| /* |
| * ARM mach-virt emulation |
| * |
| * Copyright (c) 2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * Emulate a virtual board which works by passing Linux all the information |
| * it needs about what devices are present via the device tree. |
| * There are some restrictions about what we can do here: |
| * + we can only present devices whose Linux drivers will work based |
| * purely on the device tree with no platform data at all |
| * + we want to present a very stripped-down minimalist platform, |
| * both because this reduces the security attack surface from the guest |
| * and also because it reduces our exposure to being broken when |
| * the kernel updates its device tree bindings and requires further |
| * information in a device binding that we aren't providing. |
| * This is essentially the same approach kvmtool uses. |
| */ |
| |
| #include "hw/sysbus.h" |
| #include "hw/arm/arm.h" |
| #include "hw/arm/primecell.h" |
| #include "hw/devices.h" |
| #include "net/net.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/kvm.h" |
| #include "hw/boards.h" |
| #include "exec/address-spaces.h" |
| #include "qemu/bitops.h" |
| #include "qemu/error-report.h" |
| |
| #define NUM_VIRTIO_TRANSPORTS 32 |
| |
| /* Number of external interrupt lines to configure the GIC with */ |
| #define NUM_IRQS 128 |
| |
| #define GIC_FDT_IRQ_TYPE_SPI 0 |
| #define GIC_FDT_IRQ_TYPE_PPI 1 |
| |
| #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1 |
| #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2 |
| #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4 |
| #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8 |
| |
| #define GIC_FDT_IRQ_PPI_CPU_START 8 |
| #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8 |
| |
| enum { |
| VIRT_FLASH, |
| VIRT_MEM, |
| VIRT_CPUPERIPHS, |
| VIRT_GIC_DIST, |
| VIRT_GIC_CPU, |
| VIRT_UART, |
| VIRT_MMIO, |
| }; |
| |
| typedef struct MemMapEntry { |
| hwaddr base; |
| hwaddr size; |
| } MemMapEntry; |
| |
| typedef struct VirtBoardInfo { |
| struct arm_boot_info bootinfo; |
| const char *cpu_model; |
| const char *qdevname; |
| const char *gic_compatible; |
| const MemMapEntry *memmap; |
| const int *irqmap; |
| int smp_cpus; |
| void *fdt; |
| int fdt_size; |
| uint32_t clock_phandle; |
| } VirtBoardInfo; |
| |
| /* Addresses and sizes of our components. |
| * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. |
| * 128MB..256MB is used for miscellaneous device I/O. |
| * 256MB..1GB is reserved for possible future PCI support (ie where the |
| * PCI memory window will go if we add a PCI host controller). |
| * 1GB and up is RAM (which may happily spill over into the |
| * high memory region beyond 4GB). |
| * This represents a compromise between how much RAM can be given to |
| * a 32 bit VM and leaving space for expansion and in particular for PCI. |
| */ |
| static const MemMapEntry a15memmap[] = { |
| /* Space up to 0x8000000 is reserved for a boot ROM */ |
| [VIRT_FLASH] = { 0, 0x8000000 }, |
| [VIRT_CPUPERIPHS] = { 0x8000000, 0x8000 }, |
| /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ |
| [VIRT_GIC_DIST] = { 0x8001000, 0x1000 }, |
| [VIRT_GIC_CPU] = { 0x8002000, 0x1000 }, |
| [VIRT_UART] = { 0x9000000, 0x1000 }, |
| [VIRT_MMIO] = { 0xa000000, 0x200 }, |
| /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ |
| /* 0x10000000 .. 0x40000000 reserved for PCI */ |
| [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 }, |
| }; |
| |
| static const int a15irqmap[] = { |
| [VIRT_UART] = 1, |
| [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ |
| }; |
| |
| static VirtBoardInfo machines[] = { |
| { |
| .cpu_model = "cortex-a15", |
| .qdevname = "a15mpcore_priv", |
| .gic_compatible = "arm,cortex-a15-gic", |
| .memmap = a15memmap, |
| .irqmap = a15irqmap, |
| }, |
| { |
| .cpu_model = "host", |
| /* We use the A15 private peripheral model to get a V2 GIC */ |
| .qdevname = "a15mpcore_priv", |
| .gic_compatible = "arm,cortex-a15-gic", |
| .memmap = a15memmap, |
| .irqmap = a15irqmap, |
| }, |
| }; |
| |
| static VirtBoardInfo *find_machine_info(const char *cpu) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(machines); i++) { |
| if (strcmp(cpu, machines[i].cpu_model) == 0) { |
| return &machines[i]; |
| } |
| } |
| return NULL; |
| } |
| |
| static void create_fdt(VirtBoardInfo *vbi) |
| { |
| void *fdt = create_device_tree(&vbi->fdt_size); |
| |
| if (!fdt) { |
| error_report("create_device_tree() failed"); |
| exit(1); |
| } |
| |
| vbi->fdt = fdt; |
| |
| /* Header */ |
| qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); |
| qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); |
| qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); |
| |
| /* |
| * /chosen and /memory nodes must exist for load_dtb |
