blob: ca0ce4e8bbfaa5847849424063add5a5b7f18aab [file] [log] [blame]
/*
* QEMU model of the Xilinx ZynqMP CAN controller.
* This implementation is based on the following datasheet:
* https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
*
* Copyright (c) 2020 Xilinx Inc.
*
* Written-by: Vikram Garhwal<fnu.vikram@xilinx.com>
*
* Based on QEMU CAN Device emulation implemented by Jin Yang, Deniz Eren and
* Pavel Pisa
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "hw/register.h"
#include "hw/irq.h"
#include "qapi/error.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/cutils.h"
#include "migration/vmstate.h"
#include "hw/qdev-properties.h"
#include "net/can_emu.h"
#include "net/can_host.h"
#include "qemu/event_notifier.h"
#include "qom/object_interfaces.h"
#include "hw/net/xlnx-zynqmp-can.h"
#include "trace.h"
#ifndef XLNX_ZYNQMP_CAN_ERR_DEBUG
#define XLNX_ZYNQMP_CAN_ERR_DEBUG 0
#endif
#define MAX_DLC 8
#undef ERROR
REG32(SOFTWARE_RESET_REGISTER, 0x0)
FIELD(SOFTWARE_RESET_REGISTER, CEN, 1, 1)
FIELD(SOFTWARE_RESET_REGISTER, SRST, 0, 1)
REG32(MODE_SELECT_REGISTER, 0x4)
FIELD(MODE_SELECT_REGISTER, SNOOP, 2, 1)
FIELD(MODE_SELECT_REGISTER, LBACK, 1, 1)
FIELD(MODE_SELECT_REGISTER, SLEEP, 0, 1)
REG32(ARBITRATION_PHASE_BAUD_RATE_PRESCALER_REGISTER, 0x8)
FIELD(ARBITRATION_PHASE_BAUD_RATE_PRESCALER_REGISTER, BRP, 0, 8)
REG32(ARBITRATION_PHASE_BIT_TIMING_REGISTER, 0xc)
FIELD(ARBITRATION_PHASE_BIT_TIMING_REGISTER, SJW, 7, 2)
FIELD(ARBITRATION_PHASE_BIT_TIMING_REGISTER, TS2, 4, 3)
FIELD(ARBITRATION_PHASE_BIT_TIMING_REGISTER, TS1, 0, 4)
REG32(ERROR_COUNTER_REGISTER, 0x10)
FIELD(ERROR_COUNTER_REGISTER, REC, 8, 8)
FIELD(ERROR_COUNTER_REGISTER, TEC, 0, 8)
REG32(ERROR_STATUS_REGISTER, 0x14)
FIELD(ERROR_STATUS_REGISTER, ACKER, 4, 1)
FIELD(ERROR_STATUS_REGISTER, BERR, 3, 1)
FIELD(ERROR_STATUS_REGISTER, STER, 2, 1)
FIELD(ERROR_STATUS_REGISTER, FMER, 1, 1)
FIELD(ERROR_STATUS_REGISTER, CRCER, 0, 1)
REG32(STATUS_REGISTER, 0x18)
FIELD(STATUS_REGISTER, SNOOP, 12, 1)
FIELD(STATUS_REGISTER, ACFBSY, 11, 1)
FIELD(STATUS_REGISTER, TXFLL, 10, 1)
FIELD(STATUS_REGISTER, TXBFLL, 9, 1)
FIELD(STATUS_REGISTER, ESTAT, 7, 2)
FIELD(STATUS_REGISTER, ERRWRN, 6, 1)
FIELD(STATUS_REGISTER, BBSY, 5, 1)
FIELD(STATUS_REGISTER, BIDLE, 4, 1)
FIELD(STATUS_REGISTER, NORMAL, 3, 1)
FIELD(STATUS_REGISTER, SLEEP, 2, 1)
FIELD(STATUS_REGISTER, LBACK, 1, 1)
FIELD(STATUS_REGISTER, CONFIG, 0, 1)
REG32(INTERRUPT_STATUS_REGISTER, 0x1c)
FIELD(INTERRUPT_STATUS_REGISTER, TXFEMP, 14, 1)
FIELD(INTERRUPT_STATUS_REGISTER, TXFWMEMP, 13, 1)
FIELD(INTERRUPT_STATUS_REGISTER, RXFWMFLL, 12, 1)
FIELD(INTERRUPT_STATUS_REGISTER, WKUP, 11, 1)
FIELD(INTERRUPT_STATUS_REGISTER, SLP, 10, 1)
FIELD(INTERRUPT_STATUS_REGISTER, BSOFF, 9, 1)
FIELD(INTERRUPT_STATUS_REGISTER, ERROR, 8, 1)
FIELD(INTERRUPT_STATUS_REGISTER, RXNEMP, 7, 1)
FIELD(INTERRUPT_STATUS_REGISTER, RXOFLW, 6, 1)
FIELD(INTERRUPT_STATUS_REGISTER, RXUFLW, 5, 1)
FIELD(INTERRUPT_STATUS_REGISTER, RXOK, 4, 1)
FIELD(INTERRUPT_STATUS_REGISTER, TXBFLL, 3, 1)
FIELD(INTERRUPT_STATUS_REGISTER, TXFLL, 2, 1)
FIELD(INTERRUPT_STATUS_REGISTER, TXOK, 1, 1)
FIELD(INTERRUPT_STATUS_REGISTER, ARBLST, 0, 1)
REG32(INTERRUPT_ENABLE_REGISTER, 0x20)
FIELD(INTERRUPT_ENABLE_REGISTER, ETXFEMP, 14, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ETXFWMEMP, 13, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ERXFWMFLL, 12, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, EWKUP, 11, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ESLP, 10, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, EBSOFF, 9, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, EERROR, 8, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ERXNEMP, 7, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ERXOFLW, 6, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ERXUFLW, 5, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ERXOK, 4, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ETXBFLL, 3, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ETXFLL, 2, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, ETXOK, 1, 1)
