| /* |
| * QEMU dump |
| * |
| * Copyright Fujitsu, Corp. 2011, 2012 |
| * |
| * Authors: |
| * Wen Congyang <wency@cn.fujitsu.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/cutils.h" |
| #include "elf.h" |
| #include "qemu/bswap.h" |
| #include "exec/target_page.h" |
| #include "monitor/monitor.h" |
| #include "sysemu/dump.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/cpus.h" |
| #include "qapi/error.h" |
| #include "qapi/qapi-commands-dump.h" |
| #include "qapi/qapi-events-dump.h" |
| #include "qapi/qmp/qerror.h" |
| #include "qemu/main-loop.h" |
| #include "hw/misc/vmcoreinfo.h" |
| #include "migration/blocker.h" |
| #include "hw/core/cpu.h" |
| #include "win_dump.h" |
| |
| #include <zlib.h> |
| #ifdef CONFIG_LZO |
| #include <lzo/lzo1x.h> |
| #endif |
| #ifdef CONFIG_SNAPPY |
| #include <snappy-c.h> |
| #endif |
| #ifndef ELF_MACHINE_UNAME |
| #define ELF_MACHINE_UNAME "Unknown" |
| #endif |
| |
| #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */ |
| |
| static Error *dump_migration_blocker; |
| |
| #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size) \ |
| ((DIV_ROUND_UP((hdr_size), 4) + \ |
| DIV_ROUND_UP((name_size), 4) + \ |
| DIV_ROUND_UP((desc_size), 4)) * 4) |
| |
| static inline bool dump_is_64bit(DumpState *s) |
| { |
| return s->dump_info.d_class == ELFCLASS64; |
| } |
| |
| static inline bool dump_has_filter(DumpState *s) |
| { |
| return s->filter_area_length > 0; |
| } |
| |
| uint16_t cpu_to_dump16(DumpState *s, uint16_t val) |
| { |
| if (s->dump_info.d_endian == ELFDATA2LSB) { |
| val = cpu_to_le16(val); |
| } else { |
| val = cpu_to_be16(val); |
| } |
| |
| return val; |
| } |
| |
| uint32_t cpu_to_dump32(DumpState *s, uint32_t val) |
| { |
| if (s->dump_info.d_endian == ELFDATA2LSB) { |
| val = cpu_to_le32(val); |
| } else { |
| val = cpu_to_be32(val); |
| } |
| |
| return val; |
| } |
| |
| uint64_t cpu_to_dump64(DumpState *s, uint64_t val) |
| { |
| if (s->dump_info.d_endian == ELFDATA2LSB) { |
| val = cpu_to_le64(val); |
| } else { |
| val = cpu_to_be64(val); |
| } |
| |
| return val; |
| } |
| |
| static int dump_cleanup(DumpState *s) |
| { |
| guest_phys_blocks_free(&s->guest_phys_blocks); |
| memory_mapping_list_free(&s->list); |
| close(s->fd); |
| g_free(s->guest_note); |
| g_array_unref(s->string_table_buf); |
| s->guest_note = NULL; |
| if (s->resume) { |
| if (s->detached) { |
| qemu_mutex_lock_iothread(); |
| } |
| vm_start(); |
| if (s->detached) { |
| qemu_mutex_unlock_iothread(); |
| } |
| } |
| migrate_del_blocker(dump_migration_blocker); |
| |
| return 0; |
| } |
| |
| static int fd_write_vmcore(const void *buf, size_t size, void *opaque) |
| { |
| DumpState *s = opaque; |
| size_t written_size; |
| |
| written_size = qemu_write_full(s->fd, buf, size); |
| if (written_size != size) { |
| return -errno; |
| } |
| |
| return 0; |
| } |
| |
| static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header) |
| { |
| /* |
| * phnum in the elf header is 16 bit, if we have more segments we |
| * set phnum to PN_XNUM and write the real number of segments to a |
| * special section. |
| */ |
| uint16_t phnum = MIN(s->phdr_num, PN_XNUM); |
| |
| memset(elf_header, 0, sizeof(Elf64_Ehdr)); |
| memcpy(elf_header, ELFMAG, SELFMAG); |
| elf_header->e_ident[EI_CLASS] = ELFCLASS64; |
| elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; |
| elf_header->e_ident[EI_VERSION] = EV_CURRENT; |
| elf_header->e_type = cpu_to_dump16(s, ET_CORE); |
| elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); |
| elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); |
| elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); |
| elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset); |
| elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr)); |
| elf_header->e_phnum = cpu_to_dump16(s, phnum); |
| elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset); |
| elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr)); |
| elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); |
| elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); |
| } |
| |
| static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header) |
| { |
| /* |
| * phnum in the elf header is 16 bit, if we have more segments we |
| * set phnum to PN_XNUM and write the real number of segments to a |
| * special section. |
| */ |
| uint16_t phnum = MIN(s->phdr_num, PN_XNUM); |
| |
| memset(elf_header, 0, sizeof(Elf32_Ehdr)); |
| memcpy(elf_header, ELFMAG, SELFMAG); |
| elf_header->e_ident[EI_CLASS] = ELFCLASS32; |
| elf_header->e_ident[EI_DATA] = s->dump_info.d_endian; |
| elf_header->e_ident[EI_VERSION] = EV_CURRENT; |
| elf_header->e_type = cpu_to_dump16(s, ET_CORE); |
| elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine); |
| elf_header->e_version = cpu_to_dump32(s, EV_CURRENT); |
| elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header)); |
| elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset); |
| elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr)); |
| elf_header->e_phnum = cpu_to_dump16(s, phnum); |
| elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset); |
| elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr)); |
| elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num); |
| elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1); |
| } |
| |
| static void write_elf_header(DumpState *s, Error **errp) |
| { |
| Elf32_Ehdr elf32_header; |
| Elf64_Ehdr elf64_header; |
| size_t header_size; |
| void *header_ptr; |
| int ret; |
| |
| /* The NULL header and the shstrtab are always defined */ |
| assert(s->shdr_num >= 2); |
| if (dump_is_64bit(s)) { |
| prepare_elf64_header(s, &elf64_header); |
| header_size = sizeof(elf64_header); |
| header_ptr = &elf64_header; |
| } else { |
| prepare_elf32_header(s, &elf32_header); |
| header_size = sizeof(elf32_header); |
| header_ptr = &elf32_header; |
| } |
| |
| ret = fd_write_vmcore(header_ptr, header_size, s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, "dump: failed to write elf header"); |
| } |
| } |
| |
| static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, |
| int phdr_index, hwaddr offset, |
| hwaddr filesz, Error **errp) |
| { |
| Elf64_Phdr phdr; |
| int ret; |
| |
| memset(&phdr, 0, sizeof(Elf64_Phdr)); |
| phdr.p_type = cpu_to_dump32(s, PT_LOAD); |
| phdr.p_offset = cpu_to_dump64(s, offset); |
| phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr); |
| phdr.p_filesz = cpu_to_dump64(s, filesz); |
| phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length); |
| phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr; |
| |
| assert(memory_mapping->length >= filesz); |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, |
| "dump: failed to write program header table"); |
| } |
| } |
| |
| static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, |
| int phdr_index, hwaddr offset, |
| hwaddr filesz, Error **errp) |
| { |
| Elf32_Phdr phdr; |
| int ret; |
| |
| memset(&phdr, 0, sizeof(Elf32_Phdr)); |
| phdr.p_type = cpu_to_dump32(s, PT_LOAD); |
| phdr.p_offset = cpu_to_dump32(s, offset); |
| phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr); |
| phdr.p_filesz = cpu_to_dump32(s, filesz); |
| phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length); |
| phdr.p_vaddr = |
| cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr; |
| |
| assert(memory_mapping->length >= filesz); |
| |
| ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, |
| "dump: failed to write program header table"); |
| } |
| } |
| |
| static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr) |
| { |
| memset(phdr, 0, sizeof(*phdr)); |
| phdr->p_type = cpu_to_dump32(s, PT_NOTE); |
| phdr->p_offset = cpu_to_dump64(s, s->note_offset); |
