|  | /* | 
|  | *  Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "iclass.h" | 
|  | #include "attribs.h" | 
|  | #include "genptr.h" | 
|  | #include "decode.h" | 
|  | #include "insn.h" | 
|  | #include "printinsn.h" | 
|  | #include "mmvec/decode_ext_mmvec.h" | 
|  |  | 
|  | #define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1)) | 
|  |  | 
|  | enum { | 
|  | EXT_IDX_noext = 0, | 
|  | EXT_IDX_noext_AFTER = 4, | 
|  | EXT_IDX_mmvec = 4, | 
|  | EXT_IDX_mmvec_AFTER = 8, | 
|  | XX_LAST_EXT_IDX | 
|  | }; | 
|  |  | 
|  | /* | 
|  | *  Certain operand types represent a non-contiguous set of values. | 
|  | *  For example, the compound compare-and-jump instruction can only access | 
|  | *  registers R0-R7 and R16-23. | 
|  | *  This table represents the mapping from the encoding to the actual values. | 
|  | */ | 
|  |  | 
|  | #define DEF_REGMAP(NAME, ELEMENTS, ...) \ | 
|  | static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \ | 
|  | { __VA_ARGS__ }; | 
|  | /* Name   Num Table */ | 
|  | DEF_REGMAP(R_16,  16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23) | 
|  | DEF_REGMAP(R__8,  8,  0, 2, 4, 6, 16, 18, 20, 22) | 
|  | DEF_REGMAP(R_8,   8,  0, 1, 2, 3, 4, 5, 6, 7) | 
|  |  | 
|  | #define DECODE_MAPPED_REG(OPNUM, NAME) \ | 
|  | insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]]; | 
|  |  | 
|  | /* Helper functions for decode_*_generated.c.inc */ | 
|  | #define DECODE_MAPPED(NAME) \ | 
|  | static int decode_mapped_reg_##NAME(DisasContext *ctx, int x) \ | 
|  | { \ | 
|  | return DECODE_REGISTER_##NAME[x]; \ | 
|  | } | 
|  | DECODE_MAPPED(R_16) | 
|  | DECODE_MAPPED(R_8) | 
|  | DECODE_MAPPED(R__8) | 
|  |  | 
|  | /* Helper function for decodetree_trans_funcs_generated.c.inc */ | 
|  | static int shift_left(DisasContext *ctx, int x, int n, int immno) | 
|  | { | 
|  | int ret = x; | 
|  | Insn *insn = ctx->insn; | 
|  | if (!insn->extension_valid || | 
|  | insn->which_extended != immno) { | 
|  | ret <<= n; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Include the generated decoder for 32 bit insn */ | 
|  | #include "decode_normal_generated.c.inc" | 
|  | #include "decode_hvx_generated.c.inc" | 
|  |  | 
|  | /* Include the generated decoder for 16 bit insn */ | 
|  | #include "decode_subinsn_a_generated.c.inc" | 
|  | #include "decode_subinsn_l1_generated.c.inc" | 
|  | #include "decode_subinsn_l2_generated.c.inc" | 
|  | #include "decode_subinsn_s1_generated.c.inc" | 
|  | #include "decode_subinsn_s2_generated.c.inc" | 
|  |  | 
|  | /* Include the generated helpers for the decoder */ | 
|  | #include "decodetree_trans_funcs_generated.c.inc" | 
|  |  | 
|  | void decode_send_insn_to(Packet *packet, int start, int newloc) | 
|  | { | 
|  | Insn tmpinsn; | 
|  | int direction; | 
|  | int i; | 
|  | if (start == newloc) { | 
|  | return; | 
|  | } | 
|  | if (start < newloc) { | 
|  | /* Move towards end */ | 
|  | direction = 1; | 
|  | } else { | 
|  | /* move towards beginning */ | 
|  | direction = -1; | 
|  | } | 
|  | for (i = start; i != newloc; i += direction) { | 
|  | tmpinsn = packet->insn[i]; | 
|  | packet->insn[i] = packet->insn[i + direction]; | 
|  | packet->insn[i + direction] = tmpinsn; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill newvalue registers with the correct regno */ | 
|  | static void | 
|  | decode_fill_newvalue_regno(Packet *packet) | 
|  | { | 
|  | int i, use_regidx, offset, def_idx, dst_idx; | 
|  |  | 