FIELD(INTERRUPT_ENABLE_REGISTER, EARBLST, 0, 1)
REG32(INTERRUPT_CLEAR_REGISTER, 0x24)
FIELD(INTERRUPT_CLEAR_REGISTER, CTXFEMP, 14, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CTXFWMEMP, 13, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CRXFWMFLL, 12, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CWKUP, 11, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CSLP, 10, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CBSOFF, 9, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CERROR, 8, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CRXNEMP, 7, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CRXOFLW, 6, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CRXUFLW, 5, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CRXOK, 4, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CTXBFLL, 3, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CTXFLL, 2, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CTXOK, 1, 1)
FIELD(INTERRUPT_CLEAR_REGISTER, CARBLST, 0, 1)
REG32(TIMESTAMP_REGISTER, 0x28)
FIELD(TIMESTAMP_REGISTER, CTS, 0, 1)
REG32(WIR, 0x2c)
FIELD(WIR, EW, 8, 8)
FIELD(WIR, FW, 0, 8)
REG32(TXFIFO_ID, 0x30)
FIELD(TXFIFO_ID, IDH, 21, 11)
FIELD(TXFIFO_ID, SRRRTR, 20, 1)
FIELD(TXFIFO_ID, IDE, 19, 1)
FIELD(TXFIFO_ID, IDL, 1, 18)
FIELD(TXFIFO_ID, RTR, 0, 1)
REG32(TXFIFO_DLC, 0x34)
FIELD(TXFIFO_DLC, DLC, 28, 4)
REG32(TXFIFO_DATA1, 0x38)
FIELD(TXFIFO_DATA1, DB0, 24, 8)
FIELD(TXFIFO_DATA1, DB1, 16, 8)
FIELD(TXFIFO_DATA1, DB2, 8, 8)
FIELD(TXFIFO_DATA1, DB3, 0, 8)
REG32(TXFIFO_DATA2, 0x3c)
FIELD(TXFIFO_DATA2, DB4, 24, 8)
FIELD(TXFIFO_DATA2, DB5, 16, 8)
FIELD(TXFIFO_DATA2, DB6, 8, 8)
FIELD(TXFIFO_DATA2, DB7, 0, 8)
REG32(TXHPB_ID, 0x40)
FIELD(TXHPB_ID, IDH, 21, 11)
FIELD(TXHPB_ID, SRRRTR, 20, 1)
FIELD(TXHPB_ID, IDE, 19, 1)
FIELD(TXHPB_ID, IDL, 1, 18)
FIELD(TXHPB_ID, RTR, 0, 1)
REG32(TXHPB_DLC, 0x44)
FIELD(TXHPB_DLC, DLC, 28, 4)
REG32(TXHPB_DATA1, 0x48)
FIELD(TXHPB_DATA1, DB0, 24, 8)
FIELD(TXHPB_DATA1, DB1, 16, 8)
FIELD(TXHPB_DATA1, DB2, 8, 8)
FIELD(TXHPB_DATA1, DB3, 0, 8)
REG32(TXHPB_DATA2, 0x4c)
FIELD(TXHPB_DATA2, DB4, 24, 8)
FIELD(TXHPB_DATA2, DB5, 16, 8)
FIELD(TXHPB_DATA2, DB6, 8, 8)
FIELD(TXHPB_DATA2, DB7, 0, 8)
REG32(RXFIFO_ID, 0x50)
FIELD(RXFIFO_ID, IDH, 21, 11)
FIELD(RXFIFO_ID, SRRRTR, 20, 1)
FIELD(RXFIFO_ID, IDE, 19, 1)
FIELD(RXFIFO_ID, IDL, 1, 18)
FIELD(RXFIFO_ID, RTR, 0, 1)
REG32(RXFIFO_DLC, 0x54)
FIELD(RXFIFO_DLC, DLC, 28, 4)
FIELD(RXFIFO_DLC, RXT, 0, 16)
REG32(RXFIFO_DATA1, 0x58)
FIELD(RXFIFO_DATA1, DB0, 24, 8)
FIELD(RXFIFO_DATA1, DB1, 16, 8)
FIELD(RXFIFO_DATA1, DB2, 8, 8)
FIELD(RXFIFO_DATA1, DB3, 0, 8)
REG32(RXFIFO_DATA2, 0x5c)
FIELD(RXFIFO_DATA2, DB4, 24, 8)
FIELD(RXFIFO_DATA2, DB5, 16, 8)
FIELD(RXFIFO_DATA2, DB6, 8, 8)
FIELD(RXFIFO_DATA2, DB7, 0, 8)
REG32(AFR, 0x60)
FIELD(AFR, UAF4, 3, 1)
FIELD(AFR, UAF3, 2, 1)
FIELD(AFR, UAF2, 1, 1)
FIELD(AFR, UAF1, 0, 1)
REG32(AFMR1, 0x64)
FIELD(AFMR1, AMIDH, 21, 11)
FIELD(AFMR1, AMSRR, 20, 1)
FIELD(AFMR1, AMIDE, 19, 1)
FIELD(AFMR1, AMIDL, 1, 18)
FIELD(AFMR1, AMRTR, 0, 1)
REG32(AFIR1, 0x68)
FIELD(AFIR1, AIIDH, 21, 11)
FIELD(AFIR1, AISRR, 20, 1)
FIELD(AFIR1, AIIDE, 19, 1)
FIELD(AFIR1, AIIDL, 1, 18)
FIELD(AFIR1, AIRTR, 0, 1)
REG32(AFMR2, 0x6c)
FIELD(AFMR2, AMIDH, 21, 11)
FIELD(AFMR2, AMSRR, 20, 1)
FIELD(AFMR2, AMIDE, 19, 1)
FIELD(AFMR2, AMIDL, 1, 18)
FIELD(AFMR2, AMRTR, 0, 1)
REG32(AFIR2, 0x70)
FIELD(AFIR2, AIIDH, 21, 11)
FIELD(AFIR2, AISRR, 20, 1)
FIELD(AFIR2, AIIDE, 19, 1)
FIELD(AFIR2, AIIDL, 1, 18)
FIELD(AFIR2, AIRTR, 0, 1)
REG32(AFMR3, 0x74)
FIELD(AFMR3, AMIDH, 21, 11)
FIELD(AFMR3, AMSRR, 20, 1)
FIELD(AFMR3, AMIDE, 19, 1)
FIELD(AFMR3, AMIDL, 1, 18)
FIELD(AFMR3, AMRTR, 0, 1)
REG32(AFIR3, 0x78)
FIELD(AFIR3, AIIDH, 21, 11)
FIELD(AFIR3, AISRR, 20, 1)
FIELD(AFIR3, AIIDE, 19, 1)
FIELD(AFIR3, AIIDL, 1, 18)
FIELD(AFIR3, AIRTR, 0, 1)
REG32(AFMR4, 0x7c)
FIELD(AFMR4, AMIDH, 21, 11)
FIELD(AFMR4, AMSRR, 20, 1)
FIELD(AFMR4, AMIDE, 19, 1)
FIELD(AFMR4, AMIDL, 1, 18)
FIELD(AFMR4, AMRTR, 0, 1)
REG32(AFIR4, 0x80)
FIELD(AFIR4, AIIDH, 21, 11)
FIELD(AFIR4, AISRR, 20, 1)
FIELD(AFIR4, AIIDE, 19, 1)
FIELD(AFIR4, AIIDL, 1, 18)
FIELD(AFIR4, AIRTR, 0, 1)