| phdr->p_paddr = 0; |
| phdr->p_filesz = cpu_to_dump64(s, s->note_size); |
| phdr->p_memsz = cpu_to_dump64(s, s->note_size); |
| phdr->p_vaddr = 0; |
| } |
| |
| static inline int cpu_index(CPUState *cpu) |
| { |
| return cpu->cpu_index + 1; |
| } |
| |
| static void write_guest_note(WriteCoreDumpFunction f, DumpState *s, |
| Error **errp) |
| { |
| int ret; |
| |
| if (s->guest_note) { |
| ret = f(s->guest_note, s->guest_note_size, s); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write guest note"); |
| } |
| } |
| } |
| |
| static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s, |
| Error **errp) |
| { |
| CPUState *cpu; |
| int ret; |
| int id; |
| |
| CPU_FOREACH(cpu) { |
| id = cpu_index(cpu); |
| ret = cpu_write_elf64_note(f, cpu, id, s); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write elf notes"); |
| return; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| ret = cpu_write_elf64_qemunote(f, cpu, s); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write CPU status"); |
| return; |
| } |
| } |
| |
| write_guest_note(f, s, errp); |
| } |
| |
| static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr) |
| { |
| memset(phdr, 0, sizeof(*phdr)); |
| phdr->p_type = cpu_to_dump32(s, PT_NOTE); |
| phdr->p_offset = cpu_to_dump32(s, s->note_offset); |
| phdr->p_paddr = 0; |
| phdr->p_filesz = cpu_to_dump32(s, s->note_size); |
| phdr->p_memsz = cpu_to_dump32(s, s->note_size); |
| phdr->p_vaddr = 0; |
| } |
| |
| static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s, |
| Error **errp) |
| { |
| CPUState *cpu; |
| int ret; |
| int id; |
| |
| CPU_FOREACH(cpu) { |
| id = cpu_index(cpu); |
| ret = cpu_write_elf32_note(f, cpu, id, s); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write elf notes"); |
| return; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| ret = cpu_write_elf32_qemunote(f, cpu, s); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write CPU status"); |
| return; |
| } |
| } |
| |
| write_guest_note(f, s, errp); |
| } |
| |
| static void write_elf_phdr_note(DumpState *s, Error **errp) |
| { |
| Elf32_Phdr phdr32; |
| Elf64_Phdr phdr64; |
| void *phdr; |
| size_t size; |
| int ret; |
| |
| if (dump_is_64bit(s)) { |
| prepare_elf64_phdr_note(s, &phdr64); |
| size = sizeof(phdr64); |
| phdr = &phdr64; |
| } else { |
| prepare_elf32_phdr_note(s, &phdr32); |
| size = sizeof(phdr32); |
| phdr = &phdr32; |
| } |
| |
| ret = fd_write_vmcore(phdr, size, s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, |
| "dump: failed to write program header table"); |
| } |
| } |
| |
| static void prepare_elf_section_hdr_zero(DumpState *s) |
| { |
| if (dump_is_64bit(s)) { |
| Elf64_Shdr *shdr64 = s->elf_section_hdrs; |
| |
| shdr64->sh_info = cpu_to_dump32(s, s->phdr_num); |
| } else { |
| Elf32_Shdr *shdr32 = s->elf_section_hdrs; |
| |
| shdr32->sh_info = cpu_to_dump32(s, s->phdr_num); |
| } |
| } |
| |
| static void prepare_elf_section_hdr_string(DumpState *s, void *buff) |
| { |
| uint64_t index = s->string_table_buf->len; |
| const char strtab[] = ".shstrtab"; |
| Elf32_Shdr shdr32 = {}; |
| Elf64_Shdr shdr64 = {}; |
| int shdr_size; |
| void *shdr; |
| |
| g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab)); |
| if (dump_is_64bit(s)) { |
| shdr_size = sizeof(Elf64_Shdr); |
| shdr64.sh_type = SHT_STRTAB; |
| shdr64.sh_offset = s->section_offset + s->elf_section_data_size; |
| shdr64.sh_name = index; |
| shdr64.sh_size = s->string_table_buf->len; |
| shdr = &shdr64; |
| } else { |
| shdr_size = sizeof(Elf32_Shdr); |
| shdr32.sh_type = SHT_STRTAB; |
| shdr32.sh_offset = s->section_offset + s->elf_section_data_size; |
| shdr32.sh_name = index; |
| shdr32.sh_size = s->string_table_buf->len; |
| shdr = &shdr32; |
| } |
| memcpy(buff, shdr, shdr_size); |
| } |
| |
| static bool prepare_elf_section_hdrs(DumpState *s, Error **errp) |
| { |
| size_t len, sizeof_shdr; |
| void *buff_hdr; |
| |
| /* |
| * Section ordering: |
| * - HDR zero |
| * - Arch section hdrs |
| * - String table hdr |
| */ |
| sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); |
| len = sizeof_shdr * s->shdr_num; |
| s->elf_section_hdrs = g_malloc0(len); |
| buff_hdr = s->elf_section_hdrs; |
| |
| /* |
| * The first section header is ALWAYS a special initial section |
| * header. |
| * |
| * The header should be 0 with one exception being that if |
| * phdr_num is PN_XNUM then the sh_info field contains the real |
| * number of segment entries. |
| * |
| * As we zero allocate the buffer we will only need to modify |
| * sh_info for the PN_XNUM case. |
| */ |
| if (s->phdr_num >= PN_XNUM) { |
| prepare_elf_section_hdr_zero(s); |
| } |
| buff_hdr += sizeof_shdr; |
| |
| /* Add architecture defined section headers */ |
| if (s->dump_info.arch_sections_write_hdr_fn |
| && s->shdr_num > 2) { |
| buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr); |
| |
| if (s->shdr_num >= SHN_LORESERVE) { |
| error_setg_errno(errp, EINVAL, |
| "dump: too many architecture defined sections"); |
| return false; |
| } |
| } |
| |
| /* |
| * String table is the last section since strings are added via |
| * arch_sections_write_hdr(). |
| */ |
| prepare_elf_section_hdr_string(s, buff_hdr); |
| return true; |
| } |
| |
| static void write_elf_section_headers(DumpState *s, Error **errp) |
| { |
| size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr); |
| int ret; |
| |
| if (!prepare_elf_section_hdrs(s, errp)) { |
| return; |
| } |
| |
| ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, "dump: failed to write section headers"); |
| } |
| |
| g_free(s->elf_section_hdrs); |
| } |
| |
| static void write_elf_sections(DumpState *s, Error **errp) |
| { |
| int ret; |
| |
| if (s->elf_section_data_size) { |
| /* Write architecture section data */ |
| ret = fd_write_vmcore(s->elf_section_data, |
| s->elf_section_data_size, s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, |
| "dump: failed to write architecture section data"); |
| return; |
| } |
| } |
| |
| /* Write string table */ |
| ret = fd_write_vmcore(s->string_table_buf->data, |
| s->string_table_buf->len, s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, "dump: failed to write string table data"); |
| } |
| } |
| |
| static void write_data(DumpState *s, void *buf, int length, Error **errp) |
| { |
| int ret; |
| |
| ret = fd_write_vmcore(buf, length, s); |
| if (ret < 0) { |
| error_setg_errno(errp, -ret, "dump: failed to save memory"); |
| } else { |
| s->written_size += length; |
| } |
| } |
| |
| /* write the memory to vmcore. 1 page per I/O. */ |
| static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start, |
| int64_t size, Error **errp) |
| { |
| ERRP_GUARD(); |
| int64_t i; |
| |
| for (i = 0; i < size / s->dump_info.page_size; i++) { |
| write_data(s, block->host_addr + start + i * s->dump_info.page_size, |
| s->dump_info.page_size, errp); |
| if (*errp) { |
| return; |
| } |
| } |
| |
| if ((size % s->dump_info.page_size) != 0) { |
| write_data(s, block->host_addr + start + i * s->dump_info.page_size, |
| size % s->dump_info.page_size, errp); |
| if (*errp) { |
| return; |
| } |
| } |
| } |
| |
| /* get the memory's offset and size in the vmcore */ |
| static void get_offset_range(hwaddr phys_addr, |
| ram_addr_t mapping_length, |
| DumpState *s, |
| hwaddr *p_offset, |
| hwaddr *p_filesz) |
| { |
| GuestPhysBlock *block; |
| hwaddr offset = s->memory_offset; |
| int64_t size_in_block, start; |
| |
| /* When the memory is not stored into vmcore, offset will be -1 */ |
| *p_offset = -1; |
| *p_filesz = 0; |
| |
| if (dump_has_filter(s)) { |
| if (phys_addr < s->filter_area_begin || |
| phys_addr >= s->filter_area_begin + s->filter_area_length) { |
| return; |
| } |
| } |
| |
| QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { |
| if (dump_has_filter(s)) { |
| if (block->target_start >= s->filter_area_begin + s->filter_area_length || |
| block->target_end <= s->filter_area_begin) { |
| /* This block is out of the range */ |
| continue; |
| } |
| |
| if (s->filter_area_begin <= block->target_start) { |
| start = block->target_start; |
| } else { |
| start = s->filter_area_begin; |
| } |
| |
| size_in_block = block->target_end - start; |
| if (s->filter_area_begin + s->filter_area_length < block->target_end) { |
| size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length); |
| } |
| } else { |
| start = block->target_start; |
| size_in_block = block->target_end - block->target_start; |
| } |
| |
| if (phys_addr >= start && phys_addr < start + size_in_block) { |
| *p_offset = phys_addr - start + offset; |
| |
| /* The offset range mapped from the vmcore file must not spill over |
| * the GuestPhysBlock, clamp it. The rest of the mapping will be |
| * zero-filled in memory at load time; see |
| * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>. |
| */ |
| *p_filesz = phys_addr + mapping_length <= start + size_in_block ? |
| mapping_length : |
| size_in_block - (phys_addr - start); |
| return; |
| } |
| |
| offset += size_in_block; |
| } |
| } |
| |
| static void write_elf_phdr_loads(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| hwaddr offset, filesz; |
| MemoryMapping *memory_mapping; |
| uint32_t phdr_index = 1; |
| |
| QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { |
| get_offset_range(memory_mapping->phys_addr, |
| memory_mapping->length, |
| s, &offset, &filesz); |
| if (dump_is_64bit(s)) { |
| write_elf64_load(s, memory_mapping, phdr_index++, offset, |
| filesz, errp); |
| } else { |
| write_elf32_load(s, memory_mapping, phdr_index++, offset, |
| filesz, errp); |
| } |
| |
| if (*errp) { |
| return; |
| } |
| |
| if (phdr_index >= s->phdr_num) { |
| break; |
| } |
| } |
| } |
| |
| static void write_elf_notes(DumpState *s, Error **errp) |
| { |
| if (dump_is_64bit(s)) { |
| write_elf64_notes(fd_write_vmcore, s, errp); |
| } else { |
| write_elf32_notes(fd_write_vmcore, s, errp); |
| } |
| } |
| |
| /* write elf header, PT_NOTE and elf note to vmcore. */ |
| static void dump_begin(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| |
| /* |
| * the vmcore's format is: |
| * -------------- |
| * | elf header | |
| * -------------- |
| * | sctn_hdr | |
| * -------------- |
| * | PT_NOTE | |
| * -------------- |
| * | PT_LOAD | |
| * -------------- |
| * | ...... | |
| * -------------- |
| * | PT_LOAD | |
| * -------------- |
| * | elf note | |
| * -------------- |
| * | memory | |
| * -------------- |
| * |
| * we only know where the memory is saved after we write elf note into |
| * vmcore. |
| */ |
| |
| /* write elf header to vmcore */ |
| write_elf_header(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* write section headers to vmcore */ |
| write_elf_section_headers(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* write PT_NOTE to vmcore */ |
| write_elf_phdr_note(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* write all PT_LOADs to vmcore */ |
| write_elf_phdr_loads(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* write notes to vmcore */ |
| write_elf_notes(s, errp); |
| } |
| |
| int64_t dump_filtered_memblock_size(GuestPhysBlock *block, |
| int64_t filter_area_start, |
| int64_t filter_area_length) |
| { |
| int64_t size, left, right; |
| |
| /* No filter, return full size */ |
| if (!filter_area_length) { |
| return block->target_end - block->target_start; |
| } |
| |
| /* calculate the overlapped region. */ |
| left = MAX(filter_area_start, block->target_start); |
| right = MIN(filter_area_start + filter_area_length, block->target_end); |
| size = right - left; |
| size = size > 0 ? size : 0; |
| |
| return size; |
| } |
| |
| int64_t dump_filtered_memblock_start(GuestPhysBlock *block, |
| int64_t filter_area_start, |
| int64_t filter_area_length) |
| { |
| if (filter_area_length) { |
| /* return -1 if the block is not within filter area */ |
| if (block->target_start >= filter_area_start + filter_area_length || |
| block->target_end <= filter_area_start) { |
| return -1; |
| } |
| |
| if (filter_area_start > block->target_start) { |
| return filter_area_start - block->target_start; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* write all memory to vmcore */ |
| static void dump_iterate(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| GuestPhysBlock *block; |
| int64_t memblock_size, memblock_start; |
| |
| QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { |
| memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length); |
| if (memblock_start == -1) { |
| continue; |
| } |
| |
| memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length); |
| |
| /* Write the memory to file */ |
| write_memory(s, block, memblock_start, memblock_size, errp); |
| if (*errp) { |
| return; |
| } |
| } |
| } |
| |
| static void dump_end(DumpState *s, Error **errp) |
| { |
| int rc; |
| |
| if (s->elf_section_data_size) { |
| s->elf_section_data = g_malloc0(s->elf_section_data_size); |
| } |
| |
| /* Adds the architecture defined section data to s->elf_section_data */ |
| if (s->dump_info.arch_sections_write_fn && |
| s->elf_section_data_size) { |
| rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data); |
| if (rc) { |
| error_setg_errno(errp, rc, |
| "dump: failed to get arch section data"); |
| g_free(s->elf_section_data); |
| return; |
| } |
| } |
| |
| /* write sections to vmcore */ |
| write_elf_sections(s, errp); |
| } |
| |
| static void create_vmcore(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| |
| dump_begin(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* Iterate over memory and dump it to file */ |
| dump_iterate(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| /* Write the section data */ |
| dump_end(s, errp); |
| } |
| |
| static int write_start_flat_header(int fd) |
| { |
| MakedumpfileHeader *mh; |
| int ret = 0; |
| |
| QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER); |
| mh = g_malloc0(MAX_SIZE_MDF_HEADER); |
| |
| memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE, |
| MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE)); |
| |
| mh->type = cpu_to_be64(TYPE_FLAT_HEADER); |
| mh->version = cpu_to_be64(VERSION_FLAT_HEADER); |
| |
| size_t written_size; |
| written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER); |
| if (written_size != MAX_SIZE_MDF_HEADER) { |
| ret = -1; |
| } |
| |
| g_free(mh); |
| return ret; |
| } |
| |
| static int write_end_flat_header(int fd) |
| { |
| MakedumpfileDataHeader mdh; |
| |
| mdh.offset = END_FLAG_FLAT_HEADER; |
| mdh.buf_size = END_FLAG_FLAT_HEADER; |
| |
| size_t written_size; |
| written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); |
| if (written_size != sizeof(mdh)) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int write_buffer(int fd, off_t offset, const void *buf, size_t size) |
| { |
| size_t written_size; |
| MakedumpfileDataHeader mdh; |
| |
| mdh.offset = cpu_to_be64(offset); |
| mdh.buf_size = cpu_to_be64(size); |
| |
| written_size = qemu_write_full(fd, &mdh, sizeof(mdh)); |
| if (written_size != sizeof(mdh)) { |
| return -1; |
| } |
| |
| written_size = qemu_write_full(fd, buf, size); |
| if (written_size != size) { |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int buf_write_note(const void *buf, size_t size, void *opaque) |
| { |
| DumpState *s = opaque; |
| |
| /* note_buf is not enough */ |
| if (s->note_buf_offset + size > s->note_size) { |
| return -1; |
| } |
| |
| memcpy(s->note_buf + s->note_buf_offset, buf, size); |
| |
| s->note_buf_offset += size; |
