qdict_get_int(qdict, "addr");
memory_dump(mon, count, format, size, addr, 1);
}
static void do_print(Monitor *mon, const QDict *qdict)
{
int format = qdict_get_int(qdict, "format");
hwaddr val = qdict_get_int(qdict, "val");
switch(format) {
case 'o':
monitor_printf(mon, "%#" HWADDR_PRIo, val);
break;
case 'x':
monitor_printf(mon, "%#" HWADDR_PRIx, val);
break;
case 'u':
monitor_printf(mon, "%" HWADDR_PRIu, val);
break;
default:
case 'd':
monitor_printf(mon, "%" HWADDR_PRId, val);
break;
case 'c':
monitor_printc(mon, val);
break;
}
monitor_printf(mon, "\n");
}
static void hmp_sum(Monitor *mon, const QDict *qdict)
{
uint32_t addr;
uint16_t sum;
uint32_t start = qdict_get_int(qdict, "start");
uint32_t size = qdict_get_int(qdict, "size");
sum = 0;
for(addr = start; addr < (start + size); addr++) {
uint8_t val = address_space_ldub(&address_space_memory, addr,
MEMTXATTRS_UNSPECIFIED, NULL);
/* BSD sum algorithm ('sum' Unix command) */
sum = (sum >> 1) | (sum << 15);
sum += val;
}
monitor_printf(mon, "%05d\n", sum);
}
static int mouse_button_state;
static void hmp_mouse_move(Monitor *mon, const QDict *qdict)
{
int dx, dy, dz, button;
const char *dx_str = qdict_get_str(qdict, "dx_str");
const char *dy_str = qdict_get_str(qdict, "dy_str");
const char *dz_str = qdict_get_try_str(qdict, "dz_str");
dx = strtol(dx_str, NULL, 0);
dy = strtol(dy_str, NULL, 0);
qemu_input_queue_rel(NULL, INPUT_AXIS_X, dx);
qemu_input_queue_rel(NULL, INPUT_AXIS_Y, dy);
if (dz_str) {
dz = strtol(dz_str, NULL, 0);
if (dz != 0) {
button = (dz > 0) ? INPUT_BUTTON_WHEEL_UP : INPUT_BUTTON_WHEEL_DOWN;
qemu_input_queue_btn(NULL, button, true);
qemu_input_event_sync();
qemu_input_queue_btn(NULL, button, false);
}
}
qemu_input_event_sync();
}
static void hmp_mouse_button(Monitor *mon, const QDict *qdict)
{
static uint32_t bmap[INPUT_BUTTON_MAX] = {
[INPUT_BUTTON_LEFT] = MOUSE_EVENT_LBUTTON,
[INPUT_BUTTON_MIDDLE] = MOUSE_EVENT_MBUTTON,
[INPUT_BUTTON_RIGHT] = MOUSE_EVENT_RBUTTON,
};
int button_state = qdict_get_int(qdict, "button_state");
if (mouse_button_state == button_state) {
return;
}
qemu_input_update_buttons(NULL, bmap, mouse_button_state, button_state);
qemu_input_event_sync();
mouse_button_state = button_state;
}
static void hmp_ioport_read(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int has_index = qdict_haskey(qdict, "index");
uint32_t val;
int suffix;
if (has_index) {
int index = qdict_get_int(qdict, "index");
cpu_outb(addr & IOPORTS_MASK, index & 0xff);
addr++;
}
addr &= 0xffff;
switch(size) {
default:
case 1:
val = cpu_inb(addr);
suffix = 'b';
break;
case 2:
val = cpu_inw(addr);
suffix = 'w';
break;
case 4:
val = cpu_inl(addr);
suffix = 'l';
break;
}
monitor_printf(mon, "port%c[0x%04x] = %#0*x\n",
suffix, addr, size * 2, val);
}
static void hmp_ioport_write(Monitor *mon, const QDict *qdict)
{
int size = qdict_get_int(qdict, "size");
int addr = qdict_get_int(qdict, "addr");
int val = qdict_get_int(qdict, "val");
addr &= IOPORTS_MASK;
switch (size) {
default:
case 1:
cpu_outb(addr, val);
break;
case 2:
cpu_outw(addr, val);
break;
case 4:
cpu_outl(addr, val);
break;
}
}
static void hmp_boot_set(Monitor *mon, const QDict *qdict)
{
Error *local_err = NULL;
const char *bootdevice = qdict_get_str(qdict, "bootdevice");
qemu_boot_set(bootdevice, &local_err);
if (local_err) {
monitor_printf(mon, "%s\n", error_get_pretty(local_err));
error_free(local_err);
} else {
monitor_printf(mon, "boot device list now set to %s\n", bootdevice);
}
}
#if defined(TARGET_I386)
static void print_pte(Monitor *mon, hwaddr addr,
hwaddr pte,
hwaddr mask)
{
#ifdef TARGET_X86_64
if (addr & (1ULL << 47)) {
addr |= -1LL << 48;
}
#endif
monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
" %c%c%c%c%c%c%c%c%c\n",
addr,
pte & mask,
pte & PG_NX_MASK ? 'X' : '-',
pte & PG_GLOBAL_MASK ? 'G' : '-',
pte & PG_PSE_MASK ? 'P' : '-',
pte & PG_DIRTY_MASK ? 'D' : '-',
pte & PG_ACCESSED_MASK ? 'A' : '-',
pte & PG_PCD_MASK ? 'C' : '-',
pte & PG_PWT_MASK ? 'T' : '-',
pte & PG_USER_MASK ? 'U' : '-',
pte & PG_RW_MASK ? 'W' : '-');
}
static void tlb_info_32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2;
uint32_t pgd, pde, pte;
pgd = env->cr[3] & ~0xfff;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
/* 4M pages */
print_pte(mon, (l1 << 22), pde, ~((1 << 21) - 1));
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 22) + (l2 << 12),
pte & ~PG_PSE_MASK,
~0xfff);
}
}
}
}
}
}
static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2, l3;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
pdp_addr = env->cr[3] & ~0x1f;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
/* 2M pages with PAE, CR4.PSE is ignored */
print_pte(mon, (l1 << 30 ) + (l2 << 21), pde,
~((hwaddr)(1 << 20) - 1));
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 30 ) + (l2 << 21)
+ (l3 << 12),
pte & ~PG_PSE_MASK,
~(hwaddr)0xfff);
}
}
}
}
}
}
}
}
#ifdef TARGET_X86_64
static void tlb_info_64(Monitor *mon, CPUArchState *env)
{
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr;
pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
if (pml4e & PG_PRESENT_MASK) {
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (pdpe & PG_PRESENT_MASK) {
if (pdpe & PG_PSE_MASK) {
/* 1G pages, CR4.PSE is ignored */
print_pte(mon, (l1 << 39) + (l2 << 30), pdpe,
0x3ffffc0000000ULL);
} else {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
/* 2M pages, CR4.PSE is ignored */
print_pte(mon, (l1 << 39) + (l2 << 30) +
(l3 << 21), pde,
0x3ffffffe00000ULL);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 39) +
(l2 << 30) +
(l3 << 21) + (l4 << 12),
pte & ~PG_PSE_MASK,
0x3fffffffff000ULL);
}
}
}
}
}
}
}
}
}
}
}
#endif
static void hmp_info_tlb(Monitor *mon, const QDict *qdict)
{
CPUArchState *env;
env = mon_get_cpu();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
tlb_info_64(mon, env);
} else
#endif
{
tlb_info_pae32(mon, env);
}
} else {
tlb_info_32(mon, env);
}
}
static void mem_print(Monitor *mon, hwaddr *pstart,
int *plast_prot,
hwaddr end, int prot)
{
int prot1;
prot1 = *plast_prot;
if (prot != prot1) {
if (*pstart != -1) {
monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
TARGET_FMT_plx " %c%c%c\n",
*pstart, end, end - *pstart,
prot1 & PG_USER_MASK ? 'u' : '-',
'r',
prot1 & PG_RW_MASK ? 'w' : '-');
}
if (prot != 0)
*pstart = end;
else
*pstart = -1;
*plast_prot = prot;
}
}
static void mem_info_32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2;
int prot, last_prot;
uint32_t pgd, pde, pte;
hwaddr start, end;
pgd = env->cr[3] & ~0xfff;
last_prot = 0;
start = -1;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
end = l1 << 22;
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
end = (l1 << 22) + (l2 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde &
(PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
}
static void mem_info_pae32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2, l3;
int prot, last_prot;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
hwaddr start, end;
pdp_addr = env->cr[3] & ~0x1f;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = l1 << 30;
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 30) + (l2 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 30) + (l2 << 21) + (l3 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
}
#ifdef TARGET_X86_64
static void mem_info_64(Monitor *mon, CPUArchState *env)
{
int prot, last_prot;
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
end = l1 << 39;
if (pml4e & PG_PRESENT_MASK) {
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = (l1 << 39) + (l2 << 30);
if (pdpe & PG_PRESENT_MASK) {
if (pdpe & PG_PSE_MASK) {
prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e;
mem_print(mon, &start, &last_prot, end, prot);
} else {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 39) + (l2 << 30) + (l3 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe;
mem_print(mon, &start, &last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 39) + (l2 << 30) +
(l3 << 21) + (l4 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe & pde;
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (hwaddr)1 << 48, 0);
}
#endif
static void hmp_info_mem(Monitor *mon, const QDict *qdict)
{
CPUArchState *env;
env = mon_get_cpu();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
mem_info_64(mon, env);
} else
#endif
{
mem_info_pae32(mon, env);
}
} else {
mem_info_32(mon, env);
}
}
#endif
#if defined(TARGET_SH4)
static void print_tlb(Monitor *mon, int idx, tlb_t *tlb)
{
monitor_printf(mon, " tlb%i:\t"
"asid=%hhu vpn=%x\tppn=%x\tsz=%hhu size=%u\t"
"v=%hhu shared=%hhu cached=%hhu prot=%hhu "
"dirty=%hhu writethrough=%hhu\n",
idx,
tlb->asid, tlb->vpn, tlb->ppn, tlb->sz, tlb->size,
tlb->v, tlb->sh, tlb->c, tlb->pr,
tlb->d, tlb->wt);
}
static void hmp_info_tlb(Monitor *mon, const QDict *qdict)
{
CPUArchState *env = mon_get_cpu();
int i;
monitor_printf (mon, "ITLB:\n");
for (i = 0 ; i < ITLB_SIZE ; i++)
print_tlb (mon, i, &env->itlb[i]);
monitor_printf (mon, "UTLB:\n");
for (i = 0 ; i < UTLB_SIZE ; i++)
print_tlb (mon, i, &env->utlb[i]);
}
#endif
#if defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_XTENSA)
static void hmp_info_tlb(Monitor *mon, const QDict *qdict)
{
CPUArchState *env1 = mon_get_cpu();
dump_mmu((FILE*)mon, (fprintf_function)monitor_printf, env1);
}
#endif
static void hmp_info_mtree(Monitor *mon, const QDict *qdict)
{
mtree_info((fprintf_function)monitor_printf, mon);
}
static void hmp_info_numa(Monitor *mon, const QDict *qdict)
{
int i;
CPUState *cpu;
uint64_t *node_mem;
node_mem = g_new0(uint64_t, nb_numa_nodes);
query_numa_node_mem(node_mem);
monitor_printf(mon, "%d nodes\n", nb_numa_nodes);
for (i = 0; i < nb_numa_nodes; i++) {
monitor_printf(mon, "node %d cpus:", i);
CPU_FOREACH(cpu) {
if (cpu->numa_node == i) {
monitor_printf(mon, " %d", cpu->cpu_index);
}
}
monitor_printf(mon, "\n");
monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i,
node_mem[i] >> 20);
}
g_free(node_mem);
}
#ifdef CONFIG_PROFILER
int64_t tcg_time;
int64_t dev_time;
static void hmp_info_profile(Monitor *mon, const QDict *qdict)
{
monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n",
dev_time, dev_time / (double)get_ticks_per_sec());
monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n",
tcg_time, tcg_time / (double)get_ticks_per_sec());
tcg_time = 0;
dev_time = 0;
}
#else
static void hmp_info_profile(Monitor *mon, const QDict *qdict)
{
monitor_printf(mon, "Internal profiler not compiled\n");
}
#endif
/* Capture support */
static QLIST_HEAD (capture_list_head, CaptureState) capture_head;
static void hmp_info_capture(Monitor *mon, const QDict *qdict)
{
int i;
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
monitor_printf(mon, "[%d]: ", i);
s->ops.info (s->opaque);
}
}
static void hmp_stopcapture(Monitor *mon, const QDict *qdict)
{
int i;
int n = qdict_get_int(qdict, "n");
CaptureState *s;
for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) {
if (i == n) {
s->ops.destroy (s->opaque);
QLIST_REMOVE (s, entries);
g_free (s);
return;
}
}
}
static void hmp_wavcapture(Monitor *mon, const QDict *qdict)
{
const char *path = qdict_get_str(qdict, "path");
int has_freq = qdict_haskey(qdict, "freq");
int freq = qdict_get_try_int(qdict, "freq", -1);
int has_bits = qdict_haskey(qdict, "bits");
int bits = qdict_get_try_int(qdict, "bits", -1);
int has_channels = qdict_haskey(qdict, "nchannels");
int nchannels = qdict_get_try_int(qdict, "nchannels", -1);
CaptureState *s;
s = g_malloc0 (sizeof (*s));
freq = has_freq ? freq : 44100;
bits = has_bits ? bits : 16;
nchannels = has_channels ? nchannels : 2;
if (wav_start_capture (s, path, freq, bits, nchannels)) {
monitor_printf(mon, "Failed to add wave capture\n");
g_free (s);
return;
}
QLIST_INSERT_HEAD (&capture_head, s, entries);
}
static qemu_acl *find_acl(Monitor *mon, const char *name)
{
qemu_acl *acl = qemu_acl_find(name);
if (!acl) {
monitor_printf(mon, "acl: unknown list '%s'\n", name);
}
return acl;
}
static void hmp_acl_show(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
qemu_acl_entry *entry;
int i = 0;
if (acl) {
monitor_printf(mon, "policy: %s\n",
acl->defaultDeny ? "deny" : "allow");
QTAILQ_FOREACH(entry, &acl->entries, next) {
i++;
monitor_printf(mon, "%d: %s %s\n", i,
entry->deny ? "deny" : "allow", entry->match);
}
}
}
static void hmp_acl_reset(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
qemu_acl_reset(acl);
monitor_printf(mon, "acl: removed all rules\n");
}
}
static void hmp_acl_policy(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *policy = qdict_get_str(qdict, "policy");
qemu_acl *acl = find_acl(mon, aclname);
if (acl) {
if (strcmp(policy, "allow") == 0) {
acl->defaultDeny = 0;
monitor_printf(mon, "acl: policy set to 'allow'\n");
} else if (strcmp(policy, "deny") == 0) {
acl->defaultDeny = 1;
monitor_printf(mon, "acl: policy set to 'deny'\n");
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
}
}
}
static void hmp_acl_add(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
const char *policy = qdict_get_str(qdict, "policy");
int has_index = qdict_haskey(qdict, "index");
int index = qdict_get_try_int(qdict, "index", -1);
qemu_acl *acl = find_acl(mon, aclname);
int deny, ret;
if (acl) {
if (strcmp(policy, "allow") == 0) {
deny = 0;
} else if (strcmp(policy, "deny") == 0) {
deny = 1;
} else {
monitor_printf(mon, "acl: unknown policy '%s', "
"expected 'deny' or 'allow'\n", policy);
return;
}
if (has_index)
ret = qemu_acl_insert(acl, deny, match, index);
else
ret = qemu_acl_append(acl, deny, match);
if (ret < 0)
monitor_printf(mon, "acl: unable to add acl entry\n");
else
monitor_printf(mon, "acl: added rule at position %d\n", ret);
}
}
static void hmp_acl_remove(Monitor *mon, const QDict *qdict)
{
const char *aclname = qdict_get_str(qdict, "aclname");
const char *match = qdict_get_str(qdict, "match");
qemu_acl *acl = find_acl(mon, aclname);
int ret;
if (acl) {
ret = qemu_acl_remove(acl, match);
if (ret < 0)
monitor_printf(mon, "acl: no matching acl entry\n");
else
monitor_printf(mon, "acl: removed rule at position %d\n", ret);
}
}
#if defined(TARGET_I386)
static void hmp_mce(Monitor *mon, const QDict *qdict)
{
X86CPU *cpu;
CPUState *cs;
int cpu_index = qdict_get_int(qdict, "cpu_index");
int bank = qdict_get_int(qdict, "bank");
uint64_t status = qdict_get_int(qdict, "status");
uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
uint64_t addr = qdict_get_int(qdict, "addr");
uint64_t misc = qdict_get_int(qdict, "misc");
int flags = MCE_INJECT_UNCOND_AO;
if (qdict_get_try_bool(qdict, "broadcast", 0)) {
flags |= MCE_INJECT_BROADCAST;
}
cs = qemu_get_cpu(cpu_index);
if (cs != NULL) {
cpu = X86_CPU(cs);
cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
flags);
}
}
#endif
void qmp_getfd(const char *fdname, Error **errp)
{
mon_fd_t *monfd;
int fd;
fd = qemu_chr_fe_get_msgfd(cur_mon->chr);
if (fd == -1) {
error_set(errp, QERR_FD_NOT_SUPPLIED);
return;
}
if (qemu_isdigit(fdname[0])) {
close(fd);
error_set(errp, QERR_INVALID_PARAMETER_VALUE, "fdname",
"a name not starting with a digit");
return;
}
QLIST_FOREACH(monfd, &cur_mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
close(monfd->fd);
monfd->fd = fd;
return;
}
monfd = g_malloc0(sizeof(mon_fd_t));
monfd->name = g_strdup(fdname);
monfd->fd = fd;
QLIST_INSERT_HEAD(&cur_mon->fds, monfd, next);
}
void qmp_closefd(const char *fdname, Error **errp)
{
mon_fd_t *monfd;
QLIST_FOREACH(monfd, &cur_mon->fds, next) {
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
QLIST_REMOVE(monfd, next);
close(monfd->fd);
g_free(monfd->name);
g_free(monfd);
return;
}
error_set(errp, QERR_FD_NOT_FOUND, fdname);
}
static void hmp_loadvm(Monitor *mon, const QDict *qdict)
{
int saved_vm_running = runstate_is_running();
const char *name = qdict_get_str(qdict, "name");
vm_stop(RUN_STATE_RESTORE_VM);
if (load_vmstate(name) == 0 && saved_vm_running) {
vm_start();
}
}
int monitor_get_fd(Monitor *mon, const char *fdname, Error **errp)
{
mon_fd_t *monfd;
QLIST_FOREACH(monfd, &mon->fds, next) {
int fd;
if (strcmp(monfd->name, fdname) != 0) {
continue;
}
fd = monfd->fd;
/* caller takes ownership of fd */
QLIST_REMOVE(monfd, next);
g_free(monfd->name);
g_free(monfd);
return fd;
}
error_setg(errp, "File descriptor named '%s' has not been found", fdname);
return -1;
}
static void monitor_fdset_cleanup(MonFdset *mon_fdset)
{
MonFdsetFd *mon_fdset_fd;
MonFdsetFd *mon_fdset_fd_next;
QLIST_FOREACH_SAFE(mon_fdset_fd, &mon_fdset->fds, next, mon_fdset_fd_next) {
if ((mon_fdset_fd->removed ||
(QLIST_EMPTY(&mon_fdset->dup_fds) && mon_refcount == 0)) &&
runstate_is_running()) {
close(mon_fdset_fd->fd);
g_free(mon_fdset_fd->opaque);
QLIST_REMOVE(mon_fdset_fd, next);
g_free(mon_fdset_fd);
}
}
if (QLIST_EMPTY(&mon_fdset->fds) && QLIST_EMPTY(&mon_fdset->dup_fds)) {
QLIST_REMOVE(mon_fdset, next);
g_free(mon_fdset);
}
}
static void monitor_fdsets_cleanup(void)
{
MonFdset *mon_fdset;
MonFdset *mon_fdset_next;
QLIST_FOREACH_SAFE(mon_fdset, &mon_fdsets, next, mon_fdset_next) {
monitor_fdset_cleanup(mon_fdset);
}
}
AddfdInfo *qmp_add_fd(bool has_fdset_id, int64_t fdset_id, bool has_opaque,
const char *opaque, Error **errp)
{
int fd;
Monitor *mon = cur_mon;
AddfdInfo *fdinfo;
fd = qemu_chr_fe_get_msgfd(mon->chr);
if (fd == -1) {
error_set(errp, QERR_FD_NOT_SUPPLIED);
goto error;
}
fdinfo = monitor_fdset_add_fd(fd, has_fdset_id, fdset_id,
has_opaque, opaque, errp);
if (fdinfo) {
return fdinfo;
}
error:
if (fd != -1) {
close(fd);
}
return NULL;
}
void qmp_remove_fd(int64_t fdset_id, bool has_fd, int64_t fd, Error **errp)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd;
char fd_str[60];
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
if (mon_fdset->id != fdset_id) {
continue;
}
QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
if (has_fd) {
if (mon_fdset_fd->fd != fd) {
continue;
}
mon_fdset_fd->removed = true;
break;
} else {
mon_fdset_fd->removed = true;
}
}
if (has_fd && !mon_fdset_fd) {
goto error;
}
monitor_fdset_cleanup(mon_fdset);
return;
}
error:
if (has_fd) {
snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64 ", fd:%" PRId64,
fdset_id, fd);
} else {
snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64, fdset_id);
}
error_set(errp, QERR_FD_NOT_FOUND, fd_str);
}
FdsetInfoList *qmp_query_fdsets(Error **errp)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd;
FdsetInfoList *fdset_list = NULL;
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
FdsetInfoList *fdset_info = g_malloc0(sizeof(*fdset_info));
FdsetFdInfoList *fdsetfd_list = NULL;
fdset_info->value = g_malloc0(sizeof(*fdset_info->value));
fdset_info->value->fdset_id = mon_fdset->id;
QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
FdsetFdInfoList *fdsetfd_info;
fdsetfd_info = g_malloc0(sizeof(*fdsetfd_info));
fdsetfd_info->value = g_malloc0(sizeof(*fdsetfd_info->value));
fdsetfd_info->value->fd = mon_fdset_fd->fd;
if (mon_fdset_fd->opaque) {
fdsetfd_info->value->has_opaque = true;
fdsetfd_info->value->opaque = g_strdup(mon_fdset_fd->opaque);
} else {
fdsetfd_info->value->has_opaque = false;
}
fdsetfd_info->next = fdsetfd_list;
fdsetfd_list = fdsetfd_info;
}
fdset_info->value->fds = fdsetfd_list;
fdset_info->next = fdset_list;
fdset_list = fdset_info;
}
return fdset_list;
}
AddfdInfo *monitor_fdset_add_fd(int fd, bool has_fdset_id, int64_t fdset_id,
bool has_opaque, const char *opaque,
Error **errp)
{
MonFdset *mon_fdset = NULL;
MonFdsetFd *mon_fdset_fd;
AddfdInfo *fdinfo;
if (has_fdset_id) {
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
/* Break if match found or match impossible due to ordering by ID */
if (fdset_id <= mon_fdset->id) {
if (fdset_id < mon_fdset->id) {
mon_fdset = NULL;
}
break;
}
}
}
if (mon_fdset == NULL) {
int64_t fdset_id_prev = -1;
MonFdset *mon_fdset_cur = QLIST_FIRST(&mon_fdsets);
if (has_fdset_id) {
if (fdset_id < 0) {
error_set(errp, QERR_INVALID_PARAMETER_VALUE, "fdset-id",
"a non-negative value");
return NULL;
}
/* Use specified fdset ID */
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
mon_fdset_cur = mon_fdset;
if (fdset_id < mon_fdset_cur->id) {
break;
}
}
} else {
/* Use first available fdset ID */
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
mon_fdset_cur = mon_fdset;
if (fdset_id_prev == mon_fdset_cur->id - 1) {
fdset_id_prev = mon_fdset_cur->id;
continue;
}
break;
}
}
mon_fdset = g_malloc0(sizeof(*mon_fdset));
if (has_fdset_id) {
mon_fdset->id = fdset_id;
} else {
