| /* |
| * Copyright (C) 2021, Alexandre Iooss <erdnaxe@crans.org> |
| * |
| * Log instruction execution with memory access and register changes |
| * |
| * License: GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| #include <glib.h> |
| #include <inttypes.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include <qemu-plugin.h> |
| |
| typedef struct { |
| struct qemu_plugin_register *handle; |
| GByteArray *last; |
| GByteArray *new; |
| const char *name; |
| } Register; |
| |
| typedef struct CPU { |
| /* Store last executed instruction on each vCPU as a GString */ |
| GString *last_exec; |
| /* Ptr array of Register */ |
| GPtrArray *registers; |
| } CPU; |
| |
| QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; |
| |
| static GArray *cpus; |
| static GRWLock expand_array_lock; |
| |
| static GPtrArray *imatches; |
| static GArray *amatches; |
| static GPtrArray *rmatches; |
| static bool disas_assist; |
| static GMutex add_reg_name_lock; |
| static GPtrArray *all_reg_names; |
| |
| static CPU *get_cpu(int vcpu_index) |
| { |
| CPU *c; |
| g_rw_lock_reader_lock(&expand_array_lock); |
| c = &g_array_index(cpus, CPU, vcpu_index); |
| g_rw_lock_reader_unlock(&expand_array_lock); |
| |
| return c; |
| } |
| |
| /** |
| * Add memory read or write information to current instruction log |
| */ |
| static void vcpu_mem(unsigned int cpu_index, qemu_plugin_meminfo_t info, |
| uint64_t vaddr, void *udata) |
| { |
| CPU *c = get_cpu(cpu_index); |
| GString *s = c->last_exec; |
| |
| /* Find vCPU in array */ |
| |
| /* Indicate type of memory access */ |
| if (qemu_plugin_mem_is_store(info)) { |
| g_string_append(s, ", store"); |
| } else { |
| g_string_append(s, ", load"); |
| } |
| |
| /* If full system emulation log physical address and device name */ |
| struct qemu_plugin_hwaddr *hwaddr = qemu_plugin_get_hwaddr(info, vaddr); |
| if (hwaddr) { |
| uint64_t addr = qemu_plugin_hwaddr_phys_addr(hwaddr); |
| const char *name = qemu_plugin_hwaddr_device_name(hwaddr); |
| g_string_append_printf(s, ", 0x%08"PRIx64", %s", addr, name); |
| } else { |
| g_string_append_printf(s, ", 0x%08"PRIx64, vaddr); |
| } |
| } |
| |
| /** |
| * Log instruction execution, outputting the last one. |
| * |
| * vcpu_insn_exec() is a copy and paste of vcpu_insn_exec_with_regs() |
| * without the checking of register values when we've attempted to |
| * optimise with disas_assist. |
| */ |
| static void insn_check_regs(CPU *cpu) |
| { |
| for (int n = 0; n < cpu->registers->len; n++) { |
| Register *reg = cpu->registers->pdata[n]; |
| int sz; |
| |
| g_byte_array_set_size(reg->new, 0); |
| sz = qemu_plugin_read_register(reg->handle, reg->new); |
| g_assert(sz == reg->last->len); |
| |
| if (memcmp(reg->last->data, reg->new->data, sz)) { |
| GByteArray *temp = reg->last; |
| g_string_append_printf(cpu->last_exec, ", %s -> 0x", reg->name); |
| /* TODO: handle BE properly */ |
| for (int i = sz; i >= 0; i--) { |
| g_string_append_printf(cpu->last_exec, "%02x", |
| reg->new->data[i]); |
| } |
| reg->last = reg->new; |
| reg->new = temp; |
| } |
| } |
| } |
| |
| /* Log last instruction while checking registers */ |
| static void vcpu_insn_exec_with_regs(unsigned int cpu_index, void *udata) |
| { |
| CPU *cpu = get_cpu(cpu_index); |
| |
| /* Print previous instruction in cache */ |