| |
| return 0; |
| } |
| |
| /* |
| * This function retrieves various sizes from an elf header. |
| * |
| * @note has to be a valid ELF note. The return sizes are unmodified |
| * (not padded or rounded up to be multiple of 4). |
| */ |
| static void get_note_sizes(DumpState *s, const void *note, |
| uint64_t *note_head_size, |
| uint64_t *name_size, |
| uint64_t *desc_size) |
| { |
| uint64_t note_head_sz; |
| uint64_t name_sz; |
| uint64_t desc_sz; |
| |
| if (dump_is_64bit(s)) { |
| const Elf64_Nhdr *hdr = note; |
| note_head_sz = sizeof(Elf64_Nhdr); |
| name_sz = cpu_to_dump64(s, hdr->n_namesz); |
| desc_sz = cpu_to_dump64(s, hdr->n_descsz); |
| } else { |
| const Elf32_Nhdr *hdr = note; |
| note_head_sz = sizeof(Elf32_Nhdr); |
| name_sz = cpu_to_dump32(s, hdr->n_namesz); |
| desc_sz = cpu_to_dump32(s, hdr->n_descsz); |
| } |
| |
| if (note_head_size) { |
| *note_head_size = note_head_sz; |
| } |
| if (name_size) { |
| *name_size = name_sz; |
| } |
| if (desc_size) { |
| *desc_size = desc_sz; |
| } |
| } |
| |
| static bool note_name_equal(DumpState *s, |
| const uint8_t *note, const char *name) |
| { |
| int len = strlen(name) + 1; |
| uint64_t head_size, name_size; |
| |
| get_note_sizes(s, note, &head_size, &name_size, NULL); |
| head_size = ROUND_UP(head_size, 4); |
| |
| return name_size == len && memcmp(note + head_size, name, len) == 0; |
| } |
| |
| /* write common header, sub header and elf note to vmcore */ |
| static void create_header32(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| DiskDumpHeader32 *dh = NULL; |
| KdumpSubHeader32 *kh = NULL; |
| size_t size; |
| uint32_t block_size; |
| uint32_t sub_hdr_size; |
| uint32_t bitmap_blocks; |
| uint32_t status = 0; |
| uint64_t offset_note; |
| |
| /* write common header, the version of kdump-compressed format is 6th */ |
| size = sizeof(DiskDumpHeader32); |
| dh = g_malloc0(size); |
| |
| memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); |
| dh->header_version = cpu_to_dump32(s, 6); |
| block_size = s->dump_info.page_size; |
| dh->block_size = cpu_to_dump32(s, block_size); |
| sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size; |
| sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); |
| dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); |
| /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ |
| dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); |
| dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); |
| bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; |
| dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); |
| strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); |
| |
| if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { |
| status |= DUMP_DH_COMPRESSED_ZLIB; |
| } |
| #ifdef CONFIG_LZO |
| if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { |
| status |= DUMP_DH_COMPRESSED_LZO; |
| } |
| #endif |
| #ifdef CONFIG_SNAPPY |
| if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { |
| status |= DUMP_DH_COMPRESSED_SNAPPY; |
| } |
| #endif |
| dh->status = cpu_to_dump32(s, status); |
| |
| if (write_buffer(s->fd, 0, dh, size) < 0) { |
| error_setg(errp, "dump: failed to write disk dump header"); |
| goto out; |
| } |
| |
| /* write sub header */ |
| size = sizeof(KdumpSubHeader32); |
| kh = g_malloc0(size); |
| |
| /* 64bit max_mapnr_64 */ |
| kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); |
| kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base); |
| kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); |
| |
| offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; |
| if (s->guest_note && |
| note_name_equal(s, s->guest_note, "VMCOREINFO")) { |
| uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; |
| |
| get_note_sizes(s, s->guest_note, |
| &hsize, &name_size, &size_vmcoreinfo_desc); |
| offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + |
| (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; |
| kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); |
| kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc); |
| } |
| |
| kh->offset_note = cpu_to_dump64(s, offset_note); |
| kh->note_size = cpu_to_dump32(s, s->note_size); |
| |
| if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * |
| block_size, kh, size) < 0) { |
| error_setg(errp, "dump: failed to write kdump sub header"); |
| goto out; |
| } |
| |
| /* write note */ |
| s->note_buf = g_malloc0(s->note_size); |
| s->note_buf_offset = 0; |
| |
| /* use s->note_buf to store notes temporarily */ |
| write_elf32_notes(buf_write_note, s, errp); |
| if (*errp) { |
| goto out; |
| } |
| if (write_buffer(s->fd, offset_note, s->note_buf, |
| s->note_size) < 0) { |
| error_setg(errp, "dump: failed to write notes"); |
| goto out; |
| } |
| |
| /* get offset of dump_bitmap */ |
| s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * |
| block_size; |
| |
| /* get offset of page */ |
| s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * |
| block_size; |
| |
| out: |
| g_free(dh); |
| g_free(kh); |
| g_free(s->note_buf); |
| } |
| |
| /* write common header, sub header and elf note to vmcore */ |
| static void create_header64(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| DiskDumpHeader64 *dh = NULL; |
| KdumpSubHeader64 *kh = NULL; |
| size_t size; |
| uint32_t block_size; |
| uint32_t sub_hdr_size; |
| uint32_t bitmap_blocks; |
| uint32_t status = 0; |
| uint64_t offset_note; |
| |
| /* write common header, the version of kdump-compressed format is 6th */ |
| size = sizeof(DiskDumpHeader64); |
| dh = g_malloc0(size); |
| |
| memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN); |
| dh->header_version = cpu_to_dump32(s, 6); |
| block_size = s->dump_info.page_size; |
| dh->block_size = cpu_to_dump32(s, block_size); |
| sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size; |
| sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size); |
| dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size); |
| /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */ |
| dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX)); |
| dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus); |
| bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2; |
| dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks); |
| strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine)); |
| |
| if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) { |
| status |= DUMP_DH_COMPRESSED_ZLIB; |
| } |
| #ifdef CONFIG_LZO |
| if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) { |
| status |= DUMP_DH_COMPRESSED_LZO; |
| } |
| #endif |
| #ifdef CONFIG_SNAPPY |
| if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) { |
| status |= DUMP_DH_COMPRESSED_SNAPPY; |
| } |
| #endif |
| dh->status = cpu_to_dump32(s, status); |
| |
| if (write_buffer(s->fd, 0, dh, size) < 0) { |
| error_setg(errp, "dump: failed to write disk dump header"); |
| goto out; |
| } |
| |
| /* write sub header */ |
| size = sizeof(KdumpSubHeader64); |
| kh = g_malloc0(size); |
| |
| /* 64bit max_mapnr_64 */ |
| kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr); |
| kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base); |
| kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL); |
| |
| offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size; |
| if (s->guest_note && |
| note_name_equal(s, s->guest_note, "VMCOREINFO")) { |
| uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo; |
| |
| get_note_sizes(s, s->guest_note, |
| &hsize, &name_size, &size_vmcoreinfo_desc); |
| offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size + |
| (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4; |
| kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo); |
| kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc); |
| } |
| |
| kh->offset_note = cpu_to_dump64(s, offset_note); |
| kh->note_size = cpu_to_dump64(s, s->note_size); |
| |
| if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS * |
| block_size, kh, size) < 0) { |
| error_setg(errp, "dump: failed to write kdump sub header"); |
| goto out; |
| } |
| |
| /* write note */ |
| s->note_buf = g_malloc0(s->note_size); |
| s->note_buf_offset = 0; |
| |
| /* use s->note_buf to store notes temporarily */ |
| write_elf64_notes(buf_write_note, s, errp); |
| if (*errp) { |
| goto out; |
| } |
| |
| if (write_buffer(s->fd, offset_note, s->note_buf, |
| s->note_size) < 0) { |
| error_setg(errp, "dump: failed to write notes"); |
| goto out; |
| } |
| |
| /* get offset of dump_bitmap */ |
| s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) * |
| block_size; |
| |
| /* get offset of page */ |
| s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) * |
| block_size; |
| |
| out: |
| g_free(dh); |
| g_free(kh); |
| g_free(s->note_buf); |
| } |
| |
| static void write_dump_header(DumpState *s, Error **errp) |
| { |
| if (dump_is_64bit(s)) { |
| create_header64(s, errp); |
| } else { |
| create_header32(s, errp); |
| } |
| } |
| |
| static size_t dump_bitmap_get_bufsize(DumpState *s) |
| { |
| return s->dump_info.page_size; |
| } |
| |
| /* |
| * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be |
| * rewritten, so if need to set the first bit, set last_pfn and pfn to 0. |
| * set_dump_bitmap will always leave the recently set bit un-sync. And setting |
| * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into |
| * vmcore, ie. synchronizing un-sync bit into vmcore. |
| */ |
| static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value, |
| uint8_t *buf, DumpState *s) |
| { |
| off_t old_offset, new_offset; |
| off_t offset_bitmap1, offset_bitmap2; |
| uint32_t byte, bit; |
| size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); |
| size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; |
| |
| /* should not set the previous place */ |
| assert(last_pfn <= pfn); |
| |
| /* |
| * if the bit needed to be set is not cached in buf, flush the data in buf |
| * to vmcore firstly. |
| * making new_offset be bigger than old_offset can also sync remained data |
| * into vmcore. |
| */ |
| old_offset = bitmap_bufsize * (last_pfn / bits_per_buf); |
| new_offset = bitmap_bufsize * (pfn / bits_per_buf); |
| |
| while (old_offset < new_offset) { |
| /* calculate the offset and write dump_bitmap */ |
| offset_bitmap1 = s->offset_dump_bitmap + old_offset; |
| if (write_buffer(s->fd, offset_bitmap1, buf, |
| bitmap_bufsize) < 0) { |
| return -1; |
| } |
| |
| /* dump level 1 is chosen, so 1st and 2nd bitmap are same */ |
| offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap + |
| old_offset; |
| if (write_buffer(s->fd, offset_bitmap2, buf, |
| bitmap_bufsize) < 0) { |
| return -1; |
| } |
| |
| memset(buf, 0, bitmap_bufsize); |
| old_offset += bitmap_bufsize; |
| } |
| |
| /* get the exact place of the bit in the buf, and set it */ |
| byte = (pfn % bits_per_buf) / CHAR_BIT; |
| bit = (pfn % bits_per_buf) % CHAR_BIT; |
| if (value) { |
| buf[byte] |= 1u << bit; |
| } else { |
| buf[byte] &= ~(1u << bit); |
| } |
| |
| return 0; |
| } |
| |
| static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr) |
| { |
| int target_page_shift = ctz32(s->dump_info.page_size); |
| |
| return (addr >> target_page_shift) - ARCH_PFN_OFFSET; |
| } |
| |
| static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn) |
| { |
| int target_page_shift = ctz32(s->dump_info.page_size); |
| |
| return (pfn + ARCH_PFN_OFFSET) << target_page_shift; |
| } |
| |
| /* |
| * Return the page frame number and the page content in *bufptr. bufptr can be |
| * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated |
| * memory. This is not necessarily the memory returned. |
| */ |
| static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr, |
| uint8_t **bufptr, DumpState *s) |
| { |
| GuestPhysBlock *block = *blockptr; |
| uint32_t page_size = s->dump_info.page_size; |
| uint8_t *buf = NULL, *hbuf; |
| hwaddr addr; |
| |
| /* block == NULL means the start of the iteration */ |
| if (!block) { |
| block = QTAILQ_FIRST(&s->guest_phys_blocks.head); |
| *blockptr = block; |
| addr = block->target_start; |
| *pfnptr = dump_paddr_to_pfn(s, addr); |
| } else { |
| *pfnptr += 1; |
| addr = dump_pfn_to_paddr(s, *pfnptr); |
| } |
| assert(block != NULL); |
| |
| while (1) { |
| if (addr >= block->target_start && addr < block->target_end) { |
| size_t n = MIN(block->target_end - addr, page_size - addr % page_size); |
| hbuf = block->host_addr + (addr - block->target_start); |
| if (!buf) { |
| if (n == page_size) { |
| /* this is a whole target page, go for it */ |
| assert(addr % page_size == 0); |
| buf = hbuf; |
| break; |
| } else if (bufptr) { |
| assert(*bufptr); |
| buf = *bufptr; |
| memset(buf, 0, page_size); |
| } else { |
| return true; |
| } |
| } |
| |
| memcpy(buf + addr % page_size, hbuf, n); |
| addr += n; |
| if (addr % page_size == 0) { |
| /* we filled up the page */ |
| break; |
| } |
| } else { |
| /* the next page is in the next block */ |
| *blockptr = block = QTAILQ_NEXT(block, next); |
| if (!block) { |
| break; |
| } |
| |
| addr = block->target_start; |
| /* are we still in the same page? */ |
| if (dump_paddr_to_pfn(s, addr) != *pfnptr) { |
| if (buf) { |
| /* no, but we already filled something earlier, return it */ |
| break; |
| } else { |
| /* else continue from there */ |
| *pfnptr = dump_paddr_to_pfn(s, addr); |
| } |
| } |
| } |
| } |
| |
| if (bufptr) { |
| *bufptr = buf; |
| } |
| |
| return buf != NULL; |
| } |
| |
| static void write_dump_bitmap(DumpState *s, Error **errp) |
| { |
| int ret = 0; |
| uint64_t last_pfn, pfn; |
| void *dump_bitmap_buf; |
| size_t num_dumpable; |
| GuestPhysBlock *block_iter = NULL; |
| size_t bitmap_bufsize = dump_bitmap_get_bufsize(s); |
| size_t bits_per_buf = bitmap_bufsize * CHAR_BIT; |
| |
| /* dump_bitmap_buf is used to store dump_bitmap temporarily */ |
| dump_bitmap_buf = g_malloc0(bitmap_bufsize); |
| |
| num_dumpable = 0; |
| last_pfn = 0; |
| |
| /* |
| * exam memory page by page, and set the bit in dump_bitmap corresponded |
| * to the existing page. |
| */ |
| while (get_next_page(&block_iter, &pfn, NULL, s)) { |
| ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to set dump_bitmap"); |
| goto out; |
| } |
| |
| last_pfn = pfn; |
| num_dumpable++; |
| } |
| |
| /* |
| * set_dump_bitmap will always leave the recently set bit un-sync. Here we |
| * set the remaining bits from last_pfn to the end of the bitmap buffer to |
| * 0. With those set, the un-sync bit will be synchronized into the vmcore. |
| */ |
| if (num_dumpable > 0) { |
| ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false, |
| dump_bitmap_buf, s); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to sync dump_bitmap"); |
| goto out; |
| } |
| } |
| |
| /* number of dumpable pages that will be dumped later */ |
| s->num_dumpable = num_dumpable; |
| |
| out: |
| g_free(dump_bitmap_buf); |
| } |
| |
| static void prepare_data_cache(DataCache *data_cache, DumpState *s, |
| off_t offset) |
| { |
| data_cache->fd = s->fd; |
| data_cache->data_size = 0; |
| data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s); |
| data_cache->buf = g_malloc0(data_cache->buf_size); |
| data_cache->offset = offset; |
| } |
| |
| static int write_cache(DataCache *dc, const void *buf, size_t size, |
| bool flag_sync) |
| { |
| /* |
| * dc->buf_size should not be less than size, otherwise dc will never be |
| * enough |
| */ |
| assert(size <= dc->buf_size); |
| |
