| /* |
| * IMX SPI Controller |
| * |
| * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/irq.h" |
| #include "hw/ssi/imx_spi.h" |
| #include "migration/vmstate.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| |
| #ifndef DEBUG_IMX_SPI |
| #define DEBUG_IMX_SPI 0 |
| #endif |
| |
| #define DPRINTF(fmt, args...) \ |
| do { \ |
| if (DEBUG_IMX_SPI) { \ |
| fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \ |
| __func__, ##args); \ |
| } \ |
| } while (0) |
| |
| static const char *imx_spi_reg_name(uint32_t reg) |
| { |
| static char unknown[20]; |
| |
| switch (reg) { |
| case ECSPI_RXDATA: |
| return "ECSPI_RXDATA"; |
| case ECSPI_TXDATA: |
| return "ECSPI_TXDATA"; |
| case ECSPI_CONREG: |
| return "ECSPI_CONREG"; |
| case ECSPI_CONFIGREG: |
| return "ECSPI_CONFIGREG"; |
| case ECSPI_INTREG: |
| return "ECSPI_INTREG"; |
| case ECSPI_DMAREG: |
| return "ECSPI_DMAREG"; |
| case ECSPI_STATREG: |
| return "ECSPI_STATREG"; |
| case ECSPI_PERIODREG: |
| return "ECSPI_PERIODREG"; |
| case ECSPI_TESTREG: |
| return "ECSPI_TESTREG"; |
| case ECSPI_MSGDATA: |
| return "ECSPI_MSGDATA"; |
| default: |
| sprintf(unknown, "%d ?", reg); |
| return unknown; |
| } |
| } |
| |
| static const VMStateDescription vmstate_imx_spi = { |
| .name = TYPE_IMX_SPI, |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_FIFO32(tx_fifo, IMXSPIState), |
| VMSTATE_FIFO32(rx_fifo, IMXSPIState), |
| VMSTATE_INT16(burst_length, IMXSPIState), |
| VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void imx_spi_txfifo_reset(IMXSPIState *s) |
| { |
| fifo32_reset(&s->tx_fifo); |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE; |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF; |
| } |
| |
| static void imx_spi_rxfifo_reset(IMXSPIState *s) |
| { |
| fifo32_reset(&s->rx_fifo); |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR; |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF; |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO; |
| } |
| |
| static void imx_spi_update_irq(IMXSPIState *s) |
| { |
| int level; |
| |
| if (fifo32_is_empty(&s->rx_fifo)) { |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR; |
| } else { |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR; |
| } |
| |
| if (fifo32_is_full(&s->rx_fifo)) { |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF; |
| } else { |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF; |
| } |
| |
| if (fifo32_is_empty(&s->tx_fifo)) { |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE; |
| } else { |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE; |
| } |
| |
| if (fifo32_is_full(&s->tx_fifo)) { |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF; |
| } else { |
| s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF; |
| } |
| |
| level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0; |
| |
| qemu_set_irq(s->irq, level); |
| |
| DPRINTF("IRQ level is %d\n", level); |
| } |
| |
| static uint8_t imx_spi_selected_channel(IMXSPIState *s) |
| { |
| return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT); |
| } |
| |
| static uint32_t imx_spi_burst_length(IMXSPIState *s) |
| { |
| return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1; |
| } |
| |
| static bool imx_spi_is_enabled(IMXSPIState *s) |
| { |
| return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN; |
| } |
| |
| static bool imx_spi_channel_is_master(IMXSPIState *s) |
| { |
| uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE); |
| |
| return (mode & (1 << imx_spi_selected_channel(s))) ? true : false; |
| } |
| |
| static bool imx_spi_is_multiple_master_burst(IMXSPIState *s) |
| { |
| uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL); |
| |
| return imx_spi_channel_is_master(s) && |
| !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) && |
| ((wave & (1 << imx_spi_selected_channel(s))) ? true : false); |