| if (cpu->last_exec->len) { |
| if (cpu->registers) { |
| insn_check_regs(cpu); |
| } |
| |
| qemu_plugin_outs(cpu->last_exec->str); |
| qemu_plugin_outs("\n"); |
| } |
| |
| /* Store new instruction in cache */ |
| /* vcpu_mem will add memory access information to last_exec */ |
| g_string_printf(cpu->last_exec, "%u, ", cpu_index); |
| g_string_append(cpu->last_exec, (char *)udata); |
| } |
| |
| /* Log last instruction while checking registers, ignore next */ |
| static void vcpu_insn_exec_only_regs(unsigned int cpu_index, void *udata) |
| { |
| CPU *cpu = get_cpu(cpu_index); |
| |
| /* Print previous instruction in cache */ |
| if (cpu->last_exec->len) { |
| if (cpu->registers) { |
| insn_check_regs(cpu); |
| } |
| |
| qemu_plugin_outs(cpu->last_exec->str); |
| qemu_plugin_outs("\n"); |
| } |
| |
| /* reset */ |
| cpu->last_exec->len = 0; |
| } |
| |
| /* Log last instruction without checking regs, setup next */ |
| static void vcpu_insn_exec(unsigned int cpu_index, void *udata) |
| { |
| CPU *cpu = get_cpu(cpu_index); |
| |
| /* Print previous instruction in cache */ |
| if (cpu->last_exec->len) { |
| qemu_plugin_outs(cpu->last_exec->str); |
| qemu_plugin_outs("\n"); |
| } |
| |
| /* Store new instruction in cache */ |
| /* vcpu_mem will add memory access information to last_exec */ |
| g_string_printf(cpu->last_exec, "%u, ", cpu_index); |
| g_string_append(cpu->last_exec, (char *)udata); |
| } |
| |
| /** |
| * On translation block new translation |
| * |
| * QEMU convert code by translation block (TB). By hooking here we can then hook |
| * a callback on each instruction and memory access. |
| */ |
| static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) |
| { |
| struct qemu_plugin_insn *insn; |
| bool skip = (imatches || amatches); |
| bool check_regs_this = rmatches; |
| bool check_regs_next = false; |
| |
| size_t n = qemu_plugin_tb_n_insns(tb); |
| for (size_t i = 0; i < n; i++) { |
| char *insn_disas; |
| uint64_t insn_vaddr; |
| |
| /* |
| * `insn` is shared between translations in QEMU, copy needed data here. |
| * `output` is never freed as it might be used multiple times during |
| * the emulation lifetime. |
| * We only consider the first 32 bits of the instruction, this may be |
| * a limitation for CISC architectures. |
| */ |
| insn = qemu_plugin_tb_get_insn(tb, i); |
| insn_disas = qemu_plugin_insn_disas(insn); |
| insn_vaddr = qemu_plugin_insn_vaddr(insn); |
| |
| /* |
| * If we are filtering we better check out if we have any |
| * hits. The skip "latches" so we can track memory accesses |
| * after the instruction we care about. Also enable register |
| * checking on the next instruction. |
| */ |
| if (skip && imatches) { |
| int j; |
| for (j = 0; j < imatches->len && skip; j++) { |
| char *m = g_ptr_array_index(imatches, j); |
| if (g_str_has_prefix(insn_disas, m)) { |
| skip = false; |
| check_regs_next = rmatches; |
| } |
| } |
| } |
| |
| if (skip && amatches) { |
| int j; |
| for (j = 0; j < amatches->len && skip; j++) { |
| uint64_t v = g_array_index(amatches, uint64_t, j); |
| if (v == insn_vaddr) { |
| skip = false; |
| } |
| } |
| } |
| |
| /* |
| * Check the disassembly to see if a register we care about |
| * will be affected by this instruction. This relies on the |