mon_fdset->id = fdset_id_prev + 1;
}
/* The fdset list is ordered by fdset ID */
if (!mon_fdset_cur) {
QLIST_INSERT_HEAD(&mon_fdsets, mon_fdset, next);
} else if (mon_fdset->id < mon_fdset_cur->id) {
QLIST_INSERT_BEFORE(mon_fdset_cur, mon_fdset, next);
} else {
QLIST_INSERT_AFTER(mon_fdset_cur, mon_fdset, next);
}
}
mon_fdset_fd = g_malloc0(sizeof(*mon_fdset_fd));
mon_fdset_fd->fd = fd;
mon_fdset_fd->removed = false;
if (has_opaque) {
mon_fdset_fd->opaque = g_strdup(opaque);
}
QLIST_INSERT_HEAD(&mon_fdset->fds, mon_fdset_fd, next);
fdinfo = g_malloc0(sizeof(*fdinfo));
fdinfo->fdset_id = mon_fdset->id;
fdinfo->fd = mon_fdset_fd->fd;
return fdinfo;
}
int monitor_fdset_get_fd(int64_t fdset_id, int flags)
{
#ifndef _WIN32
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd;
int mon_fd_flags;
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
if (mon_fdset->id != fdset_id) {
continue;
}
QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) {
mon_fd_flags = fcntl(mon_fdset_fd->fd, F_GETFL);
if (mon_fd_flags == -1) {
return -1;
}
if ((flags & O_ACCMODE) == (mon_fd_flags & O_ACCMODE)) {
return mon_fdset_fd->fd;
}
}
errno = EACCES;
return -1;
}
#endif
errno = ENOENT;
return -1;
}
int monitor_fdset_dup_fd_add(int64_t fdset_id, int dup_fd)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd_dup;
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
if (mon_fdset->id != fdset_id) {
continue;
}
QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) {
if (mon_fdset_fd_dup->fd == dup_fd) {
return -1;
}
}
mon_fdset_fd_dup = g_malloc0(sizeof(*mon_fdset_fd_dup));
mon_fdset_fd_dup->fd = dup_fd;
QLIST_INSERT_HEAD(&mon_fdset->dup_fds, mon_fdset_fd_dup, next);
return 0;
}
return -1;
}
static int monitor_fdset_dup_fd_find_remove(int dup_fd, bool remove)
{
MonFdset *mon_fdset;
MonFdsetFd *mon_fdset_fd_dup;
QLIST_FOREACH(mon_fdset, &mon_fdsets, next) {
QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) {
if (mon_fdset_fd_dup->fd == dup_fd) {
if (remove) {
QLIST_REMOVE(mon_fdset_fd_dup, next);
if (QLIST_EMPTY(&mon_fdset->dup_fds)) {
monitor_fdset_cleanup(mon_fdset);
}
return -1;
} else {
return mon_fdset->id;
}
}
}
}
return -1;
}
int monitor_fdset_dup_fd_find(int dup_fd)
{
return monitor_fdset_dup_fd_find_remove(dup_fd, false);
}
void monitor_fdset_dup_fd_remove(int dup_fd)
{
monitor_fdset_dup_fd_find_remove(dup_fd, true);
}
int monitor_fd_param(Monitor *mon, const char *fdname, Error **errp)
{
int fd;
Error *local_err = NULL;
if (!qemu_isdigit(fdname[0]) && mon) {
fd = monitor_get_fd(mon, fdname, &local_err);
} else {
fd = qemu_parse_fd(fdname);
if (fd == -1) {
error_setg(&local_err, "Invalid file descriptor number '%s'",
fdname);
}
}
if (local_err) {
error_propagate(errp, local_err);
assert(fd == -1);
} else {
assert(fd != -1);
}
return fd;
}
/* Please update hmp-commands.hx when adding or changing commands */
static mon_cmd_t info_cmds[] = {
{
.name = "version",
.args_type = "",
.params = "",
.help = "show the version of QEMU",
.mhandler.cmd = hmp_info_version,
},
{
.name = "network",
.args_type = "",
.params = "",
.help = "show the network state",
.mhandler.cmd = hmp_info_network,
},
{
.name = "chardev",
.args_type = "",
.params = "",
.help = "show the character devices",
.mhandler.cmd = hmp_info_chardev,
},
{
.name = "block",
.args_type = "nodes:-n,verbose:-v,device:B?",
.params = "[-n] [-v] [device]",
.help = "show info of one block device or all block devices "
"(-n: show named nodes; -v: show details)",
.mhandler.cmd = hmp_info_block,
},
{
.name = "blockstats",
.args_type = "",
.params = "",
.help = "show block device statistics",
.mhandler.cmd = hmp_info_blockstats,
},
{
.name = "block-jobs",
.args_type = "",
.params = "",
.help = "show progress of ongoing block device operations",
.mhandler.cmd = hmp_info_block_jobs,
},
{
.name = "registers",
.args_type = "",
.params = "",
.help = "show the cpu registers",
.mhandler.cmd = hmp_info_registers,
},
{
.name = "cpus",
.args_type = "",
.params = "",
.help = "show infos for each CPU",
.mhandler.cmd = hmp_info_cpus,
},
{
.name = "history",
.args_type = "",
.params = "",
.help = "show the command line history",
.mhandler.cmd = hmp_info_history,
},
#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_MIPS) || \
defined(TARGET_LM32) || (defined(TARGET_SPARC) && !defined(TARGET_SPARC64))
{
.name = "irq",
.args_type = "",
.params = "",
.help = "show the interrupts statistics (if available)",
#ifdef TARGET_SPARC
.mhandler.cmd = sun4m_hmp_info_irq,
#elif defined(TARGET_LM32)
.mhandler.cmd = lm32_hmp_info_irq,
#else
.mhandler.cmd = hmp_info_irq,
#endif
},
{
.name = "pic",
.args_type = "",
.params = "",
.help = "show i8259 (PIC) state",
#ifdef TARGET_SPARC
.mhandler.cmd = sun4m_hmp_info_pic,
#elif defined(TARGET_LM32)
.mhandler.cmd = lm32_hmp_info_pic,
#else
.mhandler.cmd = hmp_info_pic,
#endif
},
#endif
{
.name = "pci",
.args_type = "",
.params = "",
.help = "show PCI info",
.mhandler.cmd = hmp_info_pci,
},
#if defined(TARGET_I386) || defined(TARGET_SH4) || defined(TARGET_SPARC) || \
defined(TARGET_PPC) || defined(TARGET_XTENSA)
{
.name = "tlb",
.args_type = "",
.params = "",
.help = "show virtual to physical memory mappings",
.mhandler.cmd = hmp_info_tlb,
},
#endif
#if defined(TARGET_I386)
{
.name = "mem",
.args_type = "",
.params = "",
.help = "show the active virtual memory mappings",
.mhandler.cmd = hmp_info_mem,
},
#endif
{
.name = "mtree",
.args_type = "",
.params = "",
.help = "show memory tree",
.mhandler.cmd = hmp_info_mtree,
},
{
.name = "jit",
.args_type = "",
.params = "",
.help = "show dynamic compiler info",
.mhandler.cmd = hmp_info_jit,
},
{
.name = "opcount",
.args_type = "",
.params = "",
.help = "show dynamic compiler opcode counters",
.mhandler.cmd = hmp_info_opcount,
},
{
.name = "kvm",
.args_type = "",
.params = "",
.help = "show KVM information",
.mhandler.cmd = hmp_info_kvm,
},
{
.name = "numa",
.args_type = "",
.params = "",
.help = "show NUMA information",
.mhandler.cmd = hmp_info_numa,
},
{
.name = "usb",
.args_type = "",
.params = "",
.help = "show guest USB devices",
.mhandler.cmd = hmp_info_usb,
},
{
.name = "usbhost",
.args_type = "",
.params = "",
.help = "show host USB devices",
.mhandler.cmd = hmp_info_usbhost,
},
{
.name = "profile",
.args_type = "",
.params = "",
.help = "show profiling information",
.mhandler.cmd = hmp_info_profile,
},
{
.name = "capture",
.args_type = "",
.params = "",
.help = "show capture information",
.mhandler.cmd = hmp_info_capture,
},
{
.name = "snapshots",
.args_type = "",
.params = "",
.help = "show the currently saved VM snapshots",
.mhandler.cmd = hmp_info_snapshots,
},
{
.name = "status",
.args_type = "",
.params = "",
.help = "show the current VM status (running|paused)",
.mhandler.cmd = hmp_info_status,
},
{
.name = "mice",
.args_type = "",
.params = "",
.help = "show which guest mouse is receiving events",
.mhandler.cmd = hmp_info_mice,
},
{
.name = "vnc",
.args_type = "",
.params = "",
.help = "show the vnc server status",
.mhandler.cmd = hmp_info_vnc,
},
#if defined(CONFIG_SPICE)
{
.name = "spice",
.args_type = "",
.params = "",
.help = "show the spice server status",
.mhandler.cmd = hmp_info_spice,
},
#endif
{
.name = "name",
.args_type = "",
.params = "",
.help = "show the current VM name",
.mhandler.cmd = hmp_info_name,
},
{
.name = "uuid",
.args_type = "",
.params = "",
.help = "show the current VM UUID",
.mhandler.cmd = hmp_info_uuid,
},
{
.name = "cpustats",
.args_type = "",
.params = "",
.help = "show CPU statistics",
.mhandler.cmd = hmp_info_cpustats,
},
#if defined(CONFIG_SLIRP)
{
.name = "usernet",
.args_type = "",
.params = "",
.help = "show user network stack connection states",
.mhandler.cmd = hmp_info_usernet,
},
#endif
{
.name = "migrate",
.args_type = "",
.params = "",
.help = "show migration status",
.mhandler.cmd = hmp_info_migrate,
},
{
.name = "migrate_capabilities",
.args_type = "",
.params = "",
.help = "show current migration capabilities",
.mhandler.cmd = hmp_info_migrate_capabilities,
},
{
.name = "migrate_cache_size",
.args_type = "",
.params = "",
.help = "show current migration xbzrle cache size",
.mhandler.cmd = hmp_info_migrate_cache_size,
},
{
.name = "balloon",
.args_type = "",
.params = "",
.help = "show balloon information",
.mhandler.cmd = hmp_info_balloon,
},
{
.name = "qtree",
.args_type = "",
.params = "",
.help = "show device tree",
.mhandler.cmd = hmp_info_qtree,
},
{
.name = "qdm",
.args_type = "",
.params = "",
.help = "show qdev device model list",
.mhandler.cmd = hmp_info_qdm,
},
{
.name = "qom-tree",
.args_type = "path:s?",
.params = "[path]",
.help = "show QOM composition tree",
.mhandler.cmd = hmp_info_qom_tree,
},
{
.name = "roms",
.args_type = "",
.params = "",
.help = "show roms",
.mhandler.cmd = hmp_info_roms,
},
{
.name = "trace-events",
.args_type = "",
.params = "",
.help = "show available trace-events & their state",
.mhandler.cmd = hmp_info_trace_events,
},
{
.name = "tpm",
.args_type = "",
.params = "",
.help = "show the TPM device",
.mhandler.cmd = hmp_info_tpm,
},
{
.name = "memdev",
.args_type = "",
.params = "",
.help = "show memory backends",
.mhandler.cmd = hmp_info_memdev,
},
{
.name = "memory-devices",
.args_type = "",
.params = "",
.help = "show memory devices",
.mhandler.cmd = hmp_info_memory_devices,
},
{
.name = NULL,
},
};
/* mon_cmds and info_cmds would be sorted at runtime */
static mon_cmd_t mon_cmds[] = {
#include "hmp-commands.h"
{ NULL, NULL, },
};
static const mon_cmd_t qmp_cmds[] = {
#include "qmp-commands-old.h"
{ /* NULL */ },
};
/*******************************************************************/
static const char *pch;
static sigjmp_buf expr_env;
#define MD_TLONG 0
#define MD_I32 1
typedef struct MonitorDef {
const char *name;
int offset;
target_long (*get_value)(const struct MonitorDef *md, int val);
int type;
} MonitorDef;
#if defined(TARGET_I386)
static target_long monitor_get_pc (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return env->eip + env->segs[R_CS].base;
}
#endif
#if defined(TARGET_PPC)
static target_long monitor_get_ccr (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
unsigned int u;
int i;
u = 0;
for (i = 0; i < 8; i++)
u |= env->crf[i] << (32 - (4 * (i + 1)));