static void can_update_irq(XlnxZynqMPCANState *s)
{
uint32_t irq;
/* Watermark register interrupts. */
if ((fifo32_num_free(&s->tx_fifo) / CAN_FRAME_SIZE) >
ARRAY_FIELD_EX32(s->regs, WIR, EW)) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, TXFWMEMP, 1);
}
if ((fifo32_num_used(&s->rx_fifo) / CAN_FRAME_SIZE) >
ARRAY_FIELD_EX32(s->regs, WIR, FW)) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXFWMFLL, 1);
}
/* RX Interrupts. */
if (fifo32_num_used(&s->rx_fifo) >= CAN_FRAME_SIZE) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXNEMP, 1);
}
/* TX interrupts. */
if (fifo32_is_empty(&s->tx_fifo)) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, TXFEMP, 1);
}
if (fifo32_is_full(&s->tx_fifo)) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, TXFLL, 1);
}
if (fifo32_is_full(&s->txhpb_fifo)) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, TXBFLL, 1);
}
irq = s->regs[R_INTERRUPT_STATUS_REGISTER];
irq &= s->regs[R_INTERRUPT_ENABLE_REGISTER];
trace_xlnx_can_update_irq(s->regs[R_INTERRUPT_STATUS_REGISTER],
s->regs[R_INTERRUPT_ENABLE_REGISTER], irq);
qemu_set_irq(s->irq, irq);
}
static void can_ier_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
can_update_irq(s);
}
static uint64_t can_icr_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
s->regs[R_INTERRUPT_STATUS_REGISTER] &= ~val;
can_update_irq(s);
return 0;
}
static void can_config_reset(XlnxZynqMPCANState *s)
{
/* Reset all the configuration registers. */
register_reset(&s->reg_info[R_SOFTWARE_RESET_REGISTER]);
register_reset(&s->reg_info[R_MODE_SELECT_REGISTER]);
register_reset(
&s->reg_info[R_ARBITRATION_PHASE_BAUD_RATE_PRESCALER_REGISTER]);
register_reset(&s->reg_info[R_ARBITRATION_PHASE_BIT_TIMING_REGISTER]);
register_reset(&s->reg_info[R_STATUS_REGISTER]);
register_reset(&s->reg_info[R_INTERRUPT_STATUS_REGISTER]);
register_reset(&s->reg_info[R_INTERRUPT_ENABLE_REGISTER]);
register_reset(&s->reg_info[R_INTERRUPT_CLEAR_REGISTER]);
register_reset(&s->reg_info[R_WIR]);
}
static void can_config_mode(XlnxZynqMPCANState *s)
{
register_reset(&s->reg_info[R_ERROR_COUNTER_REGISTER]);
register_reset(&s->reg_info[R_ERROR_STATUS_REGISTER]);
/* Put XlnxZynqMPCAN in configuration mode. */
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, CONFIG, 1);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, WKUP, 0);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, SLP, 0);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, BSOFF, 0);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, ERROR, 0);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXOFLW, 0);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXOK, 0);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, TXOK, 0);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, ARBLST, 0);
can_update_irq(s);
}
static void update_status_register_mode_bits(XlnxZynqMPCANState *s)
{
bool sleep_status = ARRAY_FIELD_EX32(s->regs, STATUS_REGISTER, SLEEP);
bool sleep_mode = ARRAY_FIELD_EX32(s->regs, MODE_SELECT_REGISTER, SLEEP);
/* Wake up interrupt bit. */
bool wakeup_irq_val = sleep_status && (sleep_mode == 0);
/* Sleep interrupt bit. */
bool sleep_irq_val = sleep_mode && (sleep_status == 0);
/* Clear previous core mode status bits. */
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, LBACK, 0);
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, SLEEP, 0);
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, SNOOP, 0);
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, NORMAL, 0);
/* set current mode bit and generate irqs accordingly. */
if (ARRAY_FIELD_EX32(s->regs, MODE_SELECT_REGISTER, LBACK)) {
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, LBACK, 1);
} else if (ARRAY_FIELD_EX32(s->regs, MODE_SELECT_REGISTER, SLEEP)) {
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, SLEEP, 1);
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, SLP,
sleep_irq_val);
} else if (ARRAY_FIELD_EX32(s->regs, MODE_SELECT_REGISTER, SNOOP)) {
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, SNOOP, 1);
} else {
/*
* If all bits are zero then XlnxZynqMPCAN is set in normal mode.