|  | for (i = 1; i < packet->num_insns; i++) { | 
|  | if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) && | 
|  | !GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) { | 
|  |  | 
|  | g_assert(packet->insn[i].new_read_idx != -1); | 
|  | use_regidx = packet->insn[i].new_read_idx; | 
|  |  | 
|  | /* | 
|  | * What's encoded at the N-field is the offset to who's producing | 
|  | * the value.  Shift off the LSB which indicates odd/even register, | 
|  | * then walk backwards and skip over the constant extenders. | 
|  | */ | 
|  | offset = packet->insn[i].regno[use_regidx] >> 1; | 
|  | def_idx = i - offset; | 
|  | for (int j = 0; j < offset; j++) { | 
|  | if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) { | 
|  | def_idx--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a badly encoded N-field which points to an instruction | 
|  | * out-of-range | 
|  | */ | 
|  | g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1)))); | 
|  |  | 
|  | /* Now patch up the consumer with the register number */ | 
|  | g_assert(packet->insn[def_idx].dest_idx != -1); | 
|  | dst_idx = packet->insn[def_idx].dest_idx; | 
|  | packet->insn[i].regno[use_regidx] = | 
|  | packet->insn[def_idx].regno[dst_idx]; | 
|  | /* | 
|  | * We need to remember who produces this value to later | 
|  | * check if it was dynamically cancelled | 
|  | */ | 
|  | packet->insn[i].new_value_producer_slot = | 
|  | packet->insn[def_idx].slot; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Split CJ into a compare and a jump */ | 
|  | static void decode_split_cmpjump(Packet *pkt) | 
|  | { | 
|  | int last, i; | 
|  | int numinsns = pkt->num_insns; | 
|  |  | 
|  | /* | 
|  | * First, split all compare-jumps. | 
|  | * The compare is sent to the end as a new instruction. | 
|  | * Do it this way so we don't reorder dual jumps. Those need to stay in | 
|  | * original order. | 
|  | */ | 
|  | for (i = 0; i < numinsns; i++) { | 
|  | /* It's a cmp-jump */ | 
|  | if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) { | 
|  | last = pkt->num_insns; | 
|  | pkt->insn[last] = pkt->insn[i];    /* copy the instruction */ | 
|  | pkt->insn[last].part1 = true;      /* last insn does the CMP */ | 
|  | pkt->insn[i].part1 = false;        /* existing insn does the JUMP */ | 
|  | pkt->num_insns++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now re-shuffle all the compares back to the beginning */ | 
|  | for (i = 0; i < pkt->num_insns; i++) { | 
|  | if (pkt->insn[i].part1) { | 
|  | decode_send_insn_to(pkt, i, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool decode_opcode_can_jump(int opcode) | 
|  | { | 
|  | if ((GET_ATTRIB(opcode, A_JUMP)) || | 
|  | (GET_ATTRIB(opcode, A_CALL)) || | 
|  | (opcode == J2_trap0) || | 
|  | (opcode == J2_pause)) { | 
|  | /* Exception to A_JUMP attribute */ | 
|  | if (opcode == J4_hintjumpr) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool decode_opcode_ends_loop(int opcode) | 
|  | { | 
|  | return GET_ATTRIB(opcode, A_HWLOOP0_END) || | 
|  | GET_ATTRIB(opcode, A_HWLOOP1_END); | 
|  | } | 
|  |  | 
|  | /* Set the is_* fields in each instruction */ | 
|  | static void decode_set_insn_attr_fields(Packet *pkt) | 
|  | { | 
|  | int i; | 
|  | int numinsns = pkt->num_insns; | 
|  | uint16_t opcode; | 
|  |  | 
|  | pkt->pkt_has_cof = false; | 
|  | pkt->pkt_has_multi_cof = false; | 
|  | pkt->pkt_has_endloop = false; | 
|  | pkt->pkt_has_dczeroa = false; | 
|  |  | 