return u;
}
static target_long monitor_get_msr (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return env->msr;
}
static target_long monitor_get_xer (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return env->xer;
}
static target_long monitor_get_decr (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return cpu_ppc_load_decr(env);
}
static target_long monitor_get_tbu (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return cpu_ppc_load_tbu(env);
}
static target_long monitor_get_tbl (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return cpu_ppc_load_tbl(env);
}
#endif
#if defined(TARGET_SPARC)
#ifndef TARGET_SPARC64
static target_long monitor_get_psr (const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return cpu_get_psr(env);
}
#endif
static target_long monitor_get_reg(const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu();
return env->regwptr[val];
}
#endif
static const MonitorDef monitor_defs[] = {
#ifdef TARGET_I386
#define SEG(name, seg) \
{ name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
{ name ".base", offsetof(CPUX86State, segs[seg].base) },\
{ name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
{ "eax", offsetof(CPUX86State, regs[0]) },
{ "ecx", offsetof(CPUX86State, regs[1]) },
{ "edx", offsetof(CPUX86State, regs[2]) },
{ "ebx", offsetof(CPUX86State, regs[3]) },
{ "esp|sp", offsetof(CPUX86State, regs[4]) },
{ "ebp|fp", offsetof(CPUX86State, regs[5]) },
{ "esi", offsetof(CPUX86State, regs[6]) },
{ "edi", offsetof(CPUX86State, regs[7]) },
#ifdef TARGET_X86_64
{ "r8", offsetof(CPUX86State, regs[8]) },
{ "r9", offsetof(CPUX86State, regs[9]) },
{ "r10", offsetof(CPUX86State, regs[10]) },
{ "r11", offsetof(CPUX86State, regs[11]) },
{ "r12", offsetof(CPUX86State, regs[12]) },
{ "r13", offsetof(CPUX86State, regs[13]) },
{ "r14", offsetof(CPUX86State, regs[14]) },
{ "r15", offsetof(CPUX86State, regs[15]) },
#endif
{ "eflags", offsetof(CPUX86State, eflags) },
{ "eip", offsetof(CPUX86State, eip) },
SEG("cs", R_CS)
SEG("ds", R_DS)
SEG("es", R_ES)
SEG("ss", R_SS)
SEG("fs", R_FS)
SEG("gs", R_GS)
{ "pc", 0, monitor_get_pc, },
#elif defined(TARGET_PPC)
/* General purpose registers */
{ "r0", offsetof(CPUPPCState, gpr[0]) },
{ "r1", offsetof(CPUPPCState, gpr[1]) },
{ "r2", offsetof(CPUPPCState, gpr[2]) },
{ "r3", offsetof(CPUPPCState, gpr[3]) },
{ "r4", offsetof(CPUPPCState, gpr[4]) },
{ "r5", offsetof(CPUPPCState, gpr[5]) },
{ "r6", offsetof(CPUPPCState, gpr[6]) },
{ "r7", offsetof(CPUPPCState, gpr[7]) },
{ "r8", offsetof(CPUPPCState, gpr[8]) },
{ "r9", offsetof(CPUPPCState, gpr[9]) },
{ "r10", offsetof(CPUPPCState, gpr[10]) },
{ "r11", offsetof(CPUPPCState, gpr[11]) },
{ "r12", offsetof(CPUPPCState, gpr[12]) },
{ "r13", offsetof(CPUPPCState, gpr[13]) },
{ "r14", offsetof(CPUPPCState, gpr[14]) },
{ "r15", offsetof(CPUPPCState, gpr[15]) },
{ "r16", offsetof(CPUPPCState, gpr[16]) },
{ "r17", offsetof(CPUPPCState, gpr[17]) },
{ "r18", offsetof(CPUPPCState, gpr[18]) },
{ "r19", offsetof(CPUPPCState, gpr[19]) },
{ "r20", offsetof(CPUPPCState, gpr[20]) },
{ "r21", offsetof(CPUPPCState, gpr[21]) },
{ "r22", offsetof(CPUPPCState, gpr[22]) },
{ "r23", offsetof(CPUPPCState, gpr[23]) },
{ "r24", offsetof(CPUPPCState, gpr[24]) },
{ "r25", offsetof(CPUPPCState, gpr[25]) },
{ "r26", offsetof(CPUPPCState, gpr[26]) },
{ "r27", offsetof(CPUPPCState, gpr[27]) },
{ "r28", offsetof(CPUPPCState, gpr[28]) },
{ "r29", offsetof(CPUPPCState, gpr[29]) },
{ "r30", offsetof(CPUPPCState, gpr[30]) },
{ "r31", offsetof(CPUPPCState, gpr[31]) },
/* Floating point registers */
{ "f0", offsetof(CPUPPCState, fpr[0]) },
{ "f1", offsetof(CPUPPCState, fpr[1]) },
{ "f2", offsetof(CPUPPCState, fpr[2]) },
{ "f3", offsetof(CPUPPCState, fpr[3]) },
{ "f4", offsetof(CPUPPCState, fpr[4]) },
{ "f5", offsetof(CPUPPCState, fpr[5]) },
{ "f6", offsetof(CPUPPCState, fpr[6]) },
{ "f7", offsetof(CPUPPCState, fpr[7]) },
{ "f8", offsetof(CPUPPCState, fpr[8]) },
{ "f9", offsetof(CPUPPCState, fpr[9]) },
{ "f10", offsetof(CPUPPCState, fpr[10]) },
{ "f11", offsetof(CPUPPCState, fpr[11]) },
{ "f12", offsetof(CPUPPCState, fpr[12]) },
{ "f13", offsetof(CPUPPCState, fpr[13]) },
{ "f14", offsetof(CPUPPCState, fpr[14]) },
{ "f15", offsetof(CPUPPCState, fpr[15]) },
{ "f16", offsetof(CPUPPCState, fpr[16]) },
{ "f17", offsetof(CPUPPCState, fpr[17]) },
{ "f18", offsetof(CPUPPCState, fpr[18]) },
{ "f19", offsetof(CPUPPCState, fpr[19]) },
{ "f20", offsetof(CPUPPCState, fpr[20]) },
{ "f21", offsetof(CPUPPCState, fpr[21]) },
{ "f22", offsetof(CPUPPCState, fpr[22]) },
{ "f23", offsetof(CPUPPCState, fpr[23]) },
{ "f24", offsetof(CPUPPCState, fpr[24]) },
{ "f25", offsetof(CPUPPCState, fpr[25]) },
{ "f26", offsetof(CPUPPCState, fpr[26]) },
{ "f27", offsetof(CPUPPCState, fpr[27]) },
{ "f28", offsetof(CPUPPCState, fpr[28]) },
{ "f29", offsetof(CPUPPCState, fpr[29]) },
{ "f30", offsetof(CPUPPCState, fpr[30]) },
{ "f31", offsetof(CPUPPCState, fpr[31]) },
{ "fpscr", offsetof(CPUPPCState, fpscr) },
/* Next instruction pointer */
{ "nip|pc", offsetof(CPUPPCState, nip) },
{ "lr", offsetof(CPUPPCState, lr) },
{ "ctr", offsetof(CPUPPCState, ctr) },
{ "decr", 0, &monitor_get_decr, },
{ "ccr", 0, &monitor_get_ccr, },
/* Machine state register */
{ "msr", 0, &monitor_get_msr, },
{ "xer", 0, &monitor_get_xer, },
{ "tbu", 0, &monitor_get_tbu, },
{ "tbl", 0, &monitor_get_tbl, },
/* Segment registers */
{ "sdr1", offsetof(CPUPPCState, spr[SPR_SDR1]) },
{ "sr0", offsetof(CPUPPCState, sr[0]) },
{ "sr1", offsetof(CPUPPCState, sr[1]) },
{ "sr2", offsetof(CPUPPCState, sr[2]) },
{ "sr3", offsetof(CPUPPCState, sr[3]) },
{ "sr4", offsetof(CPUPPCState, sr[4]) },
{ "sr5", offsetof(CPUPPCState, sr[5]) },
{ "sr6", offsetof(CPUPPCState, sr[6]) },
{ "sr7", offsetof(CPUPPCState, sr[7]) },
{ "sr8", offsetof(CPUPPCState, sr[8]) },
{ "sr9", offsetof(CPUPPCState, sr[9]) },
{ "sr10", offsetof(CPUPPCState, sr[10]) },
{ "sr11", offsetof(CPUPPCState, sr[11]) },
{ "sr12", offsetof(CPUPPCState, sr[12]) },
{ "sr13", offsetof(CPUPPCState, sr[13]) },
{ "sr14", offsetof(CPUPPCState, sr[14]) },
{ "sr15", offsetof(CPUPPCState, sr[15]) },
/* Too lazy to put BATs... */
{ "pvr", offsetof(CPUPPCState, spr[SPR_PVR]) },
{ "srr0", offsetof(CPUPPCState, spr[SPR_SRR0]) },
{ "srr1", offsetof(CPUPPCState, spr[SPR_SRR1]) },
{ "dar", offsetof(CPUPPCState, spr[SPR_DAR]) },
{ "dsisr", offsetof(CPUPPCState, spr[SPR_DSISR]) },
{ "cfar", offsetof(CPUPPCState, spr[SPR_CFAR]) },
{ "sprg0", offsetof(CPUPPCState, spr[SPR_SPRG0]) },
{ "sprg1", offsetof(CPUPPCState, spr[SPR_SPRG1]) },
{ "sprg2", offsetof(CPUPPCState, spr[SPR_SPRG2]) },
{ "sprg3", offsetof(CPUPPCState, spr[SPR_SPRG3]) },
{ "sprg4", offsetof(CPUPPCState, spr[SPR_SPRG4]) },
{ "sprg5", offsetof(CPUPPCState, spr[SPR_SPRG5]) },
{ "sprg6", offsetof(CPUPPCState, spr[SPR_SPRG6]) },
{ "sprg7", offsetof(CPUPPCState, spr[SPR_SPRG7]) },
{ "pid", offsetof(CPUPPCState, spr[SPR_BOOKE_PID]) },
{ "csrr0", offsetof(CPUPPCState, spr[SPR_BOOKE_CSRR0]) },
{ "csrr1", offsetof(CPUPPCState, spr[SPR_BOOKE_CSRR1]) },
{ "esr", offsetof(CPUPPCState, spr[SPR_BOOKE_ESR]) },
{ "dear", offsetof(CPUPPCState, spr[SPR_BOOKE_DEAR]) },
{ "mcsr", offsetof(CPUPPCState, spr[SPR_BOOKE_MCSR]) },
{ "tsr", offsetof(CPUPPCState, spr[SPR_BOOKE_TSR]) },
{ "tcr", offsetof(CPUPPCState, spr[SPR_BOOKE_TCR]) },
{ "vrsave", offsetof(CPUPPCState, spr[SPR_VRSAVE]) },
{ "pir", offsetof(CPUPPCState, spr[SPR_BOOKE_PIR]) },
{ "mcsrr0", offsetof(CPUPPCState, spr[SPR_BOOKE_MCSRR0]) },
{ "mcsrr1", offsetof(CPUPPCState, spr[SPR_BOOKE_MCSRR1]) },
{ "decar", offsetof(CPUPPCState, spr[SPR_BOOKE_DECAR]) },
{ "ivpr", offsetof(CPUPPCState, spr[SPR_BOOKE_IVPR]) },
{ "epcr", offsetof(CPUPPCState, spr[SPR_BOOKE_EPCR]) },
{ "sprg8", offsetof(CPUPPCState, spr[SPR_BOOKE_SPRG8]) },
{ "ivor0", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR0]) },
{ "ivor1", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR1]) },
{ "ivor2", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR2]) },
{ "ivor3", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR3]) },
{ "ivor4", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR4]) },
{ "ivor5", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR5]) },
{ "ivor6", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR6]) },
{ "ivor7", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR7]) },
{ "ivor8", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR8]) },
{ "ivor9", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR9]) },
{ "ivor10", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR10]) },
{ "ivor11", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR11]) },
{ "ivor12", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR12]) },
{ "ivor13", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR13]) },
{ "ivor14", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR14]) },
{ "ivor15", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR15]) },
{ "ivor32", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR32]) },
{ "ivor33", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR33]) },
{ "ivor34", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR34]) },
{ "ivor35", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR35]) },
{ "ivor36", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR36]) },
{ "ivor37", offsetof(CPUPPCState, spr[SPR_BOOKE_IVOR37]) },
{ "mas0", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS0]) },
{ "mas1", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS1]) },
{ "mas2", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS2]) },
{ "mas3", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS3]) },
{ "mas4", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS4]) },
{ "mas6", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS6]) },
{ "mas7", offsetof(CPUPPCState, spr[SPR_BOOKE_MAS7]) },
{ "mmucfg", offsetof(CPUPPCState, spr[SPR_MMUCFG]) },
{ "tlb0cfg", offsetof(CPUPPCState, spr[SPR_BOOKE_TLB0CFG]) },
{ "tlb1cfg", offsetof(CPUPPCState, spr[SPR_BOOKE_TLB1CFG]) },
{ "epr", offsetof(CPUPPCState, spr[SPR_BOOKE_EPR]) },
{ "eplc", offsetof(CPUPPCState, spr[SPR_BOOKE_EPLC]) },
{ "epsc", offsetof(CPUPPCState, spr[SPR_BOOKE_EPSC]) },
{ "svr", offsetof(CPUPPCState, spr[SPR_E500_SVR]) },