| /* |
| * if flag_sync is set, synchronize data in dc->buf into vmcore. |
| * otherwise check if the space is enough for caching data in buf, if not, |
| * write the data in dc->buf to dc->fd and reset dc->buf |
| */ |
| if ((!flag_sync && dc->data_size + size > dc->buf_size) || |
| (flag_sync && dc->data_size > 0)) { |
| if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) { |
| return -1; |
| } |
| |
| dc->offset += dc->data_size; |
| dc->data_size = 0; |
| } |
| |
| if (!flag_sync) { |
| memcpy(dc->buf + dc->data_size, buf, size); |
| dc->data_size += size; |
| } |
| |
| return 0; |
| } |
| |
| static void free_data_cache(DataCache *data_cache) |
| { |
| g_free(data_cache->buf); |
| } |
| |
| static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress) |
| { |
| switch (flag_compress) { |
| case DUMP_DH_COMPRESSED_ZLIB: |
| return compressBound(page_size); |
| |
| case DUMP_DH_COMPRESSED_LZO: |
| /* |
| * LZO will expand incompressible data by a little amount. Please check |
| * the following URL to see the expansion calculation: |
| * http://www.oberhumer.com/opensource/lzo/lzofaq.php |
| */ |
| return page_size + page_size / 16 + 64 + 3; |
| |
| #ifdef CONFIG_SNAPPY |
| case DUMP_DH_COMPRESSED_SNAPPY: |
| return snappy_max_compressed_length(page_size); |
| #endif |
| } |
| return 0; |
| } |
| |
| static void write_dump_pages(DumpState *s, Error **errp) |
| { |
| int ret = 0; |
| DataCache page_desc, page_data; |
| size_t len_buf_out, size_out; |
| #ifdef CONFIG_LZO |
| lzo_bytep wrkmem = NULL; |
| #endif |
| uint8_t *buf_out = NULL; |
| off_t offset_desc, offset_data; |
| PageDescriptor pd, pd_zero; |
| uint8_t *buf; |
| GuestPhysBlock *block_iter = NULL; |
| uint64_t pfn_iter; |
| g_autofree uint8_t *page = NULL; |
| |
| /* get offset of page_desc and page_data in dump file */ |
| offset_desc = s->offset_page; |
| offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable; |
| |
| prepare_data_cache(&page_desc, s, offset_desc); |
| prepare_data_cache(&page_data, s, offset_data); |
| |
| /* prepare buffer to store compressed data */ |
| len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress); |
| assert(len_buf_out != 0); |
| |
| #ifdef CONFIG_LZO |
| wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS); |
| #endif |
| |
| buf_out = g_malloc(len_buf_out); |
| |
| /* |
| * init zero page's page_desc and page_data, because every zero page |
| * uses the same page_data |
| */ |
| pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size); |
| pd_zero.flags = cpu_to_dump32(s, 0); |
| pd_zero.offset = cpu_to_dump64(s, offset_data); |
| pd_zero.page_flags = cpu_to_dump64(s, 0); |
| buf = g_malloc0(s->dump_info.page_size); |
| ret = write_cache(&page_data, buf, s->dump_info.page_size, false); |
| g_free(buf); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write page data (zero page)"); |
| goto out; |
| } |
| |
| offset_data += s->dump_info.page_size; |
| page = g_malloc(s->dump_info.page_size); |
| |
| /* |
| * dump memory to vmcore page by page. zero page will all be resided in the |
| * first page of page section |
| */ |
| for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) { |
| /* check zero page */ |
| if (buffer_is_zero(buf, s->dump_info.page_size)) { |
| ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor), |
| false); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write page desc"); |
| goto out; |
| } |
| } else { |
| /* |
| * not zero page, then: |
| * 1. compress the page |
| * 2. write the compressed page into the cache of page_data |
| * 3. get page desc of the compressed page and write it into the |
| * cache of page_desc |
| * |
| * only one compression format will be used here, for |
| * s->flag_compress is set. But when compression fails to work, |
| * we fall back to save in plaintext. |
| */ |
| size_out = len_buf_out; |
| if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) && |
| (compress2(buf_out, (uLongf *)&size_out, buf, |
| s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) && |
| (size_out < s->dump_info.page_size)) { |
| pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB); |
| pd.size = cpu_to_dump32(s, size_out); |
| |
| ret = write_cache(&page_data, buf_out, size_out, false); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write page data"); |
| goto out; |
| } |
| #ifdef CONFIG_LZO |
| } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) && |
| (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out, |
| (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) && |
| (size_out < s->dump_info.page_size)) { |
| pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO); |
| pd.size = cpu_to_dump32(s, size_out); |
| |
| ret = write_cache(&page_data, buf_out, size_out, false); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write page data"); |
| goto out; |
| } |
| #endif |
| #ifdef CONFIG_SNAPPY |
| } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) && |
| (snappy_compress((char *)buf, s->dump_info.page_size, |
| (char *)buf_out, &size_out) == SNAPPY_OK) && |
| (size_out < s->dump_info.page_size)) { |
| pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY); |
| pd.size = cpu_to_dump32(s, size_out); |
| |
| ret = write_cache(&page_data, buf_out, size_out, false); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write page data"); |
| goto out; |
| } |
| #endif |
| } else { |
| /* |
| * fall back to save in plaintext, size_out should be |
| * assigned the target's page size |
| */ |
| pd.flags = cpu_to_dump32(s, 0); |
| size_out = s->dump_info.page_size; |
| pd.size = cpu_to_dump32(s, size_out); |
| |
| ret = write_cache(&page_data, buf, |
| s->dump_info.page_size, false); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write page data"); |
| goto out; |
| } |
| } |
| |
| /* get and write page desc here */ |
| pd.page_flags = cpu_to_dump64(s, 0); |
| pd.offset = cpu_to_dump64(s, offset_data); |
| offset_data += size_out; |
| |
| ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write page desc"); |
| goto out; |
| } |
| } |
| s->written_size += s->dump_info.page_size; |
| } |
| |
| ret = write_cache(&page_desc, NULL, 0, true); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to sync cache for page_desc"); |
| goto out; |
| } |
| ret = write_cache(&page_data, NULL, 0, true); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to sync cache for page_data"); |
| goto out; |
| } |
| |
| out: |
| free_data_cache(&page_desc); |
| free_data_cache(&page_data); |
| |
| #ifdef CONFIG_LZO |
| g_free(wrkmem); |
| #endif |
| |
| g_free(buf_out); |
| } |
| |
| static void create_kdump_vmcore(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| int ret; |
| |
| /* |
| * the kdump-compressed format is: |
| * File offset |
| * +------------------------------------------+ 0x0 |
| * | main header (struct disk_dump_header) | |
| * |------------------------------------------+ block 1 |
| * | sub header (struct kdump_sub_header) | |
| * |------------------------------------------+ block 2 |
| * | 1st-dump_bitmap | |
| * |------------------------------------------+ block 2 + X blocks |
| * | 2nd-dump_bitmap | (aligned by block) |
| * |------------------------------------------+ block 2 + 2 * X blocks |
| * | page desc for pfn 0 (struct page_desc) | (aligned by block) |
| * | page desc for pfn 1 (struct page_desc) | |
| * | : | |
| * |------------------------------------------| (not aligned by block) |
| * | page data (pfn 0) | |
| * | page data (pfn 1) | |
| * | : | |
| * +------------------------------------------+ |
| */ |
| |
| ret = write_start_flat_header(s->fd); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write start flat header"); |
| return; |
| } |
| |