*/
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, NORMAL, 1);
/* Set wakeup interrupt bit. */
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, WKUP,
wakeup_irq_val);
}
can_update_irq(s);
}
static void can_exit_sleep_mode(XlnxZynqMPCANState *s)
{
ARRAY_FIELD_DP32(s->regs, MODE_SELECT_REGISTER, SLEEP, 0);
update_status_register_mode_bits(s);
}
static void generate_frame(qemu_can_frame *frame, uint32_t *data)
{
frame->can_id = data[0];
frame->can_dlc = FIELD_EX32(data[1], TXFIFO_DLC, DLC);
frame->data[0] = FIELD_EX32(data[2], TXFIFO_DATA1, DB3);
frame->data[1] = FIELD_EX32(data[2], TXFIFO_DATA1, DB2);
frame->data[2] = FIELD_EX32(data[2], TXFIFO_DATA1, DB1);
frame->data[3] = FIELD_EX32(data[2], TXFIFO_DATA1, DB0);
frame->data[4] = FIELD_EX32(data[3], TXFIFO_DATA2, DB7);
frame->data[5] = FIELD_EX32(data[3], TXFIFO_DATA2, DB6);
frame->data[6] = FIELD_EX32(data[3], TXFIFO_DATA2, DB5);
frame->data[7] = FIELD_EX32(data[3], TXFIFO_DATA2, DB4);
}
static bool tx_ready_check(XlnxZynqMPCANState *s)
{
if (ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, SRST)) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Attempting to transfer data while"
" data while controller is in reset mode.\n",
path);
return false;
}
if (ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, CEN) == 0) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Attempting to transfer"
" data while controller is in configuration mode. Reset"
" the core so operations can start fresh.\n",
path);
return false;
}
if (ARRAY_FIELD_EX32(s->regs, STATUS_REGISTER, SNOOP)) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Attempting to transfer"
" data while controller is in SNOOP MODE.\n",
path);
return false;
}
return true;
}
static void read_tx_frame(XlnxZynqMPCANState *s, Fifo32 *fifo, uint32_t *data)
{
unsigned used = fifo32_num_used(fifo);
bool is_txhpb = fifo == &s->txhpb_fifo;
assert(used > 0);
used %= CAN_FRAME_SIZE;
/*
* Frame Message Format
*
* Each frame includes four words (16 bytes). Software must read and write
* all four words regardless of the actual number of data bytes and valid
* fields in the message.
* If software misbehave (not writing all four words), we use the previous
* registers content to initialize each missing word.
*
* If used is 1 then ID, DLC and DATA1 are missing.
* if used is 2 then ID and DLC are missing.
* if used is 3 then only ID is missing.
*/
if (used > 0) {
data[0] = s->regs[is_txhpb ? R_TXHPB_ID : R_TXFIFO_ID];
} else {
data[0] = fifo32_pop(fifo);
}
if (used == 1 || used == 2) {
data[1] = s->regs[is_txhpb ? R_TXHPB_DLC : R_TXFIFO_DLC];
} else {
data[1] = fifo32_pop(fifo);
}
if (used == 1) {
data[2] = s->regs[is_txhpb ? R_TXHPB_DATA1 : R_TXFIFO_DATA1];
} else {
data[2] = fifo32_pop(fifo);
}
/* DATA2 triggered the transfer thus is always available */
data[3] = fifo32_pop(fifo);
if (used) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Incomplete CAN frame (only %u/%u slots used)\n",
TYPE_XLNX_ZYNQMP_CAN, used, CAN_FRAME_SIZE);
}
}
static void transfer_fifo(XlnxZynqMPCANState *s, Fifo32 *fifo)
{
qemu_can_frame frame;
uint32_t data[CAN_FRAME_SIZE];
int i;
bool can_tx = tx_ready_check(s);
if (!can_tx) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Controller is not enabled for data"
" transfer.\n", path);
can_update_irq(s);
return;
}
while (!fifo32_is_empty(fifo)) {
read_tx_frame(s, fifo, data);
if (ARRAY_FIELD_EX32(s->regs, STATUS_REGISTER, LBACK)) {
/*
* Controller is in loopback. In Loopback mode, the CAN core
* transmits a recessive bitstream on to the XlnxZynqMPCAN Bus.
* Any message transmitted is looped back to the RX line and
* acknowledged. The XlnxZynqMPCAN core receives any message
* that it transmits.
*/
if (fifo32_is_full(&s->rx_fifo)) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXOFLW, 1);
} else {
for (i = 0; i < CAN_FRAME_SIZE; i++) {
fifo32_push(&s->rx_fifo, data[i]);
}
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXOK, 1);
}
} else {
/* Normal mode Tx. */
generate_frame(&frame, data);
trace_xlnx_can_tx_data(frame.can_id, frame.can_dlc,
frame.data[0], frame.data[1],
frame.data[2], frame.data[3],
frame.data[4], frame.data[5],
frame.data[6], frame.data[7]);
can_bus_client_send(&s->bus_client, &frame, 1);
}
}
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, TXOK, 1);
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, TXBFLL, 0);
if (ARRAY_FIELD_EX32(s->regs, STATUS_REGISTER, SLEEP)) {
can_exit_sleep_mode(s);
}
can_update_irq(s);
}
static uint64_t can_srr_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
ARRAY_FIELD_DP32(s->regs, SOFTWARE_RESET_REGISTER, CEN,
FIELD_EX32(val, SOFTWARE_RESET_REGISTER, CEN));
if (FIELD_EX32(val, SOFTWARE_RESET_REGISTER, SRST)) {
trace_xlnx_can_reset(val);
/* First, core will do software reset then will enter in config mode. */
can_config_reset(s);
}
if (ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, CEN) == 0) {
can_config_mode(s);
} else {
/*
* Leave config mode. Now XlnxZynqMPCAN core will enter normal,
* sleep, snoop or loopback mode depending upon LBACK, SLEEP, SNOOP
* register states.