{ "mcar", offsetof(CPUPPCState, spr[SPR_Exxx_MCAR]) },
{ "pid1", offsetof(CPUPPCState, spr[SPR_BOOKE_PID1]) },
{ "pid2", offsetof(CPUPPCState, spr[SPR_BOOKE_PID2]) },
{ "hid0", offsetof(CPUPPCState, spr[SPR_HID0]) },
#elif defined(TARGET_SPARC)
{ "g0", offsetof(CPUSPARCState, gregs[0]) },
{ "g1", offsetof(CPUSPARCState, gregs[1]) },
{ "g2", offsetof(CPUSPARCState, gregs[2]) },
{ "g3", offsetof(CPUSPARCState, gregs[3]) },
{ "g4", offsetof(CPUSPARCState, gregs[4]) },
{ "g5", offsetof(CPUSPARCState, gregs[5]) },
{ "g6", offsetof(CPUSPARCState, gregs[6]) },
{ "g7", offsetof(CPUSPARCState, gregs[7]) },
{ "o0", 0, monitor_get_reg },
{ "o1", 1, monitor_get_reg },
{ "o2", 2, monitor_get_reg },
{ "o3", 3, monitor_get_reg },
{ "o4", 4, monitor_get_reg },
{ "o5", 5, monitor_get_reg },
{ "o6", 6, monitor_get_reg },
{ "o7", 7, monitor_get_reg },
{ "l0", 8, monitor_get_reg },
{ "l1", 9, monitor_get_reg },
{ "l2", 10, monitor_get_reg },
{ "l3", 11, monitor_get_reg },
{ "l4", 12, monitor_get_reg },
{ "l5", 13, monitor_get_reg },
{ "l6", 14, monitor_get_reg },
{ "l7", 15, monitor_get_reg },
{ "i0", 16, monitor_get_reg },
{ "i1", 17, monitor_get_reg },
{ "i2", 18, monitor_get_reg },
{ "i3", 19, monitor_get_reg },
{ "i4", 20, monitor_get_reg },
{ "i5", 21, monitor_get_reg },
{ "i6", 22, monitor_get_reg },
{ "i7", 23, monitor_get_reg },
{ "pc", offsetof(CPUSPARCState, pc) },
{ "npc", offsetof(CPUSPARCState, npc) },
{ "y", offsetof(CPUSPARCState, y) },
#ifndef TARGET_SPARC64
{ "psr", 0, &monitor_get_psr, },
{ "wim", offsetof(CPUSPARCState, wim) },
#endif
{ "tbr", offsetof(CPUSPARCState, tbr) },
{ "fsr", offsetof(CPUSPARCState, fsr) },
{ "f0", offsetof(CPUSPARCState, fpr[0].l.upper) },
{ "f1", offsetof(CPUSPARCState, fpr[0].l.lower) },
{ "f2", offsetof(CPUSPARCState, fpr[1].l.upper) },
{ "f3", offsetof(CPUSPARCState, fpr[1].l.lower) },
{ "f4", offsetof(CPUSPARCState, fpr[2].l.upper) },
{ "f5", offsetof(CPUSPARCState, fpr[2].l.lower) },
{ "f6", offsetof(CPUSPARCState, fpr[3].l.upper) },
{ "f7", offsetof(CPUSPARCState, fpr[3].l.lower) },
{ "f8", offsetof(CPUSPARCState, fpr[4].l.upper) },
{ "f9", offsetof(CPUSPARCState, fpr[4].l.lower) },
{ "f10", offsetof(CPUSPARCState, fpr[5].l.upper) },
{ "f11", offsetof(CPUSPARCState, fpr[5].l.lower) },
{ "f12", offsetof(CPUSPARCState, fpr[6].l.upper) },
{ "f13", offsetof(CPUSPARCState, fpr[6].l.lower) },
{ "f14", offsetof(CPUSPARCState, fpr[7].l.upper) },
{ "f15", offsetof(CPUSPARCState, fpr[7].l.lower) },
{ "f16", offsetof(CPUSPARCState, fpr[8].l.upper) },
{ "f17", offsetof(CPUSPARCState, fpr[8].l.lower) },
{ "f18", offsetof(CPUSPARCState, fpr[9].l.upper) },
{ "f19", offsetof(CPUSPARCState, fpr[9].l.lower) },
{ "f20", offsetof(CPUSPARCState, fpr[10].l.upper) },
{ "f21", offsetof(CPUSPARCState, fpr[10].l.lower) },
{ "f22", offsetof(CPUSPARCState, fpr[11].l.upper) },
{ "f23", offsetof(CPUSPARCState, fpr[11].l.lower) },
{ "f24", offsetof(CPUSPARCState, fpr[12].l.upper) },
{ "f25", offsetof(CPUSPARCState, fpr[12].l.lower) },
{ "f26", offsetof(CPUSPARCState, fpr[13].l.upper) },
{ "f27", offsetof(CPUSPARCState, fpr[13].l.lower) },
{ "f28", offsetof(CPUSPARCState, fpr[14].l.upper) },
{ "f29", offsetof(CPUSPARCState, fpr[14].l.lower) },
{ "f30", offsetof(CPUSPARCState, fpr[15].l.upper) },
{ "f31", offsetof(CPUSPARCState, fpr[15].l.lower) },
#ifdef TARGET_SPARC64
{ "f32", offsetof(CPUSPARCState, fpr[16]) },
{ "f34", offsetof(CPUSPARCState, fpr[17]) },
{ "f36", offsetof(CPUSPARCState, fpr[18]) },
{ "f38", offsetof(CPUSPARCState, fpr[19]) },
{ "f40", offsetof(CPUSPARCState, fpr[20]) },
{ "f42", offsetof(CPUSPARCState, fpr[21]) },
{ "f44", offsetof(CPUSPARCState, fpr[22]) },
{ "f46", offsetof(CPUSPARCState, fpr[23]) },
{ "f48", offsetof(CPUSPARCState, fpr[24]) },
{ "f50", offsetof(CPUSPARCState, fpr[25]) },
{ "f52", offsetof(CPUSPARCState, fpr[26]) },
{ "f54", offsetof(CPUSPARCState, fpr[27]) },
{ "f56", offsetof(CPUSPARCState, fpr[28]) },
{ "f58", offsetof(CPUSPARCState, fpr[29]) },
{ "f60", offsetof(CPUSPARCState, fpr[30]) },
{ "f62", offsetof(CPUSPARCState, fpr[31]) },
{ "asi", offsetof(CPUSPARCState, asi) },
{ "pstate", offsetof(CPUSPARCState, pstate) },
{ "cansave", offsetof(CPUSPARCState, cansave) },
{ "canrestore", offsetof(CPUSPARCState, canrestore) },
{ "otherwin", offsetof(CPUSPARCState, otherwin) },
{ "wstate", offsetof(CPUSPARCState, wstate) },
{ "cleanwin", offsetof(CPUSPARCState, cleanwin) },
{ "fprs", offsetof(CPUSPARCState, fprs) },
#endif
#endif
{ NULL },
};
static void GCC_FMT_ATTR(2, 3) QEMU_NORETURN
expr_error(Monitor *mon, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(mon, fmt, ap);
monitor_printf(mon, "\n");
va_end(ap);
siglongjmp(expr_env, 1);
}
/* return 0 if OK, -1 if not found */
static int get_monitor_def(target_long *pval, const char *name)
{
const MonitorDef *md;
void *ptr;
for(md = monitor_defs; md->name != NULL; md++) {
if (compare_cmd(name, md->name)) {
if (md->get_value) {
*pval = md->get_value(md, md->offset);
} else {
CPUArchState *env = mon_get_cpu();
ptr = (uint8_t *)env + md->offset;
switch(md->type) {
case MD_I32:
*pval = *(int32_t *)ptr;
break;
case MD_TLONG:
*pval = *(target_long *)ptr;
break;
default:
*pval = 0;
break;
}
}
return 0;
}
}
return -1;
}
static void next(void)
{
if (*pch != '\0') {
pch++;
while (qemu_isspace(*pch))
pch++;
}
}
static int64_t expr_sum(Monitor *mon);
static int64_t expr_unary(Monitor *mon)
{
int64_t n;
char *p;
int ret;
switch(*pch) {
case '+':
next();
n = expr_unary(mon);
break;
case '-':
next();
n = -expr_unary(mon);
break;
case '~':
next();
n = ~expr_unary(mon);
break;
case '(':
next();
n = expr_sum(mon);
if (*pch != ')') {
expr_error(mon, "')' expected");
}
next();
break;
case '\'':
pch++;
if (*pch == '\0')
expr_error(mon, "character constant expected");
n = *pch;
pch++;
if (*pch != '\'')
expr_error(mon, "missing terminating \' character");
next();
break;
case '$':
{
char buf[128], *q;
target_long reg=0;
pch++;
q = buf;
while ((*pch >= 'a' && *pch <= 'z') ||
(*pch >= 'A' && *pch <= 'Z') ||
(*pch >= '0' && *pch <= '9') ||
*pch == '_' || *pch == '.') {
if ((q - buf) < sizeof(buf) - 1)
*q++ = *pch;
pch++;
}
while (qemu_isspace(*pch))
pch++;
*q = 0;
ret = get_monitor_def(&reg, buf);
if (ret < 0)
expr_error(mon, "unknown register");
n = reg;
}
break;
case '\0':
expr_error(mon, "unexpected end of expression");
n = 0;
break;
default:
errno = 0;
n = strtoull(pch, &p, 0);
if (errno == ERANGE) {
expr_error(mon, "number too large");
}
if (pch == p) {
expr_error(mon, "invalid char '%c' in expression", *p);
}
pch = p;
while (qemu_isspace(*pch))
pch++;
break;
}
return n;
}
static int64_t expr_prod(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_unary(mon);
for(;;) {
op = *pch;
if (op != '*' && op != '/' && op != '%')
break;
next();
val2 = expr_unary(mon);
switch(op) {
default:
case '*':
val *= val2;
break;
case '/':
case '%':
if (val2 == 0)
expr_error(mon, "division by zero");
if (op == '/')
val /= val2;
else
val %= val2;
break;
}
}
return val;
}
static int64_t expr_logic(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_prod(mon);
for(;;) {
op = *pch;
if (op != '&' && op != '|' && op != '^')
break;
next();
val2 = expr_prod(mon);
switch(op) {
default:
case '&':
val &= val2;
break;
case '|':
val |= val2;
break;
case '^':
val ^= val2;
break;
}
}
return val;
}
static int64_t expr_sum(Monitor *mon)
{
int64_t val, val2;
int op;
val = expr_logic(mon);
for(;;) {
op = *pch;
if (op != '+' && op != '-')
break;
next();
val2 = expr_logic(mon);
if (op == '+')
val += val2;
else
val -= val2;
}
return val;
}
static int get_expr(Monitor *mon, int64_t *pval, const char **pp)
{
pch = *pp;
if (sigsetjmp(expr_env, 0)) {
*pp = pch;
return -1;
}
while (qemu_isspace(*pch))
pch++;
*pval = expr_sum(mon);
*pp = pch;
return 0;
}
static int get_double(Monitor *mon, double *pval, const char **pp)
{
const char *p = *pp;
char *tailp;
double d;
d = strtod(p, &tailp);
if (tailp == p) {
monitor_printf(mon, "Number expected\n");
return -1;
}
if (d != d || d - d != 0) {
/* NaN or infinity */
monitor_printf(mon, "Bad number\n");
return -1;
}
*pval = d;
*pp = tailp;
return 0;
}
/*
* Store the command-name in cmdname, and return a pointer to
* the remaining of the command string.
*/
static const char *get_command_name(const char *cmdline,
char *cmdname, size_t nlen)
{
size_t len;
const char *p, *pstart;
p = cmdline;
while (qemu_isspace(*p))
p++;
if (*p == '\0')
return NULL;
pstart = p;
while (*p != '\0' && *p != '/' && !qemu_isspace(*p))
p++;
len = p - pstart;
if (len > nlen - 1)
len = nlen - 1;
memcpy(cmdname, pstart, len);
cmdname[len] = '\0';
return p;
}
/**
* Read key of 'type' into 'key' and return the current
* 'type' pointer.
*/
static char *key_get_info(const char *type, char **key)
{
size_t len;
char *p, *str;
if (*type == ',')
type++;
p = strchr(type, ':');
if (!p) {
*key = NULL;
return NULL;
}
len = p - type;
str = g_malloc(len + 1);
memcpy(str, type, len);
str[len] = '\0';
*key = str;
return ++p;
}
static int default_fmt_format = 'x';
static int default_fmt_size = 4;
static int is_valid_option(const char *c, const char *typestr)
{
char option[3];
option[0] = '-';
option[1] = *c;
option[2] = '\0';
typestr = strstr(typestr, option);
return (typestr != NULL);
}
static const mon_cmd_t *search_dispatch_table(const mon_cmd_t *disp_table,
const char *cmdname)
{
const mon_cmd_t *cmd;
for (cmd = disp_table; cmd->name != NULL; cmd++) {
if (compare_cmd(cmdname, cmd->name)) {
return cmd;
}
}
return NULL;
}
static const mon_cmd_t *qmp_find_cmd(const char *cmdname)
{
return search_dispatch_table(qmp_cmds, cmdname);
}
/*
* Parse @cmdline according to command table @table.
* If @cmdline is blank, return NULL.
* If it can't be parsed, report to @mon, and return NULL.
* Else, insert command arguments into @qdict, and return the command.
* If a sub-command table exists, and if @cmdline contains an additional string
* for a sub-command, this function will try to search the sub-command table.
* If no additional string for a sub-command is present, this function will
* return the command found in @table.
* Do not assume the returned command points into @table! It doesn't
* when the command is a sub-command.