|  | for (i = 0; i < numinsns; i++) { | 
|  | opcode = pkt->insn[i].opcode; | 
|  | if (pkt->insn[i].part1) { | 
|  | continue;    /* Skip compare of cmp-jumps */ | 
|  | } | 
|  |  | 
|  | if (GET_ATTRIB(opcode, A_DCZEROA)) { | 
|  | pkt->pkt_has_dczeroa = true; | 
|  | } | 
|  |  | 
|  | if (GET_ATTRIB(opcode, A_STORE)) { | 
|  | if (GET_ATTRIB(opcode, A_SCALAR_STORE) && | 
|  | !GET_ATTRIB(opcode, A_MEMSIZE_0B)) { | 
|  | if (pkt->insn[i].slot == 0) { | 
|  | pkt->pkt_has_store_s0 = true; | 
|  | } else { | 
|  | pkt->pkt_has_store_s1 = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (decode_opcode_can_jump(opcode)) { | 
|  | if (pkt->pkt_has_cof) { | 
|  | pkt->pkt_has_multi_cof = true; | 
|  | } | 
|  | pkt->pkt_has_cof = true; | 
|  | } | 
|  |  | 
|  | pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode); | 
|  |  | 
|  | pkt->pkt_has_endloop |= pkt->insn[i].is_endloop; | 
|  |  | 
|  | if (pkt->pkt_has_endloop) { | 
|  | if (pkt->pkt_has_cof) { | 
|  | pkt->pkt_has_multi_cof = true; | 
|  | } | 
|  | pkt->pkt_has_cof = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shuffle for execution | 
|  | * Move stores to end (in same order as encoding) | 
|  | * Move compares to beginning (for use by .new insns) | 
|  | */ | 
|  | static void decode_shuffle_for_execution(Packet *packet) | 
|  | { | 
|  | bool changed = false; | 
|  | int i; | 
|  | bool flag;    /* flag means we've seen a non-memory instruction */ | 
|  | int n_mems; | 
|  | int last_insn = packet->num_insns - 1; | 
|  |  | 
|  | /* | 
|  | * Skip end loops, somehow an end loop is getting in and messing | 
|  | * up the order | 
|  | */ | 
|  | if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) { | 
|  | last_insn--; | 
|  | } | 
|  |  | 
|  | do { | 
|  | changed = false; | 
|  | /* | 
|  | * Stores go last, must not reorder. | 
|  | * Cannot shuffle stores past loads, either. | 
|  | * Iterate backwards.  If we see a non-memory instruction, | 
|  | * then a store, shuffle the store to the front.  Don't shuffle | 
|  | * stores wrt each other or a load. | 
|  | */ | 
|  | for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) { | 
|  | int opcode = packet->insn[i].opcode; | 
|  |  | 
|  | if (flag && GET_ATTRIB(opcode, A_STORE)) { | 
|  | decode_send_insn_to(packet, i, last_insn - n_mems); | 
|  | n_mems++; | 
|  | changed = true; | 
|  | } else if (GET_ATTRIB(opcode, A_STORE)) { | 
|  | n_mems++; | 
|  | } else if (GET_ATTRIB(opcode, A_LOAD)) { | 
|  | /* | 
|  | * Don't set flag, since we don't want to shuffle a | 
|  | * store past a load | 
|  | */ | 
|  | n_mems++; | 
|  | } else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) { | 
|  | /* | 
|  | * Don't set flag, since we don't want to shuffle past | 
|  | * a .new value | 
|  | */ | 
|  | } else { | 
|  | flag = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (changed) { | 
|  | continue; | 
|  | } | 
|  | /* Compares go first, may be reordered wrt each other */ | 
|  | for (flag = false, i = 0; i < last_insn + 1; i++) { | 
|  | int opcode = packet->insn[i].opcode; | 
|  |  | 
|  | if (packet->insn[i].has_pred_dest && | 
|  | GET_ATTRIB(opcode, A_STORE) == 0) { | 
|  | /* This should be a compare (not a store conditional) */ | 
|  | if (flag) { | 
|  | decode_send_insn_to(packet, i, 0); | 
|  | changed = true; | 
|  | continue; | 
|  | } | 
|  | } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) && | 
|  | !decode_opcode_ends_loop(packet->insn[i].opcode)) { | 