| * to fill in necessary properties later |
| */ |
| qemu_fdt_add_subnode(fdt, "/chosen"); |
| qemu_fdt_add_subnode(fdt, "/memory"); |
| qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); |
| |
| /* Clock node, for the benefit of the UART. The kernel device tree |
| * binding documentation claims the PL011 node clock properties are |
| * optional but in practice if you omit them the kernel refuses to |
| * probe for the device. |
| */ |
| vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt); |
| qemu_fdt_add_subnode(fdt, "/apb-pclk"); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); |
| qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", |
| "clk24mhz"); |
| qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle); |
| |
| /* No PSCI for TCG yet */ |
| if (kvm_enabled()) { |
| qemu_fdt_add_subnode(fdt, "/psci"); |
| qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); |
| qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc"); |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", |
| PSCI_FN_CPU_SUSPEND); |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF); |
| qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON); |
| qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE); |
| } |
| } |
| |
| static void fdt_add_timer_nodes(const VirtBoardInfo *vbi) |
| { |
| /* Note that on A15 h/w these interrupts are level-triggered, |
| * but for the GIC implementation provided by both QEMU and KVM |
| * they are edge-triggered. |
| */ |
| uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; |
| |
| irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, |
| GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1); |
| |
| qemu_fdt_add_subnode(vbi->fdt, "/timer"); |
| qemu_fdt_setprop_string(vbi->fdt, "/timer", |
| "compatible", "arm,armv7-timer"); |
| qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts", |
| GIC_FDT_IRQ_TYPE_PPI, 13, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, 14, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, 11, irqflags, |
| GIC_FDT_IRQ_TYPE_PPI, 10, irqflags); |
| } |
| |
| static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi) |
| { |
| int cpu; |
| |
| qemu_fdt_add_subnode(vbi->fdt, "/cpus"); |
| qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1); |
| qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0); |
| |
| for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) { |
| char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); |
| ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); |
| |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu"); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", |
| armcpu->dtb_compatible); |
| |
| if (vbi->smp_cpus > 1) { |
| qemu_fdt_setprop_string(vbi->fdt, nodename, |
| "enable-method", "psci"); |
| } |
| |
| qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu); |
| g_free(nodename); |
| } |
| } |
| |
| static void fdt_add_gic_node(const VirtBoardInfo *vbi) |
| { |
| uint32_t gic_phandle; |
| |
| gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt); |
| qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle); |
| |
| qemu_fdt_add_subnode(vbi->fdt, "/intc"); |
| qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible", |
| vbi->gic_compatible); |
| qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3); |
| qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg", |
| 2, vbi->memmap[VIRT_GIC_DIST].base, |
| 2, vbi->memmap[VIRT_GIC_DIST].size, |
| 2, vbi->memmap[VIRT_GIC_CPU].base, |
| 2, vbi->memmap[VIRT_GIC_CPU].size); |
| qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle); |
| } |
| |
| static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic) |
| { |
| char *nodename; |
| hwaddr base = vbi->memmap[VIRT_UART].base; |
| hwaddr size = vbi->memmap[VIRT_UART].size; |
| int irq = vbi->irqmap[VIRT_UART]; |
| const char compat[] = "arm,pl011\0arm,primecell"; |
| const char clocknames[] = "uartclk\0apb_pclk"; |
| |
| sysbus_create_simple("pl011", base, pic[irq]); |
| |
| nodename = g_strdup_printf("/pl011@%" PRIx64, base); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| /* Note that we can't use setprop_string because of the embedded NUL */ |
| qemu_fdt_setprop(vbi->fdt, nodename, "compatible", |
| compat, sizeof(compat)); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks", |
| vbi->clock_phandle, vbi->clock_phandle); |
| qemu_fdt_setprop(vbi->fdt, nodename, "clock-names", |
| clocknames, sizeof(clocknames)); |
| g_free(nodename); |
| } |
| |
| static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic) |
| { |
| int i; |
| hwaddr size = vbi->memmap[VIRT_MMIO].size; |
| |
| /* Note that we have to create the transports in forwards order |
| * so that command line devices are inserted lowest address first, |