| * dissembler doing something sensible for the registers we |
| * care about. |
| */ |
| if (disas_assist && rmatches) { |
| check_regs_next = false; |
| gchar *args = g_strstr_len(insn_disas, -1, " "); |
| for (int n = 0; n < all_reg_names->len; n++) { |
| gchar *reg = g_ptr_array_index(all_reg_names, n); |
| if (g_strrstr(args, reg)) { |
| check_regs_next = true; |
| skip = false; |
| } |
| } |
| } |
| |
| /* |
| * We now have 3 choices: |
| * |
| * - Log insn |
| * - Log insn while checking registers |
| * - Don't log this insn but check if last insn changed registers |
| */ |
| |
| if (skip) { |
| if (check_regs_this) { |
| qemu_plugin_register_vcpu_insn_exec_cb(insn, |
| vcpu_insn_exec_only_regs, |
| QEMU_PLUGIN_CB_R_REGS, |
| NULL); |
| } |
| } else { |
| uint32_t insn_opcode; |
| insn_opcode = *((uint32_t *)qemu_plugin_insn_data(insn)); |
| char *output = g_strdup_printf("0x%"PRIx64", 0x%"PRIx32", \"%s\"", |
| insn_vaddr, insn_opcode, insn_disas); |
| |
| /* Register callback on memory read or write */ |
| qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem, |
| QEMU_PLUGIN_CB_NO_REGS, |
| QEMU_PLUGIN_MEM_RW, NULL); |
| |
| /* Register callback on instruction */ |
| if (check_regs_this) { |
| qemu_plugin_register_vcpu_insn_exec_cb( |
| insn, vcpu_insn_exec_with_regs, |
| QEMU_PLUGIN_CB_R_REGS, |
| output); |
| } else { |
| qemu_plugin_register_vcpu_insn_exec_cb( |
| insn, vcpu_insn_exec, |
| QEMU_PLUGIN_CB_NO_REGS, |
| output); |
| } |
| |
| /* reset skip */ |
| skip = (imatches || amatches); |
| } |
| |
| /* set regs for next */ |
| if (disas_assist && rmatches) { |
| check_regs_this = check_regs_next; |
| } |
| |
| g_free(insn_disas); |
| } |
| } |
| |
| static Register *init_vcpu_register(qemu_plugin_reg_descriptor *desc) |
| { |
| Register *reg = g_new0(Register, 1); |
| g_autofree gchar *lower = g_utf8_strdown(desc->name, -1); |
| int r; |
| |
| reg->handle = desc->handle; |
| reg->name = g_intern_string(lower); |
| reg->last = g_byte_array_new(); |
| reg->new = g_byte_array_new(); |
| |
| /* read the initial value */ |
| r = qemu_plugin_read_register(reg->handle, reg->last); |
| g_assert(r > 0); |
| return reg; |
| } |
| |
| static GPtrArray *registers_init(int vcpu_index) |
| { |
| g_autoptr(GPtrArray) registers = g_ptr_array_new(); |
| g_autoptr(GArray) reg_list = qemu_plugin_get_registers(); |
| |
| if (rmatches && reg_list->len) { |
| /* |
| * Go through each register in the complete list and |
| * see if we want to track it. |
| */ |
| for (int r = 0; r < reg_list->len; r++) { |
| qemu_plugin_reg_descriptor *rd = &g_array_index( |
| reg_list, qemu_plugin_reg_descriptor, r); |
| for (int p = 0; p < rmatches->len; p++) { |
| g_autoptr(GPatternSpec) pat = g_pattern_spec_new(rmatches->pdata[p]); |
| g_autofree gchar *rd_lower = g_utf8_strdown(rd->name, -1); |
| if (g_pattern_match_string(pat, rd->name) || |
| g_pattern_match_string(pat, rd_lower)) { |
| Register *reg = init_vcpu_register(rd); |
| g_ptr_array_add(registers, reg); |
| |
| /* we need a list of regnames at TB translation time */ |
| if (disas_assist) { |
| g_mutex_lock(&add_reg_name_lock); |
| if (!g_ptr_array_find(all_reg_names, reg->name, NULL)) { |
| g_ptr_array_add(all_reg_names, reg->name); |
| } |
| g_mutex_unlock(&add_reg_name_lock); |
| } |
| } |
| } |
| } |
| } |
| |