| } |
| |
| static void imx_spi_flush_txfifo(IMXSPIState *s) |
| { |
| uint32_t tx; |
| uint32_t rx; |
| |
| DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n", |
| fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo)); |
| |
| while (!fifo32_is_empty(&s->tx_fifo)) { |
| int tx_burst = 0; |
| int index = 0; |
| |
| if (s->burst_length <= 0) { |
| s->burst_length = imx_spi_burst_length(s); |
| |
| DPRINTF("Burst length = %d\n", s->burst_length); |
| |
| if (imx_spi_is_multiple_master_burst(s)) { |
| s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH; |
| } |
| } |
| |
| tx = fifo32_pop(&s->tx_fifo); |
| |
| DPRINTF("data tx:0x%08x\n", tx); |
| |
| tx_burst = MIN(s->burst_length, 32); |
| |
| rx = 0; |
| |
| while (tx_burst > 0) { |
| uint8_t byte = tx & 0xff; |
| |
| DPRINTF("writing 0x%02x\n", (uint32_t)byte); |
| |
| /* We need to write one byte at a time */ |
| byte = ssi_transfer(s->bus, byte); |
| |
| DPRINTF("0x%02x read\n", (uint32_t)byte); |
| |
| tx = tx >> 8; |
| rx |= (byte << (index * 8)); |
| |
| /* Remove 8 bits from the actual burst */ |
| tx_burst -= 8; |
| s->burst_length -= 8; |
| index++; |
| } |
| |
| DPRINTF("data rx:0x%08x\n", rx); |
| |
| if (fifo32_is_full(&s->rx_fifo)) { |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO; |
| } else { |
| fifo32_push(&s->rx_fifo, rx); |
| } |
| |
| if (s->burst_length <= 0) { |
| if (!imx_spi_is_multiple_master_burst(s)) { |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC; |
| break; |
| } |
| } |
| } |
| |
| if (fifo32_is_empty(&s->tx_fifo)) { |
| s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC; |
| s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH; |
| } |
| |
| /* TODO: We should also use TDR and RDR bits */ |
| |
| DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n", |
| fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo)); |
| } |
| |
| static void imx_spi_reset(DeviceState *dev) |
| { |
| IMXSPIState *s = IMX_SPI(dev); |
| |
| DPRINTF("\n"); |
| |
| memset(s->regs, 0, sizeof(s->regs)); |
| |
| s->regs[ECSPI_STATREG] = 0x00000003; |
| |
| imx_spi_rxfifo_reset(s); |
| imx_spi_txfifo_reset(s); |
| |
| imx_spi_update_irq(s); |
| |
| s->burst_length = 0; |
| } |
| |
| static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| uint32_t value = 0; |
| IMXSPIState *s = opaque; |
| uint32_t index = offset >> 2; |
| |
| if (index >= ECSPI_MAX) { |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" |
| HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset); |
| return 0; |
| } |
| |
| switch (index) { |
| case ECSPI_RXDATA: |
| if (!imx_spi_is_enabled(s)) { |
| value = 0; |
| } else if (fifo32_is_empty(&s->rx_fifo)) { |
| /* value is undefined */ |
| value = 0xdeadbeef; |
| } else { |
| /* read from the RX FIFO */ |
| value = fifo32_pop(&s->rx_fifo); |
| } |
| |
| break; |
| case ECSPI_TXDATA: |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n", |
| TYPE_IMX_SPI, __func__); |
| |
| /* Reading from TXDATA gives 0 */ |
| |
| break; |
| case ECSPI_MSGDATA: |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n", |
| TYPE_IMX_SPI, __func__); |
| |
| /* Reading from MSGDATA gives 0 */ |
| |
| break; |
| default: |
| value = s->regs[index]; |
| break; |
| } |
| |
| DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value); |
| |
| imx_spi_update_irq(s); |
| |
| return (uint64_t)value; |
| } |
| |
| static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size) |
| { |
| IMXSPIState *s = opaque; |
| uint32_t index = offset >> 2; |
| uint32_t change_mask; |
| |
| if (index >= ECSPI_MAX) { |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" |
| HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset); |
| return; |
| } |
| |
| DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index), |
| (uint32_t)value); |