*/
static const mon_cmd_t *monitor_parse_command(Monitor *mon,
const char *cmdline,
int start,
mon_cmd_t *table,
QDict *qdict)
{
const char *p, *typestr;
int c;
const mon_cmd_t *cmd;
char cmdname[256];
char buf[1024];
char *key;
#ifdef DEBUG
monitor_printf(mon, "command='%s', start='%d'\n", cmdline, start);
#endif
/* extract the command name */
p = get_command_name(cmdline + start, cmdname, sizeof(cmdname));
if (!p)
return NULL;
cmd = search_dispatch_table(table, cmdname);
if (!cmd) {
monitor_printf(mon, "unknown command: '%.*s'\n",
(int)(p - cmdline), cmdline);
return NULL;
}
/* filter out following useless space */
while (qemu_isspace(*p)) {
p++;
}
/* search sub command */
if (cmd->sub_table != NULL) {
/* check if user set additional command */
if (*p == '\0') {
return cmd;
}
return monitor_parse_command(mon, cmdline, p - cmdline,
cmd->sub_table, qdict);
}
/* parse the parameters */
typestr = cmd->args_type;
for(;;) {
typestr = key_get_info(typestr, &key);
if (!typestr)
break;
c = *typestr;
typestr++;
switch(c) {
case 'F':
case 'B':
case 's':
{
int ret;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
/* no optional string: NULL argument */
break;
}
}
ret = get_str(buf, sizeof(buf), &p);
if (ret < 0) {
switch(c) {
case 'F':
monitor_printf(mon, "%s: filename expected\n",
cmdname);
break;
case 'B':
monitor_printf(mon, "%s: block device name expected\n",
cmdname);
break;
default:
monitor_printf(mon, "%s: string expected\n", cmdname);
break;
}
goto fail;
}
qdict_put(qdict, key, qstring_from_str(buf));
}
break;
case 'O':
{
QemuOptsList *opts_list;
QemuOpts *opts;
opts_list = qemu_find_opts(key);
if (!opts_list || opts_list->desc->name) {
goto bad_type;
}
while (qemu_isspace(*p)) {
p++;
}
if (!*p)
break;
if (get_str(buf, sizeof(buf), &p) < 0) {
goto fail;
}
opts = qemu_opts_parse(opts_list, buf, 1);
if (!opts) {
goto fail;
}
qemu_opts_to_qdict(opts, qdict);
qemu_opts_del(opts);
}
break;
case '/':
{
int count, format, size;
while (qemu_isspace(*p))
p++;
if (*p == '/') {
/* format found */
p++;
count = 1;
if (qemu_isdigit(*p)) {
count = 0;
while (qemu_isdigit(*p)) {
count = count * 10 + (*p - '0');
p++;
}
}
size = -1;
format = -1;
for(;;) {
switch(*p) {
case 'o':
case 'd':
case 'u':
case 'x':
case 'i':
case 'c':
format = *p++;
break;
case 'b':
size = 1;
p++;
break;
case 'h':
size = 2;
p++;
break;
case 'w':
size = 4;
p++;
break;
case 'g':
case 'L':
size = 8;
p++;
break;
default:
goto next;
}
}
next:
if (*p != '\0' && !qemu_isspace(*p)) {
monitor_printf(mon, "invalid char in format: '%c'\n",
*p);
goto fail;
}
if (format < 0)
format = default_fmt_format;
if (format != 'i') {
/* for 'i', not specifying a size gives -1 as size */
if (size < 0)
size = default_fmt_size;
default_fmt_size = size;
}
default_fmt_format = format;
} else {
count = 1;
format = default_fmt_format;
if (format != 'i') {
size = default_fmt_size;
} else {
size = -1;
}
}
qdict_put(qdict, "count", qint_from_int(count));
qdict_put(qdict, "format", qint_from_int(format));
qdict_put(qdict, "size", qint_from_int(size));
}
break;
case 'i':
case 'l':
case 'M':
{
int64_t val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?' || *typestr == '.') {
if (*typestr == '?') {
if (*p == '\0') {
typestr++;
break;
}
} else {
if (*p == '.') {
p++;
while (qemu_isspace(*p))
p++;
} else {
typestr++;
break;
}
}
typestr++;
}
if (get_expr(mon, &val, &p))
goto fail;
/* Check if 'i' is greater than 32-bit */
if ((c == 'i') && ((val >> 32) & 0xffffffff)) {
monitor_printf(mon, "\'%s\' has failed: ", cmdname);
monitor_printf(mon, "integer is for 32-bit values\n");
goto fail;
} else if (c == 'M') {
if (val < 0) {
monitor_printf(mon, "enter a positive value\n");
goto fail;
}
val <<= 20;
}
qdict_put(qdict, key, qint_from_int(val));
}
break;
case 'o':
{
int64_t val;
char *end;
while (qemu_isspace(*p)) {
p++;
}
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
break;
}
}
val = strtosz(p, &end);
if (val < 0) {
monitor_printf(mon, "invalid size\n");
goto fail;
}
qdict_put(qdict, key, qint_from_int(val));
p = end;
}
break;
case 'T':
{
double val;
while (qemu_isspace(*p))
p++;
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
break;
}
}
if (get_double(mon, &val, &p) < 0) {
goto fail;
}
if (p[0] && p[1] == 's') {
switch (*p) {
case 'm':
val /= 1e3; p += 2; break;
case 'u':
val /= 1e6; p += 2; break;
case 'n':
val /= 1e9; p += 2; break;
}
}
if (*p && !qemu_isspace(*p)) {
monitor_printf(mon, "Unknown unit suffix\n");
goto fail;
}
qdict_put(qdict, key, qfloat_from_double(val));
}
break;
case 'b':
{
const char *beg;
int val;
while (qemu_isspace(*p)) {
p++;
}
beg = p;
while (qemu_isgraph(*p)) {
p++;
}
if (p - beg == 2 && !memcmp(beg, "on", p - beg)) {
val = 1;
} else if (p - beg == 3 && !memcmp(beg, "off", p - beg)) {
val = 0;
} else {
monitor_printf(mon, "Expected 'on' or 'off'\n");
goto fail;
}
qdict_put(qdict, key, qbool_from_int(val));
}
break;
case '-':
{
const char *tmp = p;
int skip_key = 0;
/* option */
c = *typestr++;
if (c == '\0')
goto bad_type;
while (qemu_isspace(*p))
p++;
if (*p == '-') {
p++;
if(c != *p) {
if(!is_valid_option(p, typestr)) {
monitor_printf(mon, "%s: unsupported option -%c\n",
cmdname, *p);
goto fail;
} else {
skip_key = 1;
}
}
if(skip_key) {
p = tmp;
} else {
/* has option */
p++;
qdict_put(qdict, key, qbool_from_int(1));
}
}
}
break;
case 'S':
{
/* package all remaining string */
int len;
while (qemu_isspace(*p)) {
p++;
}
if (*typestr == '?') {
typestr++;
if (*p == '\0') {
/* no remaining string: NULL argument */
break;
}
}
len = strlen(p);
if (len <= 0) {
monitor_printf(mon, "%s: string expected\n",
cmdname);
break;
}
qdict_put(qdict, key, qstring_from_str(p));
p += len;
}
break;
default:
bad_type:
monitor_printf(mon, "%s: unknown type '%c'\n", cmdname, c);
goto fail;
}
g_free(key);
key = NULL;
}
/* check that all arguments were parsed */
while (qemu_isspace(*p))
p++;
if (*p != '\0') {
monitor_printf(mon, "%s: extraneous characters at the end of line\n",
cmdname);
goto fail;
}
return cmd;
fail:
g_free(key);
return NULL;
}
void monitor_set_error(Monitor *mon, QError *qerror)
{
/* report only the first error */
if (!mon->error) {
mon->error = qerror;
} else {
QDECREF(qerror);
}
}
static void handler_audit(Monitor *mon, const mon_cmd_t *cmd, int ret)
{
if (ret && !monitor_has_error(mon)) {
/*
* If it returns failure, it must have passed on error.
*
* Action: Report an internal error to the client if in QMP.
*/
qerror_report(QERR_UNDEFINED_ERROR);
}
}
static void handle_user_command(Monitor *mon, const char *cmdline)
{
QDict *qdict;
const mon_cmd_t *cmd;
qdict = qdict_new();
cmd = monitor_parse_command(mon, cmdline, 0, mon->cmd_table, qdict);
if (!cmd)
goto out;
if (handler_is_async(cmd)) {
user_async_cmd_handler(mon, cmd, qdict);
} else if (handler_is_qobject(cmd)) {
QObject *data = NULL;
/* XXX: ignores the error code */
cmd->mhandler.cmd_new(mon, qdict, &data);
assert(!monitor_has_error(mon));
if (data) {
cmd->user_print(mon, data);
qobject_decref(data);
}
} else {
cmd->mhandler.cmd(mon, qdict);
}
out:
QDECREF(qdict);
}
static void cmd_completion(Monitor *mon, const char *name, const char *list)
{
const char *p, *pstart;
char cmd[128];
int len;
p = list;
for(;;) {
pstart = p;
p = strchr(p, '|');
if (!p)
p = pstart + strlen(pstart);
len = p - pstart;
if (len > sizeof(cmd) - 2)
len = sizeof(cmd) - 2;
memcpy(cmd, pstart, len);
cmd[len] = '\0';
if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) {
readline_add_completion(mon->rs, cmd);
}
if (*p == '\0')
break;
p++;
}
}
static void file_completion(Monitor *mon, const char *input)
{
DIR *ffs;
struct dirent *d;
char path[1024];
char file[1024], file_prefix[1024];
int input_path_len;
const char *p;
p = strrchr(input, '/');
if (!p) {
input_path_len = 0;
pstrcpy(file_prefix, sizeof(file_prefix), input);
pstrcpy(path, sizeof(path), ".");
} else {
input_path_len = p - input + 1;
memcpy(path, input, input_path_len);
if (input_path_len > sizeof(path) - 1)
input_path_len = sizeof(path) - 1;
path[input_path_len] = '\0';
pstrcpy(file_prefix, sizeof(file_prefix), p + 1);
}
#ifdef DEBUG_COMPLETION
monitor_printf(mon, "input='%s' path='%s' prefix='%s'\n",
input, path, file_prefix);
#endif
ffs = opendir(path);
if (!ffs)
return;
for(;;) {
struct stat sb;
d = readdir(ffs);
if (!d)
break;
if (strcmp(d->d_name, ".") == 0 || strcmp(d->d_name, "..") == 0) {
continue;
}
if (strstart(d->d_name, file_prefix, NULL)) {
memcpy(file, input, input_path_len);
if (input_path_len < sizeof(file))
pstrcpy(file + input_path_len, sizeof(file) - input_path_len,
d->d_name);
/* stat the file to find out if it's a directory.