| write_dump_header(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| write_dump_bitmap(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| write_dump_pages(s, errp); |
| if (*errp) { |
| return; |
| } |
| |
| ret = write_end_flat_header(s->fd); |
| if (ret < 0) { |
| error_setg(errp, "dump: failed to write end flat header"); |
| return; |
| } |
| } |
| |
| static int validate_start_block(DumpState *s) |
| { |
| GuestPhysBlock *block; |
| |
| if (!dump_has_filter(s)) { |
| return 0; |
| } |
| |
| QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { |
| /* This block is out of the range */ |
| if (block->target_start >= s->filter_area_begin + s->filter_area_length || |
| block->target_end <= s->filter_area_begin) { |
| continue; |
| } |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| static void get_max_mapnr(DumpState *s) |
| { |
| GuestPhysBlock *last_block; |
| |
| last_block = QTAILQ_LAST(&s->guest_phys_blocks.head); |
| s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end); |
| } |
| |
| static DumpState dump_state_global = { .status = DUMP_STATUS_NONE }; |
| |
| static void dump_state_prepare(DumpState *s) |
| { |
| /* zero the struct, setting status to active */ |
| *s = (DumpState) { .status = DUMP_STATUS_ACTIVE }; |
| } |
| |
| bool qemu_system_dump_in_progress(void) |
| { |
| DumpState *state = &dump_state_global; |
| return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE); |
| } |
| |
| /* |
| * calculate total size of memory to be dumped (taking filter into |
| * account.) |
| */ |
| static int64_t dump_calculate_size(DumpState *s) |
| { |
| GuestPhysBlock *block; |
| int64_t total = 0; |
| |
| QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) { |
| total += dump_filtered_memblock_size(block, |
| s->filter_area_begin, |
| s->filter_area_length); |
| } |
| |
| return total; |
| } |
| |
| static void vmcoreinfo_update_phys_base(DumpState *s) |
| { |
| uint64_t size, note_head_size, name_size, phys_base; |
| char **lines; |
| uint8_t *vmci; |
| size_t i; |
| |
| if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) { |
| return; |
| } |
| |
| get_note_sizes(s, s->guest_note, ¬e_head_size, &name_size, &size); |
| note_head_size = ROUND_UP(note_head_size, 4); |
| |
| vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4); |
| *(vmci + size) = '\0'; |
| |
| lines = g_strsplit((char *)vmci, "\n", -1); |
| for (i = 0; lines[i]; i++) { |
| const char *prefix = NULL; |
| |
| if (s->dump_info.d_machine == EM_X86_64) { |
| prefix = "NUMBER(phys_base)="; |
| } else if (s->dump_info.d_machine == EM_AARCH64) { |
| prefix = "NUMBER(PHYS_OFFSET)="; |
| } |
| |
| if (prefix && g_str_has_prefix(lines[i], prefix)) { |
| if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16, |
| &phys_base) < 0) { |
| warn_report("Failed to read %s", prefix); |
| } else { |
| s->dump_info.phys_base = phys_base; |
| } |
| break; |
| } |
| } |
| |
| g_strfreev(lines); |
| } |
| |
| static void dump_init(DumpState *s, int fd, bool has_format, |
| DumpGuestMemoryFormat format, bool paging, bool has_filter, |
| int64_t begin, int64_t length, Error **errp) |
| { |
| ERRP_GUARD(); |
| VMCoreInfoState *vmci = vmcoreinfo_find(); |
| CPUState *cpu; |
| int nr_cpus; |
| int ret; |
| |
| s->has_format = has_format; |
| s->format = format; |
| s->written_size = 0; |
| |
| /* kdump-compressed is conflict with paging and filter */ |
| if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { |
| assert(!paging && !has_filter); |
| } |
| |
| if (runstate_is_running()) { |
| vm_stop(RUN_STATE_SAVE_VM); |
| s->resume = true; |
| } else { |
| s->resume = false; |
| } |
| |
| /* If we use KVM, we should synchronize the registers before we get dump |
| * info or physmap info. |
| */ |
| cpu_synchronize_all_states(); |
| nr_cpus = 0; |
| CPU_FOREACH(cpu) { |
| nr_cpus++; |
| } |
| |
| s->fd = fd; |
| if (has_filter && !length) { |
| error_setg(errp, QERR_INVALID_PARAMETER, "length"); |
| goto cleanup; |
| } |
| s->filter_area_begin = begin; |
| s->filter_area_length = length; |
| |
| /* First index is 0, it's the special null name */ |
| s->string_table_buf = g_array_new(FALSE, TRUE, 1); |
| /* |
| * Allocate the null name, due to the clearing option set to true |
| * it will be 0. |
| */ |
| g_array_set_size(s->string_table_buf, 1); |
| |
| memory_mapping_list_init(&s->list); |
| |
| guest_phys_blocks_init(&s->guest_phys_blocks); |
| guest_phys_blocks_append(&s->guest_phys_blocks); |
| s->total_size = dump_calculate_size(s); |
| #ifdef DEBUG_DUMP_GUEST_MEMORY |
| fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size); |
| #endif |
| |
| /* it does not make sense to dump non-existent memory */ |
| if (!s->total_size) { |
| error_setg(errp, "dump: no guest memory to dump"); |
| goto cleanup; |
| } |
| |
| /* Is the filter filtering everything? */ |
| if (validate_start_block(s) == -1) { |
| error_setg(errp, QERR_INVALID_PARAMETER, "begin"); |
| goto cleanup; |
| } |
| |
| /* get dump info: endian, class and architecture. |
| * If the target architecture is not supported, cpu_get_dump_info() will |
| * return -1. |
| */ |
| ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks); |
| if (ret < 0) { |
| error_setg(errp, |
| "dumping guest memory is not supported on this target"); |
| goto cleanup; |
| } |
| |
| if (!s->dump_info.page_size) { |
| s->dump_info.page_size = qemu_target_page_size(); |
| } |
| |
| s->note_size = cpu_get_note_size(s->dump_info.d_class, |
| s->dump_info.d_machine, nr_cpus); |
| assert(s->note_size >= 0); |
| |
| /* |
| * The goal of this block is to (a) update the previously guessed |
| * phys_base, (b) copy the guest note out of the guest. |
| * Failure to do so is not fatal for dumping. |
| */ |
| if (vmci) { |
| uint64_t addr, note_head_size, name_size, desc_size; |
| uint32_t size; |
| uint16_t format; |
| |
| note_head_size = dump_is_64bit(s) ? |
| sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr); |
| |
| format = le16_to_cpu(vmci->vmcoreinfo.guest_format); |
| size = le32_to_cpu(vmci->vmcoreinfo.size); |
| addr = le64_to_cpu(vmci->vmcoreinfo.paddr); |
| if (!vmci->has_vmcoreinfo) { |
| warn_report("guest note is not present"); |
| } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) { |
| warn_report("guest note size is invalid: %" PRIu32, size); |
| } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) { |
| warn_report("guest note format is unsupported: %" PRIu16, format); |
| } else { |
| s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */ |
| cpu_physical_memory_read(addr, s->guest_note, size); |
| |
| get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size); |
| s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size, |
| desc_size); |
| if (name_size > MAX_GUEST_NOTE_SIZE || |
| desc_size > MAX_GUEST_NOTE_SIZE || |
| s->guest_note_size > size) { |
| warn_report("Invalid guest note header"); |
| g_free(s->guest_note); |
| s->guest_note = NULL; |
| } else { |
| vmcoreinfo_update_phys_base(s); |
| s->note_size += s->guest_note_size; |
| } |
| } |
| } |
| |
| /* get memory mapping */ |
| if (paging) { |
| qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp); |
| if (*errp) { |
| goto cleanup; |
| } |
| } else { |
| qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks); |
| } |
| |
| s->nr_cpus = nr_cpus; |
| |
| get_max_mapnr(s); |
| |
| uint64_t tmp; |
| tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT), |
| s->dump_info.page_size); |
| s->len_dump_bitmap = tmp * s->dump_info.page_size; |
| |
| /* init for kdump-compressed format */ |
| if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) { |
| switch (format) { |
| case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB: |
| s->flag_compress = DUMP_DH_COMPRESSED_ZLIB; |
| break; |