|  | /* | 
|  | * spNloop instruction | 
|  | * Don't reorder endloops; they are not valid for .new uses, | 
|  | * and we want to match HW | 
|  | */ | 
|  | if (flag) { | 
|  | decode_send_insn_to(packet, i, 0); | 
|  | changed = true; | 
|  | continue; | 
|  | } | 
|  | } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) && | 
|  | !GET_ATTRIB(opcode, A_NEWCMPJUMP)) { | 
|  | if (flag) { | 
|  | decode_send_insn_to(packet, i, 0); | 
|  | changed = true; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | flag = true; | 
|  | } | 
|  | } | 
|  | if (changed) { | 
|  | continue; | 
|  | } | 
|  | } while (changed); | 
|  |  | 
|  | /* | 
|  | * If we have a .new register compare/branch, move that to the very | 
|  | * very end, past stores | 
|  | */ | 
|  | for (i = 0; i < last_insn; i++) { | 
|  | if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) { | 
|  | decode_send_insn_to(packet, i, last_insn); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | apply_extender(Packet *pkt, int i, uint32_t extender) | 
|  | { | 
|  | int immed_num; | 
|  | uint32_t base_immed; | 
|  |  | 
|  | immed_num = pkt->insn[i].which_extended; | 
|  | base_immed = pkt->insn[i].immed[immed_num]; | 
|  |  | 
|  | pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed); | 
|  | } | 
|  |  | 
|  | static void decode_apply_extenders(Packet *packet) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < packet->num_insns; i++) { | 
|  | if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) { | 
|  | packet->insn[i + 1].extension_valid = true; | 
|  | apply_extender(packet, i + 1, packet->insn[i].immed[0]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void decode_remove_extenders(Packet *packet) | 
|  | { | 
|  | int i, j; | 
|  | for (i = 0; i < packet->num_insns; i++) { | 
|  | if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) { | 
|  | /* Remove this one by moving the remaining instructions down */ | 
|  | for (j = i; | 
|  | (j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1); | 
|  | j++) { | 
|  | packet->insn[j] = packet->insn[j + 1]; | 
|  | } | 
|  | packet->num_insns--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot) | 
|  | { | 
|  | if (GET_ATTRIB(pkt->insn[slot].opcode, A_EXTENSION)) { | 
|  | return mmvec_ext_decode_find_iclass_slots(pkt->insn[slot].opcode); | 
|  | } else { | 
|  | return find_iclass_slots(pkt->insn[slot].opcode, | 
|  | pkt->insn[slot].iclass); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Section 10.3 of the Hexagon V73 Programmer's Reference Manual | 
|  | * | 
|  | * A duplex is encoded as a 32-bit instruction with bits [15:14] set to 00. | 
|  | * The sub-instructions that comprise a duplex are encoded as 13-bit fields | 
|  | * in the duplex. | 
|  | * | 
|  | * Per table 10-4, the 4-bit duplex iclass is encoded in bits 31:29, 13 | 
|  | */ | 
|  | static uint32_t get_duplex_iclass(uint32_t encoding) | 
|  | { | 
|  | uint32_t iclass = extract32(encoding, 13, 1); | 
|  | iclass = deposit32(iclass, 1, 3, extract32(encoding, 29, 3)); | 
|  | return iclass; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per table 10-5, the duplex ICLASS field values that specify the group of | 
|  | * each sub-instruction in a duplex | 
|  | * | 
|  | * This table points to the decode instruction for each entry in the table | 
|  | */ | 
|  | typedef bool (*subinsn_decode_func)(DisasContext *ctx, uint16_t insn); | 
|  | typedef struct { | 