| * and then add dtb nodes in reverse order so that they appear in |
| * the finished device tree lowest address first. |
| */ |
| for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { |
| int irq = vbi->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; |
| |
| sysbus_create_simple("virtio-mmio", base, pic[irq]); |
| } |
| |
| for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { |
| char *nodename; |
| int irq = vbi->irqmap[VIRT_MMIO] + i; |
| hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size; |
| |
| nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); |
| qemu_fdt_add_subnode(vbi->fdt, nodename); |
| qemu_fdt_setprop_string(vbi->fdt, nodename, |
| "compatible", "virtio,mmio"); |
| qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", |
| 2, base, 2, size); |
| qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts", |
| GIC_FDT_IRQ_TYPE_SPI, irq, |
| GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); |
| g_free(nodename); |
| } |
| } |
| |
| static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) |
| { |
| const VirtBoardInfo *board = (const VirtBoardInfo *)binfo; |
| |
| *fdt_size = board->fdt_size; |
| return board->fdt; |
| } |
| |
| static void machvirt_init(QEMUMachineInitArgs *args) |
| { |
| qemu_irq pic[NUM_IRQS]; |
| MemoryRegion *sysmem = get_system_memory(); |
| int n; |
| MemoryRegion *ram = g_new(MemoryRegion, 1); |
| DeviceState *dev; |
| SysBusDevice *busdev; |
| const char *cpu_model = args->cpu_model; |
| VirtBoardInfo *vbi; |
| |
| if (!cpu_model) { |
| cpu_model = "cortex-a15"; |
| } |
| |
| vbi = find_machine_info(cpu_model); |
| |
| if (!vbi) { |
| error_report("mach-virt: CPU %s not supported", cpu_model); |
| exit(1); |
| } |
| |
| vbi->smp_cpus = smp_cpus; |
| |
| /* |
| * Only supported method of starting secondary CPUs is PSCI and |
| * PSCI is not yet supported with TCG, so limit smp_cpus to 1 |
| * if we're not using KVM. |
| */ |
| if (!kvm_enabled() && smp_cpus > 1) { |
| error_report("mach-virt: must enable KVM to use multiple CPUs"); |
| exit(1); |
| } |
| |
| if (args->ram_size > vbi->memmap[VIRT_MEM].size) { |
| error_report("mach-virt: cannot model more than 30GB RAM"); |
| exit(1); |
| } |
| |
| create_fdt(vbi); |
| fdt_add_timer_nodes(vbi); |
| |
| for (n = 0; n < smp_cpus; n++) { |
| ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); |
| Object *cpuobj; |
| |
| if (!oc) { |
| fprintf(stderr, "Unable to find CPU definition\n"); |
| exit(1); |
| } |
| cpuobj = object_new(object_class_get_name(oc)); |
| |
| /* Secondary CPUs start in PSCI powered-down state */ |
| if (n > 0) { |
| object_property_set_bool(cpuobj, true, "start-powered-off", NULL); |
| } |
| object_property_set_bool(cpuobj, true, "realized", NULL); |
| } |
| fdt_add_cpu_nodes(vbi); |
| |
| memory_region_init_ram(ram, NULL, "mach-virt.ram", args->ram_size); |
| vmstate_register_ram_global(ram); |
| memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram); |
| |
| dev = qdev_create(NULL, vbi->qdevname); |
| qdev_prop_set_uint32(dev, "num-cpu", smp_cpus); |
| /* Note that the num-irq property counts both internal and external |
| * interrupts; there are always 32 of the former (mandated by GIC spec). |
| */ |
| qdev_prop_set_uint32(dev, "num-irq", NUM_IRQS + 32); |
| qdev_init_nofail(dev); |
| busdev = SYS_BUS_DEVICE(dev); |
| sysbus_mmio_map(busdev, 0, vbi->memmap[VIRT_CPUPERIPHS].base); |
| fdt_add_gic_node(vbi); |
| for (n = 0; n < smp_cpus; n++) { |
| DeviceState *cpudev = DEVICE(qemu_get_cpu(n)); |
| |
| sysbus_connect_irq(busdev, n, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); |
| } |
| |
| for (n = 0; n < NUM_IRQS; n++) { |
| pic[n] = qdev_get_gpio_in(dev, n); |
| } |
| |
| create_uart(vbi, pic); |
| |
| /* Create mmio transports, so the user can create virtio backends |
| * (which will be automatically plugged in to the transports). If |
| * no backend is created the transport will just sit harmlessly idle. |
| */ |
| create_virtio_devices(vbi, pic); |
| |
| vbi->bootinfo.ram_size = args->ram_size; |
| vbi->bootinfo.kernel_filename = args->kernel_filename; |
| vbi->bootinfo.kernel_cmdline = args->kernel_cmdline; |
| vbi->bootinfo.initrd_filename = args->initrd_filename; |
| vbi->bootinfo.nb_cpus = smp_cpus; |
| vbi->bootinfo.board_id = -1; |
| vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base; |
| vbi->bootinfo.get_dtb = machvirt_dtb; |
| arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo); |
| } |
| |
| static QEMUMachine machvirt_a15_machine = { |
| .name = "virt", |
| .desc = "ARM Virtual Machine", |
| .init = machvirt_init, |
| .max_cpus = 4, |
| }; |
| |
| static void machvirt_machine_init(void) |
| { |
| qemu_register_machine(&machvirt_a15_machine); |
| } |
| |
| machine_init(machvirt_machine_init); |