*/
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, CONFIG, 0);
ptimer_transaction_begin(s->can_timer);
ptimer_set_count(s->can_timer, 0);
ptimer_transaction_commit(s->can_timer);
/* XlnxZynqMPCAN is out of config mode. It will send pending data. */
transfer_fifo(s, &s->txhpb_fifo);
transfer_fifo(s, &s->tx_fifo);
}
update_status_register_mode_bits(s);
return s->regs[R_SOFTWARE_RESET_REGISTER];
}
static uint64_t can_msr_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
uint8_t multi_mode;
/*
* Multiple mode set check. This is done to make sure user doesn't set
* multiple modes.
*/
multi_mode = FIELD_EX32(val, MODE_SELECT_REGISTER, LBACK) +
FIELD_EX32(val, MODE_SELECT_REGISTER, SLEEP) +
FIELD_EX32(val, MODE_SELECT_REGISTER, SNOOP);
if (multi_mode > 1) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Attempting to config"
" several modes simultaneously. One mode will be selected"
" according to their priority: LBACK > SLEEP > SNOOP.\n",
path);
}
if (ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, CEN) == 0) {
/* We are in configuration mode, any mode can be selected. */
s->regs[R_MODE_SELECT_REGISTER] = val;
} else {
bool sleep_mode_bit = FIELD_EX32(val, MODE_SELECT_REGISTER, SLEEP);
ARRAY_FIELD_DP32(s->regs, MODE_SELECT_REGISTER, SLEEP, sleep_mode_bit);
if (FIELD_EX32(val, MODE_SELECT_REGISTER, LBACK)) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Attempting to set"
" LBACK mode without setting CEN bit as 0.\n",
path);
} else if (FIELD_EX32(val, MODE_SELECT_REGISTER, SNOOP)) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Attempting to set"
" SNOOP mode without setting CEN bit as 0.\n",
path);
}
update_status_register_mode_bits(s);
}
return s->regs[R_MODE_SELECT_REGISTER];
}
static uint64_t can_brpr_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
/* Only allow writes when in config mode. */
if (ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, CEN)) {
return s->regs[R_ARBITRATION_PHASE_BAUD_RATE_PRESCALER_REGISTER];
}
return val;
}
static uint64_t can_btr_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
/* Only allow writes when in config mode. */
if (ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, CEN)) {
return s->regs[R_ARBITRATION_PHASE_BIT_TIMING_REGISTER];
}
return val;
}
static uint64_t can_tcr_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
if (FIELD_EX32(val, TIMESTAMP_REGISTER, CTS)) {
ptimer_transaction_begin(s->can_timer);
ptimer_set_count(s->can_timer, 0);
ptimer_transaction_commit(s->can_timer);
}
return 0;
}
static void update_rx_fifo(XlnxZynqMPCANState *s, const qemu_can_frame *frame)
{
bool filter_pass = false;
uint16_t timestamp = 0;
/* If no filter is enabled. Message will be stored in FIFO. */
if (!((ARRAY_FIELD_EX32(s->regs, AFR, UAF1)) |
(ARRAY_FIELD_EX32(s->regs, AFR, UAF2)) |
(ARRAY_FIELD_EX32(s->regs, AFR, UAF3)) |
(ARRAY_FIELD_EX32(s->regs, AFR, UAF4)))) {
filter_pass = true;
}
/*
* Messages that pass any of the acceptance filters will be stored in
* the RX FIFO.
*/
if (ARRAY_FIELD_EX32(s->regs, AFR, UAF1)) {
uint32_t id_masked = s->regs[R_AFMR1] & frame->can_id;
uint32_t filter_id_masked = s->regs[R_AFMR1] & s->regs[R_AFIR1];
if (filter_id_masked == id_masked) {
filter_pass = true;
}
}
if (ARRAY_FIELD_EX32(s->regs, AFR, UAF2)) {
uint32_t id_masked = s->regs[R_AFMR2] & frame->can_id;
uint32_t filter_id_masked = s->regs[R_AFMR2] & s->regs[R_AFIR2];
if (filter_id_masked == id_masked) {
filter_pass = true;
}
}
if (ARRAY_FIELD_EX32(s->regs, AFR, UAF3)) {
uint32_t id_masked = s->regs[R_AFMR3] & frame->can_id;
uint32_t filter_id_masked = s->regs[R_AFMR3] & s->regs[R_AFIR3];
if (filter_id_masked == id_masked) {
filter_pass = true;
}
}
if (ARRAY_FIELD_EX32(s->regs, AFR, UAF4)) {
uint32_t id_masked = s->regs[R_AFMR4] & frame->can_id;
uint32_t filter_id_masked = s->regs[R_AFMR4] & s->regs[R_AFIR4];
if (filter_id_masked == id_masked) {
filter_pass = true;
}
}
if (!filter_pass) {
trace_xlnx_can_rx_fifo_filter_reject(frame->can_id, frame->can_dlc);
return;
}
/* Store the message in fifo if it passed through any of the filters. */
if (filter_pass && frame->can_dlc <= MAX_DLC) {