* In that case add a slash to speed up typing long paths
*/
if (stat(file, &sb) == 0 && S_ISDIR(sb.st_mode)) {
pstrcat(file, sizeof(file), "/");
}
readline_add_completion(mon->rs, file);
}
}
closedir(ffs);
}
static const char *next_arg_type(const char *typestr)
{
const char *p = strchr(typestr, ':');
return (p != NULL ? ++p : typestr);
}
static void add_completion_option(ReadLineState *rs, const char *str,
const char *option)
{
if (!str || !option) {
return;
}
if (!strncmp(option, str, strlen(str))) {
readline_add_completion(rs, option);
}
}
void chardev_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
ChardevBackendInfoList *list, *start;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_query_chardev_backends(NULL);
while (list) {
const char *chr_name = list->value->name;
if (!strncmp(chr_name, str, len)) {
readline_add_completion(rs, chr_name);
}
list = list->next;
}
qapi_free_ChardevBackendInfoList(start);
}
void netdev_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
int i;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
for (i = 0; NetClientOptionsKind_lookup[i]; i++) {
add_completion_option(rs, str, NetClientOptionsKind_lookup[i]);
}
}
void device_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
GSList *list, *elt;
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
list = elt = object_class_get_list(TYPE_DEVICE, false);
while (elt) {
const char *name;
DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data,
TYPE_DEVICE);
name = object_class_get_name(OBJECT_CLASS(dc));
if (!dc->cannot_instantiate_with_device_add_yet
&& !strncmp(name, str, len)) {
readline_add_completion(rs, name);
}
elt = elt->next;
}
g_slist_free(list);
}
void object_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
GSList *list, *elt;
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
list = elt = object_class_get_list(TYPE_USER_CREATABLE, false);
while (elt) {
const char *name;
name = object_class_get_name(OBJECT_CLASS(elt->data));
if (!strncmp(name, str, len) && strcmp(name, TYPE_USER_CREATABLE)) {
readline_add_completion(rs, name);
}
elt = elt->next;
}
g_slist_free(list);
}
static void peripheral_device_del_completion(ReadLineState *rs,
const char *str, size_t len)
{
Object *peripheral = container_get(qdev_get_machine(), "/peripheral");
GSList *list, *item;
list = qdev_build_hotpluggable_device_list(peripheral);
if (!list) {
return;
}
for (item = list; item; item = g_slist_next(item)) {
DeviceState *dev = item->data;
if (dev->id && !strncmp(str, dev->id, len)) {
readline_add_completion(rs, dev->id);
}
}
g_slist_free(list);
}
void chardev_remove_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
ChardevInfoList *list, *start;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_query_chardev(NULL);
while (list) {
ChardevInfo *chr = list->value;
if (!strncmp(chr->label, str, len)) {
readline_add_completion(rs, chr->label);
}
list = list->next;
}
qapi_free_ChardevInfoList(start);
}
static void ringbuf_completion(ReadLineState *rs, const char *str)
{
size_t len;
ChardevInfoList *list, *start;
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_query_chardev(NULL);
while (list) {
ChardevInfo *chr_info = list->value;
if (!strncmp(chr_info->label, str, len)) {
CharDriverState *chr = qemu_chr_find(chr_info->label);
if (chr && chr_is_ringbuf(chr)) {
readline_add_completion(rs, chr_info->label);
}
}
list = list->next;
}
qapi_free_ChardevInfoList(start);
}
void ringbuf_write_completion(ReadLineState *rs, int nb_args, const char *str)
{
if (nb_args != 2) {
return;
}
ringbuf_completion(rs, str);
}
void device_del_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
peripheral_device_del_completion(rs, str, len);
}
void object_del_completion(ReadLineState *rs, int nb_args, const char *str)
{
ObjectPropertyInfoList *list, *start;
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
start = list = qmp_qom_list("/objects", NULL);
while (list) {
ObjectPropertyInfo *info = list->value;
if (!strncmp(info->type, "child<", 5)
&& !strncmp(info->name, str, len)) {
readline_add_completion(rs, info->name);
}
list = list->next;
}
qapi_free_ObjectPropertyInfoList(start);
}
void sendkey_completion(ReadLineState *rs, int nb_args, const char *str)
{
int i;
char *sep;
size_t len;
if (nb_args != 2) {
return;
}
sep = strrchr(str, '-');
if (sep) {
str = sep + 1;
}
len = strlen(str);
readline_set_completion_index(rs, len);
for (i = 0; i < Q_KEY_CODE_MAX; i++) {
if (!strncmp(str, QKeyCode_lookup[i], len)) {
readline_add_completion(rs, QKeyCode_lookup[i]);
}
}
}
void set_link_completion(ReadLineState *rs, int nb_args, const char *str)
{
size_t len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
NetClientState *ncs[255];
int count, i;
count = qemu_find_net_clients_except(NULL, ncs,
NET_CLIENT_OPTIONS_KIND_NONE, 255);
for (i = 0; i < count; i++) {
const char *name = ncs[i]->name;
if (!strncmp(str, name, len)) {
readline_add_completion(rs, name);
}
}
} else if (nb_args == 3) {
add_completion_option(rs, str, "on");
add_completion_option(rs, str, "off");
}
}
void netdev_del_completion(ReadLineState *rs, int nb_args, const char *str)
{
int len, count, i;
NetClientState *ncs[255];
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_OPTIONS_KIND_NIC,
255);
for (i = 0; i < count; i++) {
QemuOpts *opts;
const char *name = ncs[i]->name;
if (strncmp(str, name, len)) {
continue;
}
opts = qemu_opts_find(qemu_find_opts_err("netdev", NULL), name);
if (opts) {
readline_add_completion(rs, name);
}
}
}
void watchdog_action_completion(ReadLineState *rs, int nb_args, const char *str)
{
int i;
if (nb_args != 2) {
return;
}
readline_set_completion_index(rs, strlen(str));
for (i = 0; WatchdogExpirationAction_lookup[i]; i++) {
add_completion_option(rs, str, WatchdogExpirationAction_lookup[i]);
}
}
void migrate_set_capability_completion(ReadLineState *rs, int nb_args,
const char *str)
{
size_t len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
int i;
for (i = 0; i < MIGRATION_CAPABILITY_MAX; i++) {
const char *name = MigrationCapability_lookup[i];
if (!strncmp(str, name, len)) {
readline_add_completion(rs, name);
}
}
} else if (nb_args == 3) {
add_completion_option(rs, str, "on");
add_completion_option(rs, str, "off");
}
}
void host_net_add_completion(ReadLineState *rs, int nb_args, const char *str)
{
int i;
size_t len;
if (nb_args != 2) {
return;
}
len = strlen(str);
readline_set_completion_index(rs, len);
for (i = 0; host_net_devices[i]; i++) {
if (!strncmp(host_net_devices[i], str, len)) {
readline_add_completion(rs, host_net_devices[i]);
}
}
}
void host_net_remove_completion(ReadLineState *rs, int nb_args, const char *str)
{
NetClientState *ncs[255];
int count, i, len;
len = strlen(str);
readline_set_completion_index(rs, len);
if (nb_args == 2) {
count = qemu_find_net_clients_except(NULL, ncs,
NET_CLIENT_OPTIONS_KIND_NONE, 255);
for (i = 0; i < count; i++) {
int id;
char name[16];
if (net_hub_id_for_client(ncs[i], &id)) {
continue;
}
snprintf(name, sizeof(name), "%d", id);
if (!strncmp(str, name, len)) {
readline_add_completion(rs, name);
}
}
return;
} else if (nb_args == 3) {
count = qemu_find_net_clients_except(NULL, ncs,
NET_CLIENT_OPTIONS_KIND_NIC, 255);
for (i = 0; i < count; i++) {
int id;
const char *name;
if (ncs[i]->info->type == NET_CLIENT_OPTIONS_KIND_HUBPORT ||
net_hub_id_for_client(ncs[i], &id)) {
continue;
}
name = ncs[i]->name;
if (!strncmp(str, name, len)) {
readline_add_completion(rs, name);
}
}
return;
}
}
static void vm_completion(ReadLineState *rs, const char *str)
{
size_t len;
BlockDriverState *bs = NULL;
len = strlen(str);
readline_set_completion_index(rs, len);
while ((bs = bdrv_next(bs))) {
SnapshotInfoList *snapshots, *snapshot;
if (!bdrv_can_snapshot(bs)) {
continue;
}
if (bdrv_query_snapshot_info_list(bs, &snapshots, NULL)) {
continue;
}
snapshot = snapshots;
while (snapshot) {
char *completion = snapshot->value->name;
if (!strncmp(str, completion, len)) {
readline_add_completion(rs, completion);
}
completion = snapshot->value->id;
if (!strncmp(str, completion, len)) {
readline_add_completion(rs, completion);
}
snapshot = snapshot->next;
}
qapi_free_SnapshotInfoList(snapshots);
}
}
void delvm_completion(ReadLineState *rs, int nb_args, const char *str)
{
if (nb_args == 2) {
vm_completion(rs, str);
}
}
void loadvm_completion(ReadLineState *rs, int nb_args, const char *str)
{
if (nb_args == 2) {
vm_completion(rs, str);
}
}
static void monitor_find_completion_by_table(Monitor *mon,
const mon_cmd_t *cmd_table,
char **args,
int nb_args)
{
const char *cmdname;
int i;
const char *ptype, *str, *name;
const mon_cmd_t *cmd;
BlockDriverState *bs;
if (nb_args <= 1) {
/* command completion */
if (nb_args == 0)
cmdname = "";
else
cmdname = args[0];
readline_set_completion_index(mon->rs, strlen(cmdname));
for (cmd = cmd_table; cmd->name != NULL; cmd++) {
cmd_completion(mon, cmdname, cmd->name);
}
} else {
/* find the command */
for (cmd = cmd_table; cmd->name != NULL; cmd++) {
if (compare_cmd(args[0], cmd->name)) {
break;
}
}
if (!cmd->name) {
return;
}
if (cmd->sub_table) {
/* do the job again */
monitor_find_completion_by_table(mon, cmd->sub_table,
&args[1], nb_args - 1);
return;
}
if (cmd->command_completion) {
cmd->command_completion(mon->rs, nb_args, args[nb_args - 1]);
return;
}
ptype = next_arg_type(cmd->args_type);
for(i = 0; i < nb_args - 2; i++) {
if (*ptype != '\0') {
ptype = next_arg_type(ptype);
while (*ptype == '?')
ptype = next_arg_type(ptype);
}
}
str = args[nb_args - 1];
while (*ptype == '-' && ptype[1] != '\0') {
ptype = next_arg_type(ptype);
}
switch(*ptype) {
case 'F':
/* file completion */
readline_set_completion_index(mon->rs, strlen(str));
file_completion(mon, str);
break;
case 'B':
/* block device name completion */
readline_set_completion_index(mon->rs, strlen(str));
for (bs = bdrv_next(NULL); bs; bs = bdrv_next(bs)) {
name = bdrv_get_device_name(bs);
if (str[0] == '\0' ||
!strncmp(name, str, strlen(str))) {
readline_add_completion(mon->rs, name);
}
}
break;
case 's':
case 'S':
if (!strcmp(cmd->name, "help|?")) {
monitor_find_completion_by_table(mon, cmd_table,
&args[1], nb_args - 1);
}
break;
default:
break;
}
}
}
static void monitor_find_completion(void *opaque,
const char *cmdline)
{
Monitor *mon = opaque;
char *args[MAX_ARGS];
int nb_args, len;
/* 1. parse the cmdline */
if (parse_cmdline(cmdline, &nb_args, args) < 0) {
return;
}
#ifdef DEBUG_COMPLETION
{
int i;
for (i = 0; i < nb_args; i++) {
monitor_printf(mon, "arg%d = '%s'\n", i, args[i]);
}
}
#endif
/* if the line ends with a space, it means we want to complete the
next arg */
len = strlen(cmdline);
if (len > 0 && qemu_isspace(cmdline[len - 1])) {
if (nb_args >= MAX_ARGS) {
goto cleanup;
}
args[nb_args++] = g_strdup("");
}
/* 2. auto complete according to args */
monitor_find_completion_by_table(mon, mon->cmd_table, args, nb_args);
cleanup:
free_cmdline_args(args, nb_args);
}
static int monitor_can_read(void *opaque)
{
Monitor *mon = opaque;
return (mon->suspend_cnt == 0) ? 1 : 0;
}
static bool invalid_qmp_mode(const Monitor *mon, const mon_cmd_t *cmd)
{
bool is_cap = cmd->mhandler.cmd_new == do_qmp_capabilities;
if (is_cap && qmp_cmd_mode(mon)) {
qerror_report(ERROR_CLASS_COMMAND_NOT_FOUND,
"Capabilities negotiation is already complete, command "
"'%s' ignored", cmd->name);
return true;
}
if (!is_cap && !qmp_cmd_mode(mon)) {
qerror_report(ERROR_CLASS_COMMAND_NOT_FOUND,
"Expecting capabilities negotiation with "
"'qmp_capabilities' before command '%s'", cmd->name);
return true;
}
return false;
}
/*
* Argument validation rules:
*
* 1. The argument must exist in cmd_args qdict
* 2. The argument type must be the expected one
*
* Special case: If the argument doesn't exist in cmd_args and
* the QMP_ACCEPT_UNKNOWNS flag is set, then the
* checking is skipped for it.
*/
static int check_client_args_type(const QDict *client_args,
const QDict *cmd_args, int flags)
{
const QDictEntry *ent;
for (ent = qdict_first(client_args); ent;ent = qdict_next(client_args,ent)){
QObject *obj;
QString *arg_type;
const QObject *client_arg = qdict_entry_value(ent);
const char *client_arg_name = qdict_entry_key(ent);
obj = qdict_get(cmd_args, client_arg_name);
if (!obj) {
if (flags & QMP_ACCEPT_UNKNOWNS) {
/* handler accepts unknowns */
continue;
}
/* client arg doesn't exist */
qerror_report(QERR_INVALID_PARAMETER, client_arg_name);
return -1;
}
arg_type = qobject_to_qstring(obj);
assert(arg_type != NULL);
/* check if argument's type is correct */
switch (qstring_get_str(arg_type)[0]) {
case 'F':
case 'B':
case 's':
if (qobject_type(client_arg) != QTYPE_QSTRING) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"string");
return -1;
}
break;
case 'i':
case 'l':
case 'M':
case 'o':
if (qobject_type(client_arg) != QTYPE_QINT) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"int");
return -1;
}
break;
case 'T':
if (qobject_type(client_arg) != QTYPE_QINT &&
qobject_type(client_arg) != QTYPE_QFLOAT) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"number");
return -1;
}
break;
case 'b':
case '-':
if (qobject_type(client_arg) != QTYPE_QBOOL) {
qerror_report(QERR_INVALID_PARAMETER_TYPE, client_arg_name,
"bool");
return -1;
}
break;
case 'O':
assert(flags & QMP_ACCEPT_UNKNOWNS);
break;
case 'q':
/* Any QObject can be passed. */
break;
case '/':
case '.':
/*
* These types are not supported by QMP and thus are not
* handled here. Fall through.