|  | subinsn_decode_func decode_slot0_subinsn; | 
|  | subinsn_decode_func decode_slot1_subinsn; | 
|  | } subinsn_decode_groups; | 
|  |  | 
|  | static const subinsn_decode_groups decode_groups[16] = { | 
|  | [0x0] = { decode_subinsn_l1, decode_subinsn_l1 }, | 
|  | [0x1] = { decode_subinsn_l2, decode_subinsn_l1 }, | 
|  | [0x2] = { decode_subinsn_l2, decode_subinsn_l2 }, | 
|  | [0x3] = { decode_subinsn_a,  decode_subinsn_a }, | 
|  | [0x4] = { decode_subinsn_l1, decode_subinsn_a }, | 
|  | [0x5] = { decode_subinsn_l2, decode_subinsn_a }, | 
|  | [0x6] = { decode_subinsn_s1, decode_subinsn_a }, | 
|  | [0x7] = { decode_subinsn_s2, decode_subinsn_a }, | 
|  | [0x8] = { decode_subinsn_s1, decode_subinsn_l1 }, | 
|  | [0x9] = { decode_subinsn_s1, decode_subinsn_l2 }, | 
|  | [0xa] = { decode_subinsn_s1, decode_subinsn_s1 }, | 
|  | [0xb] = { decode_subinsn_s2, decode_subinsn_s1 }, | 
|  | [0xc] = { decode_subinsn_s2, decode_subinsn_l1 }, | 
|  | [0xd] = { decode_subinsn_s2, decode_subinsn_l2 }, | 
|  | [0xe] = { decode_subinsn_s2, decode_subinsn_s2 }, | 
|  | [0xf] = { NULL,              NULL },              /* Reserved */ | 
|  | }; | 
|  |  | 
|  | static uint16_t get_slot0_subinsn(uint32_t encoding) | 
|  | { | 
|  | return extract32(encoding, 0, 13); | 
|  | } | 
|  |  | 
|  | static uint16_t get_slot1_subinsn(uint32_t encoding) | 
|  | { | 
|  | return extract32(encoding, 16, 13); | 
|  | } | 
|  |  | 
|  | static unsigned int | 
|  | decode_insns(DisasContext *ctx, Insn *insn, uint32_t encoding) | 
|  | { | 
|  | if (parse_bits(encoding) != 0) { | 
|  | if (decode_normal(ctx, encoding) || | 
|  | decode_hvx(ctx, encoding)) { | 
|  | insn->generate = opcode_genptr[insn->opcode]; | 
|  | insn->iclass = iclass_bits(encoding); | 
|  | return 1; | 
|  | } | 
|  | g_assert_not_reached(); | 
|  | } else { | 
|  | uint32_t iclass = get_duplex_iclass(encoding); | 
|  | unsigned int slot0_subinsn = get_slot0_subinsn(encoding); | 
|  | unsigned int slot1_subinsn = get_slot1_subinsn(encoding); | 
|  | subinsn_decode_func decode_slot0_subinsn = | 
|  | decode_groups[iclass].decode_slot0_subinsn; | 
|  | subinsn_decode_func decode_slot1_subinsn = | 
|  | decode_groups[iclass].decode_slot1_subinsn; | 
|  |  | 
|  | /* The slot1 subinsn needs to be in the packet first */ | 
|  | if (decode_slot1_subinsn(ctx, slot1_subinsn)) { | 
|  | insn->generate = opcode_genptr[insn->opcode]; | 
|  | insn->iclass = iclass_bits(encoding); | 
|  | ctx->insn = ++insn; | 
|  | if (decode_slot0_subinsn(ctx, slot0_subinsn)) { | 
|  | insn->generate = opcode_genptr[insn->opcode]; | 
|  | insn->iclass = iclass_bits(encoding); | 
|  | return 2; | 
|  | } | 
|  | } | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void decode_add_endloop_insn(Insn *insn, int loopnum) | 
|  | { | 
|  | if (loopnum == 10) { | 
|  | insn->opcode = J2_endloop01; | 
|  | insn->generate = opcode_genptr[J2_endloop01]; | 
|  | } else if (loopnum == 1) { | 
|  | insn->opcode = J2_endloop1; | 
|  | insn->generate = opcode_genptr[J2_endloop1]; | 
|  | } else if (loopnum == 0) { | 
|  | insn->opcode = J2_endloop0; | 
|  | insn->generate = opcode_genptr[J2_endloop0]; | 
|  | } else { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool decode_parsebits_is_loopend(uint32_t encoding32) | 
|  | { | 
|  | uint32_t bits = parse_bits(encoding32); | 
|  | return bits == 0x2; | 
|  | } | 
|  |  | 
|  | static bool has_valid_slot_assignment(Packet *pkt) | 
|  | { | 