if (fifo32_is_full(&s->rx_fifo)) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXOFLW, 1);
} else {
timestamp = CAN_TIMER_MAX - ptimer_get_count(s->can_timer);
fifo32_push(&s->rx_fifo, frame->can_id);
fifo32_push(&s->rx_fifo, deposit32(0, R_RXFIFO_DLC_DLC_SHIFT,
R_RXFIFO_DLC_DLC_LENGTH,
frame->can_dlc) |
deposit32(0, R_RXFIFO_DLC_RXT_SHIFT,
R_RXFIFO_DLC_RXT_LENGTH,
timestamp));
/* First 32 bit of the data. */
fifo32_push(&s->rx_fifo, deposit32(0, R_RXFIFO_DATA1_DB3_SHIFT,
R_RXFIFO_DATA1_DB3_LENGTH,
frame->data[0]) |
deposit32(0, R_RXFIFO_DATA1_DB2_SHIFT,
R_RXFIFO_DATA1_DB2_LENGTH,
frame->data[1]) |
deposit32(0, R_RXFIFO_DATA1_DB1_SHIFT,
R_RXFIFO_DATA1_DB1_LENGTH,
frame->data[2]) |
deposit32(0, R_RXFIFO_DATA1_DB0_SHIFT,
R_RXFIFO_DATA1_DB0_LENGTH,
frame->data[3]));
/* Last 32 bit of the data. */
fifo32_push(&s->rx_fifo, deposit32(0, R_RXFIFO_DATA2_DB7_SHIFT,
R_RXFIFO_DATA2_DB7_LENGTH,
frame->data[4]) |
deposit32(0, R_RXFIFO_DATA2_DB6_SHIFT,
R_RXFIFO_DATA2_DB6_LENGTH,
frame->data[5]) |
deposit32(0, R_RXFIFO_DATA2_DB5_SHIFT,
R_RXFIFO_DATA2_DB5_LENGTH,
frame->data[6]) |
deposit32(0, R_RXFIFO_DATA2_DB4_SHIFT,
R_RXFIFO_DATA2_DB4_LENGTH,
frame->data[7]));
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXOK, 1);
trace_xlnx_can_rx_data(frame->can_id, frame->can_dlc,
frame->data[0], frame->data[1],
frame->data[2], frame->data[3],
frame->data[4], frame->data[5],
frame->data[6], frame->data[7]);
}
can_update_irq(s);
}
}
static uint64_t can_rxfifo_post_read_id(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
unsigned used = fifo32_num_used(&s->rx_fifo);
if (used < CAN_FRAME_SIZE) {
ARRAY_FIELD_DP32(s->regs, INTERRUPT_STATUS_REGISTER, RXUFLW, 1);
} else {
val = s->regs[R_RXFIFO_ID] = fifo32_pop(&s->rx_fifo);
s->regs[R_RXFIFO_DLC] = fifo32_pop(&s->rx_fifo);
s->regs[R_RXFIFO_DATA1] = fifo32_pop(&s->rx_fifo);
s->regs[R_RXFIFO_DATA2] = fifo32_pop(&s->rx_fifo);
}
can_update_irq(s);
return val;
}
static void can_filter_enable_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
if (ARRAY_FIELD_EX32(s->regs, AFR, UAF1) &&
ARRAY_FIELD_EX32(s->regs, AFR, UAF2) &&
ARRAY_FIELD_EX32(s->regs, AFR, UAF3) &&
ARRAY_FIELD_EX32(s->regs, AFR, UAF4)) {
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, ACFBSY, 1);
} else {
ARRAY_FIELD_DP32(s->regs, STATUS_REGISTER, ACFBSY, 0);
}
}
static uint64_t can_filter_mask_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
uint32_t reg_idx = (reg->access->addr) / 4;
uint32_t filter_number = (reg_idx - R_AFMR1) / 2;
/* modify an acceptance filter, the corresponding UAF bit should be '0'. */
if (!(s->regs[R_AFR] & (1 << filter_number))) {
s->regs[reg_idx] = val;
trace_xlnx_can_filter_mask_pre_write(filter_number, s->regs[reg_idx]);
} else {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Acceptance filter %d"
" mask is not set as corresponding UAF bit is not 0.\n",
path, filter_number + 1);
}
return s->regs[reg_idx];
}
static uint64_t can_filter_id_pre_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
uint32_t reg_idx = (reg->access->addr) / 4;
uint32_t filter_number = (reg_idx - R_AFIR1) / 2;
if (!(s->regs[R_AFR] & (1 << filter_number))) {
s->regs[reg_idx] = val;
trace_xlnx_can_filter_id_pre_write(filter_number, s->regs[reg_idx]);
} else {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Acceptance filter %d"
" id is not set as corresponding UAF bit is not 0.\n",
path, filter_number + 1);
}
return s->regs[reg_idx];
}
static void can_tx_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(reg->opaque);
bool is_txhpb = reg->access->addr > A_TXFIFO_DATA2;
bool initiate_transfer = (reg->access->addr == A_TXFIFO_DATA2) ||
(reg->access->addr == A_TXHPB_DATA2);
Fifo32 *f = is_txhpb ? &s->txhpb_fifo : &s->tx_fifo;
if (!fifo32_is_full(f)) {
fifo32_push(f, val);
} else {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: TX FIFO is full.\n", path);
}
/* Initiate the message send if TX register is written. */
if (initiate_transfer &&
ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, CEN)) {
transfer_fifo(s, f);
}
can_update_irq(s);
}
static const RegisterAccessInfo can_regs_info[] = {
{ .name = "SOFTWARE_RESET_REGISTER",
.addr = A_SOFTWARE_RESET_REGISTER,