| return registers->len ? g_steal_pointer(®isters) : NULL; |
| } |
| |
| /* |
| * Initialise a new vcpu/thread with: |
| * - last_exec tracking data |
| * - list of tracked registers |
| * - initial value of registers |
| * |
| * As we could have multiple threads trying to do this we need to |
| * serialise the expansion under a lock. |
| */ |
| static void vcpu_init(qemu_plugin_id_t id, unsigned int vcpu_index) |
| { |
| CPU *c; |
| |
| g_rw_lock_writer_lock(&expand_array_lock); |
| if (vcpu_index >= cpus->len) { |
| g_array_set_size(cpus, vcpu_index + 1); |
| } |
| g_rw_lock_writer_unlock(&expand_array_lock); |
| |
| c = get_cpu(vcpu_index); |
| c->last_exec = g_string_new(NULL); |
| c->registers = registers_init(vcpu_index); |
| } |
| |
| /** |
| * On plugin exit, print last instruction in cache |
| */ |
| static void plugin_exit(qemu_plugin_id_t id, void *p) |
| { |
| guint i; |
| g_rw_lock_reader_lock(&expand_array_lock); |
| for (i = 0; i < cpus->len; i++) { |
| CPU *c = get_cpu(i); |
| if (c->last_exec && c->last_exec->str) { |
| qemu_plugin_outs(c->last_exec->str); |
| qemu_plugin_outs("\n"); |
| } |
| } |
| g_rw_lock_reader_unlock(&expand_array_lock); |
| } |
| |
| /* Add a match to the array of matches */ |
| static void parse_insn_match(char *match) |
| { |
| if (!imatches) { |
| imatches = g_ptr_array_new(); |
| } |
| g_ptr_array_add(imatches, g_strdup(match)); |
| } |
| |
| static void parse_vaddr_match(char *match) |
| { |
| uint64_t v = g_ascii_strtoull(match, NULL, 16); |
| |
| if (!amatches) { |
| amatches = g_array_new(false, true, sizeof(uint64_t)); |
| } |
| g_array_append_val(amatches, v); |
| } |
| |
| /* |
| * We have to wait until vCPUs are started before we can check the |
| * patterns find anything. |
| */ |
| static void add_regpat(char *regpat) |
| { |
| if (!rmatches) { |
| rmatches = g_ptr_array_new(); |
| } |
| g_ptr_array_add(rmatches, g_strdup(regpat)); |
| } |
| |
| /** |
| * Install the plugin |
| */ |
| QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, |
| const qemu_info_t *info, int argc, |
| char **argv) |
| { |
| /* |
| * Initialize dynamic array to cache vCPU instruction. In user mode |
| * we don't know the size before emulation. |
| */ |
| cpus = g_array_sized_new(true, true, sizeof(CPU), |
| info->system_emulation ? info->system.max_vcpus : 1); |
| |
| for (int i = 0; i < argc; i++) { |
| char *opt = argv[i]; |
| g_auto(GStrv) tokens = g_strsplit(opt, "=", 2); |
| if (g_strcmp0(tokens[0], "ifilter") == 0) { |
| parse_insn_match(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "afilter") == 0) { |
| parse_vaddr_match(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "reg") == 0) { |
| add_regpat(tokens[1]); |
| } else if (g_strcmp0(tokens[0], "rdisas") == 0) { |
| if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &disas_assist)) { |
| fprintf(stderr, "boolean argument parsing failed: %s\n", opt); |
| return -1; |
| } |
| all_reg_names = g_ptr_array_new(); |
| } else { |
| fprintf(stderr, "option parsing failed: %s\n", opt); |
| return -1; |
| } |
| } |
| |
| /* Register init, translation block and exit callbacks */ |
| qemu_plugin_register_vcpu_init_cb(id, vcpu_init); |
| qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); |
| qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); |
| |
| return 0; |
| } |