| |
| change_mask = s->regs[index] ^ value; |
| |
| switch (index) { |
| case ECSPI_RXDATA: |
| qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n", |
| TYPE_IMX_SPI, __func__); |
| break; |
| case ECSPI_TXDATA: |
| if (!imx_spi_is_enabled(s)) { |
| /* Ignore writes if device is disabled */ |
| break; |
| } else if (fifo32_is_full(&s->tx_fifo)) { |
| /* Ignore writes if queue is full */ |
| break; |
| } |
| |
| fifo32_push(&s->tx_fifo, (uint32_t)value); |
| |
| if (imx_spi_channel_is_master(s) && |
| (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) { |
| /* |
| * Start emitting if current channel is master and SMC bit is |
| * set. |
| */ |
| imx_spi_flush_txfifo(s); |
| } |
| |
| break; |
| case ECSPI_STATREG: |
| /* the RO and TC bits are write-one-to-clear */ |
| value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC; |
| s->regs[ECSPI_STATREG] &= ~value; |
| |
| break; |
| case ECSPI_CONREG: |
| s->regs[ECSPI_CONREG] = value; |
| |
| if (!imx_spi_is_enabled(s)) { |
| /* device is disabled, so this is a reset */ |
| imx_spi_reset(DEVICE(s)); |
| return; |
| } |
| |
| if (imx_spi_channel_is_master(s)) { |
| int i; |
| |
| /* We are in master mode */ |
| |
| for (i = 0; i < 4; i++) { |
| qemu_set_irq(s->cs_lines[i], |
| i == imx_spi_selected_channel(s) ? 0 : 1); |
| } |
| |
| if ((value & change_mask & ECSPI_CONREG_SMC) && |
| !fifo32_is_empty(&s->tx_fifo)) { |
| /* SMC bit is set and TX FIFO has some slots filled in */ |
| imx_spi_flush_txfifo(s); |
| } else if ((value & change_mask & ECSPI_CONREG_XCH) && |
| !(value & ECSPI_CONREG_SMC)) { |
| /* This is a request to start emitting */ |
| imx_spi_flush_txfifo(s); |
| } |
| } |
| |
| break; |
| case ECSPI_MSGDATA: |
| /* it is not clear from the spec what MSGDATA is for */ |
| /* Anyway it is not used by Linux driver */ |
| /* So for now we just ignore it */ |
| qemu_log_mask(LOG_UNIMP, |
| "[%s]%s: Trying to write to MSGDATA, ignoring\n", |
| TYPE_IMX_SPI, __func__); |
| break; |
| default: |
| s->regs[index] = value; |
| |
| break; |
| } |
| |
| imx_spi_update_irq(s); |
| } |
| |
| static const struct MemoryRegionOps imx_spi_ops = { |
| .read = imx_spi_read, |
| .write = imx_spi_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid = { |
| /* |
| * Our device would not work correctly if the guest was doing |
| * unaligned access. This might not be a limitation on the real |
| * device but in practice there is no reason for a guest to access |
| * this device unaligned. |
| */ |
| .min_access_size = 4, |
| .max_access_size = 4, |
| .unaligned = false, |
| }, |
| }; |
| |
| static void imx_spi_realize(DeviceState *dev, Error **errp) |
| { |
| IMXSPIState *s = IMX_SPI(dev); |
| int i; |
| |
| s->bus = ssi_create_bus(dev, "spi"); |
| |
| memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s, |
| TYPE_IMX_SPI, 0x1000); |
| sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); |
| sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq); |
| |
| ssi_auto_connect_slaves(dev, s->cs_lines, s->bus); |
| |
| for (i = 0; i < 4; ++i) { |
| sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]); |
| } |
| |
| s->burst_length = 0; |
| |
| fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE); |
| fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE); |
| } |
| |
| static void imx_spi_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = imx_spi_realize; |
| dc->vmsd = &vmstate_imx_spi; |
| dc->reset = imx_spi_reset; |
| dc->desc = "i.MX SPI Controller"; |
| } |
| |
| static const TypeInfo imx_spi_info = { |
| .name = TYPE_IMX_SPI, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(IMXSPIState), |
| .class_init = imx_spi_class_init, |
| }; |
| |
| static void imx_spi_register_types(void) |
| { |
| type_register_static(&imx_spi_info); |
| } |
| |
| type_init(imx_spi_register_types) |