|  | int used_slots = 0; | 
|  | for (int i = 0; i < pkt->num_insns; i++) { | 
|  | int slot_mask; | 
|  | Insn *insn = &pkt->insn[i]; | 
|  | if (decode_opcode_ends_loop(insn->opcode)) { | 
|  | /* We overload slot 0 for endloop. */ | 
|  | continue; | 
|  | } | 
|  | slot_mask = 1 << insn->slot; | 
|  | if (used_slots & slot_mask) { | 
|  | return false; | 
|  | } | 
|  | used_slots |= slot_mask; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | decode_set_slot_number(Packet *pkt) | 
|  | { | 
|  | int slot; | 
|  | int i; | 
|  | bool hit_mem_insn = false; | 
|  | bool hit_duplex = false; | 
|  | bool slot0_found = false; | 
|  | bool slot1_found = false; | 
|  | int slot1_iidx = 0; | 
|  |  | 
|  | /* | 
|  | * The slots are encoded in reverse order | 
|  | * For each instruction, count down until you find a suitable slot | 
|  | */ | 
|  | for (i = 0, slot = 3; i < pkt->num_insns; i++) { | 
|  | SlotMask valid_slots = get_valid_slots(pkt, i); | 
|  |  | 
|  | while (!(valid_slots & (1 << slot))) { | 
|  | slot--; | 
|  | } | 
|  | pkt->insn[i].slot = slot; | 
|  | if (slot) { | 
|  | /* I've assigned the slot, now decrement it for the next insn */ | 
|  | slot--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fix the exceptions - mem insns to slot 0,1 */ | 
|  | for (i = pkt->num_insns - 1; i >= 0; i--) { | 
|  | /* First memory instruction always goes to slot 0 */ | 
|  | if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) || | 
|  | GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) && | 
|  | !hit_mem_insn) { | 
|  | hit_mem_insn = true; | 
|  | pkt->insn[i].slot = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Next memory instruction always goes to slot 1 */ | 
|  | if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) || | 
|  | GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) && | 
|  | hit_mem_insn) { | 
|  | pkt->insn[i].slot = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fix the exceptions - duplex always slot 0,1 */ | 
|  | for (i = pkt->num_insns - 1; i >= 0; i--) { | 
|  | /* First subinsn always goes to slot 0 */ | 
|  | if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) { | 
|  | hit_duplex = true; | 
|  | pkt->insn[i].slot = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Next subinsn always goes to slot 1 */ | 
|  | if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) { | 
|  | pkt->insn[i].slot = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */ | 
|  | for (i = pkt->num_insns - 1; i >= 0; i--) { | 
|  | /* Is slot0 used? */ | 
|  | if (pkt->insn[i].slot == 0) { | 
|  | bool is_endloop = (pkt->insn[i].opcode == J2_endloop01); | 
|  | is_endloop |= (pkt->insn[i].opcode == J2_endloop0); | 
|  | is_endloop |= (pkt->insn[i].opcode == J2_endloop1); | 
|  |  | 
|  | /* | 
|  | * Make sure it's not endloop since, we're overloading | 
|  | * slot0 for endloop | 
|  | */ | 
|  | if (!is_endloop) { | 
|  | slot0_found = true; | 
|  | } | 
|  | } | 
|  | /* Is slot1 used? */ | 
|  | if (pkt->insn[i].slot == 1) { | 
|  | slot1_found = true; | 
|  | slot1_iidx = i; | 
|  | } | 
|  | } | 
|  | /* Is slot0 empty and slot1 used? */ | 
|  | if ((!slot0_found) && slot1_found) { | 
|  | /* Then push it to slot0 */ | 
|  | pkt->insn[slot1_iidx].slot = 0; | 
|  | } | 
|  |  | 
|  | return has_valid_slot_assignment(pkt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * decode_packet | 
|  | * Decodes packet with given words | 
|  | * Returns 0 on insufficient words, | 