.rsvd = 0xfffffffc,
.pre_write = can_srr_pre_write,
},{ .name = "MODE_SELECT_REGISTER",
.addr = A_MODE_SELECT_REGISTER,
.rsvd = 0xfffffff8,
.pre_write = can_msr_pre_write,
},{ .name = "ARBITRATION_PHASE_BAUD_RATE_PRESCALER_REGISTER",
.addr = A_ARBITRATION_PHASE_BAUD_RATE_PRESCALER_REGISTER,
.rsvd = 0xffffff00,
.pre_write = can_brpr_pre_write,
},{ .name = "ARBITRATION_PHASE_BIT_TIMING_REGISTER",
.addr = A_ARBITRATION_PHASE_BIT_TIMING_REGISTER,
.rsvd = 0xfffffe00,
.pre_write = can_btr_pre_write,
},{ .name = "ERROR_COUNTER_REGISTER",
.addr = A_ERROR_COUNTER_REGISTER,
.rsvd = 0xffff0000,
.ro = 0xffffffff,
},{ .name = "ERROR_STATUS_REGISTER",
.addr = A_ERROR_STATUS_REGISTER,
.rsvd = 0xffffffe0,
.w1c = 0x1f,
},{ .name = "STATUS_REGISTER", .addr = A_STATUS_REGISTER,
.reset = 0x1,
.rsvd = 0xffffe000,
.ro = 0x1fff,
},{ .name = "INTERRUPT_STATUS_REGISTER",
.addr = A_INTERRUPT_STATUS_REGISTER,
.reset = 0x6000,
.rsvd = 0xffff8000,
.ro = 0x7fff,
},{ .name = "INTERRUPT_ENABLE_REGISTER",
.addr = A_INTERRUPT_ENABLE_REGISTER,
.rsvd = 0xffff8000,
.post_write = can_ier_post_write,
},{ .name = "INTERRUPT_CLEAR_REGISTER",
.addr = A_INTERRUPT_CLEAR_REGISTER,
.rsvd = 0xffff8000,
.pre_write = can_icr_pre_write,
},{ .name = "TIMESTAMP_REGISTER",
.addr = A_TIMESTAMP_REGISTER,
.rsvd = 0xfffffffe,
.pre_write = can_tcr_pre_write,
},{ .name = "WIR", .addr = A_WIR,
.reset = 0x3f3f,
.rsvd = 0xffff0000,
},{ .name = "TXFIFO_ID", .addr = A_TXFIFO_ID,
.post_write = can_tx_post_write,
},{ .name = "TXFIFO_DLC", .addr = A_TXFIFO_DLC,
.rsvd = 0xfffffff,
.post_write = can_tx_post_write,
},{ .name = "TXFIFO_DATA1", .addr = A_TXFIFO_DATA1,
.post_write = can_tx_post_write,
},{ .name = "TXFIFO_DATA2", .addr = A_TXFIFO_DATA2,
.post_write = can_tx_post_write,
},{ .name = "TXHPB_ID", .addr = A_TXHPB_ID,
.post_write = can_tx_post_write,
},{ .name = "TXHPB_DLC", .addr = A_TXHPB_DLC,
.rsvd = 0xfffffff,
.post_write = can_tx_post_write,
},{ .name = "TXHPB_DATA1", .addr = A_TXHPB_DATA1,
.post_write = can_tx_post_write,
},{ .name = "TXHPB_DATA2", .addr = A_TXHPB_DATA2,
.post_write = can_tx_post_write,
},{ .name = "RXFIFO_ID", .addr = A_RXFIFO_ID,
.ro = 0xffffffff,
.post_read = can_rxfifo_post_read_id,
},{ .name = "RXFIFO_DLC", .addr = A_RXFIFO_DLC,
.rsvd = 0xfff0000,
},{ .name = "RXFIFO_DATA1", .addr = A_RXFIFO_DATA1,
},{ .name = "RXFIFO_DATA2", .addr = A_RXFIFO_DATA2,
},{ .name = "AFR", .addr = A_AFR,
.rsvd = 0xfffffff0,
.post_write = can_filter_enable_post_write,
},{ .name = "AFMR1", .addr = A_AFMR1,
.pre_write = can_filter_mask_pre_write,
},{ .name = "AFIR1", .addr = A_AFIR1,
.pre_write = can_filter_id_pre_write,
},{ .name = "AFMR2", .addr = A_AFMR2,
.pre_write = can_filter_mask_pre_write,
},{ .name = "AFIR2", .addr = A_AFIR2,
.pre_write = can_filter_id_pre_write,
},{ .name = "AFMR3", .addr = A_AFMR3,
.pre_write = can_filter_mask_pre_write,
},{ .name = "AFIR3", .addr = A_AFIR3,
.pre_write = can_filter_id_pre_write,
},{ .name = "AFMR4", .addr = A_AFMR4,
.pre_write = can_filter_mask_pre_write,
},{ .name = "AFIR4", .addr = A_AFIR4,
.pre_write = can_filter_id_pre_write,
}
};
static void xlnx_zynqmp_can_ptimer_cb(void *opaque)
{
/* No action required on the timer rollover. */
}
static const MemoryRegionOps can_ops = {
.read = register_read_memory,
.write = register_write_memory,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void xlnx_zynqmp_can_reset_init(Object *obj, ResetType type)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(obj);
unsigned int i;
for (i = R_RXFIFO_ID; i < ARRAY_SIZE(s->reg_info); ++i) {
register_reset(&s->reg_info[i]);
}
ptimer_transaction_begin(s->can_timer);
ptimer_set_count(s->can_timer, 0);
ptimer_transaction_commit(s->can_timer);
}
static void xlnx_zynqmp_can_reset_hold(Object *obj)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(obj);
unsigned int i;
for (i = 0; i < R_RXFIFO_ID; ++i) {
register_reset(&s->reg_info[i]);
}
/*
* Reset FIFOs when CAN model is reset. This will clear the fifo writes
* done by post_write which gets called from register_reset function,
* post_write handle will not be able to trigger tx because CAN will be
* disabled when software_reset_register is cleared first.