*/
default:
abort();
}
}
return 0;
}
/*
* - Check if the client has passed all mandatory args
* - Set special flags for argument validation
*/
static int check_mandatory_args(const QDict *cmd_args,
const QDict *client_args, int *flags)
{
const QDictEntry *ent;
for (ent = qdict_first(cmd_args); ent; ent = qdict_next(cmd_args, ent)) {
const char *cmd_arg_name = qdict_entry_key(ent);
QString *type = qobject_to_qstring(qdict_entry_value(ent));
assert(type != NULL);
if (qstring_get_str(type)[0] == 'O') {
assert((*flags & QMP_ACCEPT_UNKNOWNS) == 0);
*flags |= QMP_ACCEPT_UNKNOWNS;
} else if (qstring_get_str(type)[0] != '-' &&
qstring_get_str(type)[1] != '?' &&
!qdict_haskey(client_args, cmd_arg_name)) {
qerror_report(QERR_MISSING_PARAMETER, cmd_arg_name);
return -1;
}
}
return 0;
}
static QDict *qdict_from_args_type(const char *args_type)
{
int i;
QDict *qdict;
QString *key, *type, *cur_qs;
assert(args_type != NULL);
qdict = qdict_new();
if (args_type == NULL || args_type[0] == '\0') {
/* no args, empty qdict */
goto out;
}
key = qstring_new();
type = qstring_new();
cur_qs = key;
for (i = 0;; i++) {
switch (args_type[i]) {
case ',':
case '\0':
qdict_put(qdict, qstring_get_str(key), type);
QDECREF(key);
if (args_type[i] == '\0') {
goto out;
}
type = qstring_new(); /* qdict has ref */
cur_qs = key = qstring_new();
break;
case ':':
cur_qs = type;
break;
default:
qstring_append_chr(cur_qs, args_type[i]);
break;
}
}
out:
return qdict;
}
/*
* Client argument checking rules:
*
* 1. Client must provide all mandatory arguments
* 2. Each argument provided by the client must be expected
* 3. Each argument provided by the client must have the type expected
* by the command
*/
static int qmp_check_client_args(const mon_cmd_t *cmd, QDict *client_args)
{
int flags, err;
QDict *cmd_args;
cmd_args = qdict_from_args_type(cmd->args_type);
flags = 0;
err = check_mandatory_args(cmd_args, client_args, &flags);
if (err) {
goto out;
}
err = check_client_args_type(client_args, cmd_args, flags);
out:
QDECREF(cmd_args);
return err;
}
/*
* Input object checking rules
*
* 1. Input object must be a dict
* 2. The "execute" key must exist
* 3. The "execute" key must be a string
* 4. If the "arguments" key exists, it must be a dict
* 5. If the "id" key exists, it can be anything (ie. json-value)
* 6. Any argument not listed above is considered invalid
*/
static QDict *qmp_check_input_obj(QObject *input_obj)
{
const QDictEntry *ent;
int has_exec_key = 0;
QDict *input_dict;
if (qobject_type(input_obj) != QTYPE_QDICT) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT, "object");
return NULL;
}
input_dict = qobject_to_qdict(input_obj);
for (ent = qdict_first(input_dict); ent; ent = qdict_next(input_dict, ent)){
const char *arg_name = qdict_entry_key(ent);
const QObject *arg_obj = qdict_entry_value(ent);
if (!strcmp(arg_name, "execute")) {
if (qobject_type(arg_obj) != QTYPE_QSTRING) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT_MEMBER, "execute",
"string");
return NULL;
}
has_exec_key = 1;
} else if (!strcmp(arg_name, "arguments")) {
if (qobject_type(arg_obj) != QTYPE_QDICT) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT_MEMBER, "arguments",
"object");
return NULL;
}
} else if (!strcmp(arg_name, "id")) {
/* FIXME: check duplicated IDs for async commands */
} else {
qerror_report(QERR_QMP_EXTRA_MEMBER, arg_name);
return NULL;
}
}
if (!has_exec_key) {
qerror_report(QERR_QMP_BAD_INPUT_OBJECT, "execute");
return NULL;
}
return input_dict;
}
static void qmp_call_cmd(Monitor *mon, const mon_cmd_t *cmd,
const QDict *params)
{
int ret;
QObject *data = NULL;
ret = cmd->mhandler.cmd_new(mon, params, &data);
handler_audit(mon, cmd, ret);
monitor_protocol_emitter(mon, data);
qobject_decref(data);
}
static void handle_qmp_command(JSONMessageParser *parser, QList *tokens)
{
int err;
QObject *obj;
QDict *input, *args;
const mon_cmd_t *cmd;
const char *cmd_name;
Monitor *mon = cur_mon;
args = input = NULL;
obj = json_parser_parse(tokens, NULL);
if (!obj) {
// FIXME: should be triggered in json_parser_parse()
qerror_report(QERR_JSON_PARSING);
goto err_out;
}
input = qmp_check_input_obj(obj);
if (!input) {
qobject_decref(obj);
goto err_out;
}
mon->mc->id = qdict_get(input, "id");
qobject_incref(mon->mc->id);
cmd_name = qdict_get_str(input, "execute");
trace_handle_qmp_command(mon, cmd_name);
cmd = qmp_find_cmd(cmd_name);
if (!cmd) {
qerror_report(ERROR_CLASS_COMMAND_NOT_FOUND,
"The command %s has not been found", cmd_name);
goto err_out;
}
if (invalid_qmp_mode(mon, cmd)) {
goto err_out;
}
obj = qdict_get(input, "arguments");
if (!obj) {
args = qdict_new();
} else {
args = qobject_to_qdict(obj);
QINCREF(args);
}
err = qmp_check_client_args(cmd, args);
if (err < 0) {
goto err_out;
}
if (handler_is_async(cmd)) {
err = qmp_async_cmd_handler(mon, cmd, args);
if (err) {
/* emit the error response */
goto err_out;
}
} else {
qmp_call_cmd(mon, cmd, args);
}
goto out;
err_out:
monitor_protocol_emitter(mon, NULL);
out:
QDECREF(input);
QDECREF(args);
}
/**
* monitor_control_read(): Read and handle QMP input
*/
static void monitor_control_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
cur_mon = opaque;
json_message_parser_feed(&cur_mon->mc->parser, (const char *) buf, size);
cur_mon = old_mon;
}
static void monitor_read(void *opaque, const uint8_t *buf, int size)
{
Monitor *old_mon = cur_mon;
int i;
cur_mon = opaque;
if (cur_mon->rs) {
for (i = 0; i < size; i++)
readline_handle_byte(cur_mon->rs, buf[i]);
} else {
if (size == 0 || buf[size - 1] != 0)
monitor_printf(cur_mon, "corrupted command\n");
else
handle_user_command(cur_mon, (char *)buf);
}
cur_mon = old_mon;
}
static void monitor_command_cb(void *opaque, const char *cmdline,
void *readline_opaque)
{
Monitor *mon = opaque;
monitor_suspend(mon);
handle_user_command(mon, cmdline);
monitor_resume(mon);
}
int monitor_suspend(Monitor *mon)
{
if (!mon->rs)
return -ENOTTY;
mon->suspend_cnt++;
return 0;
}
void monitor_resume(Monitor *mon)
{
if (!mon->rs)
return;
if (--mon->suspend_cnt == 0)
readline_show_prompt(mon->rs);
}
static QObject *get_qmp_greeting(void)
{
QObject *ver = NULL;
qmp_marshal_input_query_version(NULL, NULL, &ver);
return qobject_from_jsonf("{'QMP':{'version': %p,'capabilities': []}}",ver);
}
/**
* monitor_control_event(): Print QMP gretting
*/
static void monitor_control_event(void *opaque, int event)
{
QObject *data;
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_OPENED:
mon->mc->command_mode = 0;
data = get_qmp_greeting();
monitor_json_emitter(mon, data);
qobject_decref(data);
mon_refcount++;
break;
case CHR_EVENT_CLOSED:
json_message_parser_destroy(&mon->mc->parser);
json_message_parser_init(&mon->mc->parser, handle_qmp_command);
mon_refcount--;
monitor_fdsets_cleanup();
break;
}
}
static void monitor_event(void *opaque, int event)
{
Monitor *mon = opaque;
switch (event) {
case CHR_EVENT_MUX_IN:
qemu_mutex_lock(&mon->out_lock);
mon->mux_out = 0;
qemu_mutex_unlock(&mon->out_lock);
if (mon->reset_seen) {
readline_restart(mon->rs);
monitor_resume(mon);
monitor_flush(mon);
} else {
mon->suspend_cnt = 0;
}
break;
case CHR_EVENT_MUX_OUT:
if (mon->reset_seen) {
if (mon->suspend_cnt == 0) {
monitor_printf(mon, "\n");
}
monitor_flush(mon);
monitor_suspend(mon);
} else {
mon->suspend_cnt++;
}
qemu_mutex_lock(&mon->out_lock);
mon->mux_out = 1;
qemu_mutex_unlock(&mon->out_lock);
break;
case CHR_EVENT_OPENED:
monitor_printf(mon, "QEMU %s monitor - type 'help' for more "
"information\n", QEMU_VERSION);
if (!mon->mux_out) {
readline_restart(mon->rs);
readline_show_prompt(mon->rs);
}
mon->reset_seen = 1;
mon_refcount++;
break;
case CHR_EVENT_CLOSED:
mon_refcount--;
monitor_fdsets_cleanup();
break;
}
}
static int
compare_mon_cmd(const void *a, const void *b)
{
return strcmp(((const mon_cmd_t *)a)->name,
((const mon_cmd_t *)b)->name);
}
static void sortcmdlist(void)
{
int array_num;
int elem_size = sizeof(mon_cmd_t);
array_num = sizeof(mon_cmds)/elem_size-1;
qsort((void *)mon_cmds, array_num, elem_size, compare_mon_cmd);
array_num = sizeof(info_cmds)/elem_size-1;
qsort((void *)info_cmds, array_num, elem_size, compare_mon_cmd);
}
/*
* Local variables:
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 8
* End:
*/
/* These functions just adapt the readline interface in a typesafe way. We
* could cast function pointers but that discards compiler checks.
*/
static void GCC_FMT_ATTR(2, 3) monitor_readline_printf(void *opaque,
const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
monitor_vprintf(opaque, fmt, ap);
va_end(ap);
}
static void monitor_readline_flush(void *opaque)
{
monitor_flush(opaque);
}
static void __attribute__((constructor)) monitor_lock_init(void)
{
qemu_mutex_init(&monitor_lock);
}
void monitor_init(CharDriverState *chr, int flags)
{
static int is_first_init = 1;
Monitor *mon;
if (is_first_init) {
monitor_qapi_event_init();
sortcmdlist();
is_first_init = 0;
}
mon = g_malloc(sizeof(*mon));
monitor_data_init(mon);
mon->chr = chr;
mon->flags = flags;
if (flags & MONITOR_USE_READLINE) {
mon->rs = readline_init(monitor_readline_printf,
monitor_readline_flush,
mon,
monitor_find_completion);
monitor_read_command(mon, 0);
}
if (monitor_ctrl_mode(mon)) {
mon->mc = g_malloc0(sizeof(MonitorControl));
/* Control mode requires special handlers */
qemu_chr_add_handlers(chr, monitor_can_read, monitor_control_read,
monitor_control_event, mon);
qemu_chr_fe_set_echo(chr, true);
json_message_parser_init(&mon->mc->parser, handle_qmp_command);
} else {
qemu_chr_add_handlers(chr, monitor_can_read, monitor_read,
monitor_event, mon);
}
qemu_mutex_lock(&monitor_lock);
QLIST_INSERT_HEAD(&mon_list, mon, entry);
qemu_mutex_unlock(&monitor_lock);
if (!default_mon || (flags & MONITOR_IS_DEFAULT))
default_mon = mon;
}
static void bdrv_password_cb(void *opaque, const char *password,
void *readline_opaque)
{
Monitor *mon = opaque;
BlockDriverState *bs = readline_opaque;
int ret = 0;
Error *local_err = NULL;
bdrv_add_key(bs, password, &local_err);
if (local_err) {
monitor_printf(mon, "%s\n", error_get_pretty(local_err));
error_free(local_err);
ret = -EPERM;
}
if (mon->password_completion_cb)
mon->password_completion_cb(mon->password_opaque, ret);
monitor_read_command(mon, 1);
}
int monitor_read_bdrv_key_start(Monitor *mon, BlockDriverState *bs,
BlockCompletionFunc *completion_cb,
void *opaque)
{
int err;
monitor_printf(mon, "%s (%s) is encrypted.\n", bdrv_get_device_name(bs),
bdrv_get_encrypted_filename(bs));
mon->password_completion_cb = completion_cb;
mon->password_opaque = opaque;
err = monitor_read_password(mon, bdrv_password_cb, bs);
if (err && completion_cb)
completion_cb(opaque, err);
return err;
}
int monitor_read_block_device_key(Monitor *mon, const char *device,
BlockCompletionFunc *completion_cb,
void *opaque)
{
Error *err = NULL;
BlockBackend *blk;
blk = blk_by_name(device);
if (!blk) {
monitor_printf(mon, "Device not found %s\n", device);
return -1;
}
bdrv_add_key(blk_bs(blk), NULL, &err);
if (err) {
error_free(err);
return monitor_read_bdrv_key_start(mon, blk_bs(blk), completion_cb, opaque);
}
if (completion_cb) {
completion_cb(opaque, 0);
}
return 0;
}
QemuOptsList qemu_mon_opts = {
.name = "mon",
.implied_opt_name = "chardev",
.head = QTAILQ_HEAD_INITIALIZER(qemu_mon_opts.head),
.desc = {
{
.name = "mode",
.type = QEMU_OPT_STRING,
},{
.name = "chardev",
.type = QEMU_OPT_STRING,
},{
.name = "default",
.type = QEMU_OPT_BOOL,
},{
.name = "pretty",
.type = QEMU_OPT_BOOL,
},
{ /* end of list */ }
},
};
#ifndef TARGET_I386
void qmp_rtc_reset_reinjection(Error **errp)
{
error_set(errp, QERR_FEATURE_DISABLED, "rtc-reset-reinjection");
}
#endif