|  | * or number of words used on success | 
|  | */ | 
|  |  | 
|  | int decode_packet(DisasContext *ctx, int max_words, const uint32_t *words, | 
|  | Packet *pkt, bool disas_only) | 
|  | { | 
|  | int num_insns = 0; | 
|  | int words_read = 0; | 
|  | bool end_of_packet = false; | 
|  | int new_insns = 0; | 
|  | int i; | 
|  | uint32_t encoding32; | 
|  |  | 
|  | /* Initialize */ | 
|  | memset(pkt, 0, sizeof(*pkt)); | 
|  | /* Try to build packet */ | 
|  | while (!end_of_packet && (words_read < max_words)) { | 
|  | Insn *insn = &pkt->insn[num_insns]; | 
|  | ctx->insn = insn; | 
|  | encoding32 = words[words_read]; | 
|  | end_of_packet = is_packet_end(encoding32); | 
|  | new_insns = decode_insns(ctx, insn, encoding32); | 
|  | g_assert(new_insns > 0); | 
|  | /* | 
|  | * If we saw an extender, mark next word extended so immediate | 
|  | * decode works | 
|  | */ | 
|  | if (pkt->insn[num_insns].opcode == A4_ext) { | 
|  | pkt->insn[num_insns + 1].extension_valid = true; | 
|  | } | 
|  | num_insns += new_insns; | 
|  | words_read++; | 
|  | } | 
|  |  | 
|  | pkt->num_insns = num_insns; | 
|  | if (!end_of_packet) { | 
|  | /* Ran out of words! */ | 
|  | return 0; | 
|  | } | 
|  | pkt->encod_pkt_size_in_bytes = words_read * 4; | 
|  | pkt->pkt_has_hvx = false; | 
|  | for (i = 0; i < num_insns; i++) { | 
|  | pkt->pkt_has_hvx |= | 
|  | GET_ATTRIB(pkt->insn[i].opcode, A_CVI); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for :endloop in the parse bits | 
|  | * Section 10.6 of the Programmer's Reference describes the encoding | 
|  | *     The end of hardware loop 0 can be encoded with 2 words | 
|  | *     The end of hardware loop 1 needs 3 words | 
|  | */ | 
|  | if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) { | 
|  | decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0); | 
|  | } | 
|  | if (words_read >= 3) { | 
|  | bool has_loop0, has_loop1; | 
|  | has_loop0 = decode_parsebits_is_loopend(words[0]); | 
|  | has_loop1 = decode_parsebits_is_loopend(words[1]); | 
|  | if (has_loop0 && has_loop1) { | 
|  | decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10); | 
|  | } else if (has_loop1) { | 
|  | decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1); | 
|  | } else if (has_loop0) { | 
|  | decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | decode_apply_extenders(pkt); | 
|  | if (!disas_only) { | 
|  | decode_remove_extenders(pkt); | 
|  | if (!decode_set_slot_number(pkt)) { | 
|  | /* Invalid packet */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | decode_fill_newvalue_regno(pkt); | 
|  |  | 
|  | if (pkt->pkt_has_hvx) { | 
|  | mmvec_ext_decode_checks(pkt, disas_only); | 
|  | } | 
|  |  | 
|  | if (!disas_only) { | 
|  | decode_shuffle_for_execution(pkt); | 
|  | decode_split_cmpjump(pkt); | 
|  | decode_set_insn_attr_fields(pkt); | 
|  | } | 
|  |  | 
|  | return words_read; | 
|  | } | 
|  |  | 
|  | /* Used for "-d in_asm" logging */ | 
|  | int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc, | 
|  | GString *buf) | 
|  | { | 
|  | DisasContext ctx; | 
|  | Packet pkt; | 
|  |  | 
|  | memset(&ctx, 0, sizeof(DisasContext)); | 
|  | ctx.pkt = &pkt; | 
|  |  | 
|  | if (decode_packet(&ctx, nwords, words, &pkt, true) > 0) { | 
|  | snprint_a_pkt_disas(buf, &pkt, words, pc); | 
|  | return pkt.encod_pkt_size_in_bytes; | 
|  | } else { | 
|  | g_string_assign(buf, "<invalid>"); | 
|  | return 0; | 
|  | } | 
|  | } |