*/
fifo32_reset(&s->rx_fifo);
fifo32_reset(&s->tx_fifo);
fifo32_reset(&s->txhpb_fifo);
}
static bool xlnx_zynqmp_can_can_receive(CanBusClientState *client)
{
XlnxZynqMPCANState *s = container_of(client, XlnxZynqMPCANState,
bus_client);
if (ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, SRST)) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Controller is in reset state.\n",
path);
return false;
}
if ((ARRAY_FIELD_EX32(s->regs, SOFTWARE_RESET_REGISTER, CEN)) == 0) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Controller is disabled. Incoming"
" messages will be discarded.\n", path);
return false;
}
return true;
}
static ssize_t xlnx_zynqmp_can_receive(CanBusClientState *client,
const qemu_can_frame *buf, size_t buf_size) {
XlnxZynqMPCANState *s = container_of(client, XlnxZynqMPCANState,
bus_client);
const qemu_can_frame *frame = buf;
if (buf_size <= 0) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
qemu_log_mask(LOG_GUEST_ERROR, "%s: Error in the data received.\n",
path);
return 0;
}
if (ARRAY_FIELD_EX32(s->regs, STATUS_REGISTER, SNOOP)) {
/* Snoop Mode: Just keep the data. no response back. */
update_rx_fifo(s, frame);
} else if ((ARRAY_FIELD_EX32(s->regs, STATUS_REGISTER, SLEEP))) {
/*
* XlnxZynqMPCAN is in sleep mode. Any data on bus will bring it to wake
* up state.
*/
can_exit_sleep_mode(s);
update_rx_fifo(s, frame);
} else if ((ARRAY_FIELD_EX32(s->regs, STATUS_REGISTER, SLEEP)) == 0) {
update_rx_fifo(s, frame);
} else {
/*
* XlnxZynqMPCAN will not participate in normal bus communication
* and will not receive any messages transmitted by other CAN nodes.
*/
trace_xlnx_can_rx_discard(s->regs[R_STATUS_REGISTER]);
}
return 1;
}
static CanBusClientInfo can_xilinx_bus_client_info = {
.can_receive = xlnx_zynqmp_can_can_receive,
.receive = xlnx_zynqmp_can_receive,
};
static int xlnx_zynqmp_can_connect_to_bus(XlnxZynqMPCANState *s,
CanBusState *bus)
{
s->bus_client.info = &can_xilinx_bus_client_info;
if (can_bus_insert_client(bus, &s->bus_client) < 0) {
return -1;
}
return 0;
}
static void xlnx_zynqmp_can_realize(DeviceState *dev, Error **errp)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(dev);
if (s->canbus) {
if (xlnx_zynqmp_can_connect_to_bus(s, s->canbus) < 0) {
g_autofree char *path = object_get_canonical_path(OBJECT(s));
error_setg(errp, "%s: xlnx_zynqmp_can_connect_to_bus"
" failed.", path);
return;
}
}
/* Create RX FIFO, TXFIFO, TXHPB storage. */
fifo32_create(&s->rx_fifo, RXFIFO_SIZE);
fifo32_create(&s->tx_fifo, RXFIFO_SIZE);
fifo32_create(&s->txhpb_fifo, CAN_FRAME_SIZE);
/* Allocate a new timer. */
s->can_timer = ptimer_init(xlnx_zynqmp_can_ptimer_cb, s,
PTIMER_POLICY_LEGACY);
ptimer_transaction_begin(s->can_timer);
ptimer_set_freq(s->can_timer, s->cfg.ext_clk_freq);
ptimer_set_limit(s->can_timer, CAN_TIMER_MAX, 1);
ptimer_run(s->can_timer, 0);
ptimer_transaction_commit(s->can_timer);
}
static void xlnx_zynqmp_can_init(Object *obj)
{
XlnxZynqMPCANState *s = XLNX_ZYNQMP_CAN(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
RegisterInfoArray *reg_array;
memory_region_init(&s->iomem, obj, TYPE_XLNX_ZYNQMP_CAN,
XLNX_ZYNQMP_CAN_R_MAX * 4);
reg_array = register_init_block32(DEVICE(obj), can_regs_info,
ARRAY_SIZE(can_regs_info),
s->reg_info, s->regs,
&can_ops,
XLNX_ZYNQMP_CAN_ERR_DEBUG,
XLNX_ZYNQMP_CAN_R_MAX * 4);
memory_region_add_subregion(&s->iomem, 0x00, &reg_array->mem);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
}
static const VMStateDescription vmstate_can = {
.name = TYPE_XLNX_ZYNQMP_CAN,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_FIFO32(rx_fifo, XlnxZynqMPCANState),
VMSTATE_FIFO32(tx_fifo, XlnxZynqMPCANState),
VMSTATE_FIFO32(txhpb_fifo, XlnxZynqMPCANState),
VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPCANState, XLNX_ZYNQMP_CAN_R_MAX),
VMSTATE_PTIMER(can_timer, XlnxZynqMPCANState),
VMSTATE_END_OF_LIST(),
}
};
static Property xlnx_zynqmp_can_properties[] = {
DEFINE_PROP_UINT32("ext_clk_freq", XlnxZynqMPCANState, cfg.ext_clk_freq,
CAN_DEFAULT_CLOCK),
DEFINE_PROP_LINK("canbus", XlnxZynqMPCANState, canbus, TYPE_CAN_BUS,
CanBusState *),
DEFINE_PROP_END_OF_LIST(),
};
static void xlnx_zynqmp_can_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
rc->phases.enter = xlnx_zynqmp_can_reset_init;
rc->phases.hold = xlnx_zynqmp_can_reset_hold;
dc->realize = xlnx_zynqmp_can_realize;
device_class_set_props(dc, xlnx_zynqmp_can_properties);
dc->vmsd = &vmstate_can;
}
static const TypeInfo can_info = {
.name = TYPE_XLNX_ZYNQMP_CAN,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxZynqMPCANState),
.class_init = xlnx_zynqmp_can_class_init,
.instance_init = xlnx_zynqmp_can_init,
};
static void can_register_types(void)
{
type_register_static(&can_info);
}
type_init(can_register_types)