| |
| case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO: |
| #ifdef CONFIG_LZO |
| if (lzo_init() != LZO_E_OK) { |
| error_setg(errp, "failed to initialize the LZO library"); |
| goto cleanup; |
| } |
| #endif |
| s->flag_compress = DUMP_DH_COMPRESSED_LZO; |
| break; |
| |
| case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY: |
| s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY; |
| break; |
| |
| default: |
| s->flag_compress = 0; |
| } |
| |
| return; |
| } |
| |
| if (dump_has_filter(s)) { |
| memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length); |
| } |
| |
| /* |
| * The first section header is always a special one in which most |
| * fields are 0. The section header string table is also always |
| * set. |
| */ |
| s->shdr_num = 2; |
| |
| /* |
| * Adds the number of architecture sections to shdr_num and sets |
| * elf_section_data_size so we know the offsets and sizes of all |
| * parts. |
| */ |
| if (s->dump_info.arch_sections_add_fn) { |
| s->dump_info.arch_sections_add_fn(s); |
| } |
| |
| /* |
| * calculate shdr_num so we know the offsets and sizes of all |
| * parts. |
| * Calculate phdr_num |
| * |
| * The absolute maximum amount of phdrs is UINT32_MAX - 1 as |
| * sh_info is 32 bit. There's special handling once we go over |
| * UINT16_MAX - 1 but that is handled in the ehdr and section |
| * code. |
| */ |
| s->phdr_num = 1; /* Reserve PT_NOTE */ |
| if (s->list.num <= UINT32_MAX - 1) { |
| s->phdr_num += s->list.num; |
| } else { |
| s->phdr_num = UINT32_MAX; |
| } |
| |
| /* |
| * Now that the number of section and program headers is known we |
| * can calculate the offsets of the headers and data. |
| */ |
| if (dump_is_64bit(s)) { |
| s->shdr_offset = sizeof(Elf64_Ehdr); |
| s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num; |
| s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num; |
| } else { |
| s->shdr_offset = sizeof(Elf32_Ehdr); |
| s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num; |
| s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num; |
| } |
| s->memory_offset = s->note_offset + s->note_size; |
| s->section_offset = s->memory_offset + s->total_size; |
| |
| return; |
| |
| cleanup: |
| dump_cleanup(s); |
| } |
| |
| /* this operation might be time consuming. */ |
| static void dump_process(DumpState *s, Error **errp) |
| { |
| ERRP_GUARD(); |
| DumpQueryResult *result = NULL; |
| |
| if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) { |
| create_win_dump(s, errp); |
| } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) { |
| create_kdump_vmcore(s, errp); |
| } else { |
| create_vmcore(s, errp); |
| } |
| |
| /* make sure status is written after written_size updates */ |
| smp_wmb(); |
| qatomic_set(&s->status, |
| (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED)); |
| |
| /* send DUMP_COMPLETED message (unconditionally) */ |
| result = qmp_query_dump(NULL); |
| /* should never fail */ |
| assert(result); |
| qapi_event_send_dump_completed(result, |
| *errp ? error_get_pretty(*errp) : NULL); |
| qapi_free_DumpQueryResult(result); |
| |
| dump_cleanup(s); |
| } |
| |
| static void *dump_thread(void *data) |
| { |
| DumpState *s = (DumpState *)data; |
| dump_process(s, NULL); |
| return NULL; |
| } |
| |
| DumpQueryResult *qmp_query_dump(Error **errp) |
| { |
| DumpQueryResult *result = g_new(DumpQueryResult, 1); |
| DumpState *state = &dump_state_global; |
| result->status = qatomic_read(&state->status); |
| /* make sure we are reading status and written_size in order */ |
| smp_rmb(); |
| result->completed = state->written_size; |
| result->total = state->total_size; |
| return result; |
| } |
| |
| void qmp_dump_guest_memory(bool paging, const char *file, |
| bool has_detach, bool detach, |
| bool has_begin, int64_t begin, bool has_length, |
| int64_t length, bool has_format, |
| DumpGuestMemoryFormat format, Error **errp) |
| { |
| ERRP_GUARD(); |
| const char *p; |
| int fd = -1; |
| DumpState *s; |
| bool detach_p = false; |
| |
| if (runstate_check(RUN_STATE_INMIGRATE)) { |
| error_setg(errp, "Dump not allowed during incoming migration."); |
| return; |
| } |
| |
| /* if there is a dump in background, we should wait until the dump |
| * finished */ |
| if (qemu_system_dump_in_progress()) { |
| error_setg(errp, "There is a dump in process, please wait."); |
| return; |
| } |
| |
| /* |
| * kdump-compressed format need the whole memory dumped, so paging or |
| * filter is not supported here. |
| */ |
| if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) && |
| (paging || has_begin || has_length)) { |
| error_setg(errp, "kdump-compressed format doesn't support paging or " |
| "filter"); |
| return; |
| } |
| if (has_begin && !has_length) { |
| error_setg(errp, QERR_MISSING_PARAMETER, "length"); |
| return; |
| } |
| if (!has_begin && has_length) { |
| error_setg(errp, QERR_MISSING_PARAMETER, "begin"); |
| return; |
| } |
| if (has_detach) { |
| detach_p = detach; |
| } |
| |
| /* check whether lzo/snappy is supported */ |
| #ifndef CONFIG_LZO |
| if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) { |
| error_setg(errp, "kdump-lzo is not available now"); |
| return; |
| } |
| #endif |
| |
| #ifndef CONFIG_SNAPPY |
| if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) { |
| error_setg(errp, "kdump-snappy is not available now"); |
| return; |
| } |
| #endif |
| |
| if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP |
| && !win_dump_available(errp)) { |
| return; |
| } |
| |
| #if !defined(WIN32) |
| if (strstart(file, "fd:", &p)) { |
| fd = monitor_get_fd(monitor_cur(), p, errp); |
| if (fd == -1) { |
| return; |
| } |
| } |
| #endif |
| |
| if (strstart(file, "file:", &p)) { |
| fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); |
| if (fd < 0) { |
| error_setg_file_open(errp, errno, p); |
| return; |
| } |
| } |
| |
| if (fd == -1) { |
| error_setg(errp, QERR_INVALID_PARAMETER, "protocol"); |
| return; |
| } |
| |
| if (!dump_migration_blocker) { |
| error_setg(&dump_migration_blocker, |
| "Live migration disabled: dump-guest-memory in progress"); |
| } |
| |
| /* |
| * Allows even for -only-migratable, but forbid migration during the |
| * process of dump guest memory. |
| */ |
| if (migrate_add_blocker_internal(dump_migration_blocker, errp)) { |
| /* Remember to release the fd before passing it over to dump state */ |
| close(fd); |
| return; |
| } |
| |
| s = &dump_state_global; |
| dump_state_prepare(s); |
| |
| dump_init(s, fd, has_format, format, paging, has_begin, |
| begin, length, errp); |
| if (*errp) { |
| qatomic_set(&s->status, DUMP_STATUS_FAILED); |
| return; |
| } |
| |
| if (detach_p) { |
| /* detached dump */ |
| s->detached = true; |
| qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread, |
| s, QEMU_THREAD_DETACHED); |
| } else { |
| /* sync dump */ |
| dump_process(s, errp); |
| } |
| } |
| |
| DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp) |
| { |
| DumpGuestMemoryCapability *cap = |
| g_new0(DumpGuestMemoryCapability, 1); |
| DumpGuestMemoryFormatList **tail = &cap->formats; |
| |
| /* elf is always available */ |
| QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF); |
| |
| /* kdump-zlib is always available */ |
| QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB); |
| |
| /* add new item if kdump-lzo is available */ |
| #ifdef CONFIG_LZO |
| QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO); |
| #endif |
| |
| /* add new item if kdump-snappy is available */ |
| #ifdef CONFIG_SNAPPY |
| QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY); |
| #endif |
| |
| if (win_dump_available(NULL)) { |
| QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP); |
| } |
| |
| return cap; |
| } |