|  | /* | 
|  | * Core code for QEMU e1000e emulation | 
|  | * | 
|  | * Software developer's manuals: | 
|  | * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf | 
|  | * | 
|  | * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) | 
|  | * Developed by Daynix Computing LTD (http://www.daynix.com) | 
|  | * | 
|  | * Authors: | 
|  | * Dmitry Fleytman <dmitry@daynix.com> | 
|  | * Leonid Bloch <leonid@daynix.com> | 
|  | * Yan Vugenfirer <yan@daynix.com> | 
|  | * | 
|  | * Based on work done by: | 
|  | * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. | 
|  | * Copyright (c) 2008 Qumranet | 
|  | * Based on work done by: | 
|  | * Copyright (c) 2007 Dan Aloni | 
|  | * Copyright (c) 2004 Antony T Curtis | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/log.h" | 
|  | #include "net/net.h" | 
|  | #include "net/tap.h" | 
|  | #include "hw/net/mii.h" | 
|  | #include "hw/pci/msi.h" | 
|  | #include "hw/pci/msix.h" | 
|  | #include "sysemu/runstate.h" | 
|  |  | 
|  | #include "net_tx_pkt.h" | 
|  | #include "net_rx_pkt.h" | 
|  |  | 
|  | #include "e1000_common.h" | 
|  | #include "e1000x_common.h" | 
|  | #include "e1000e_core.h" | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | /* No more then 7813 interrupts per second according to spec 10.2.4.2 */ | 
|  | #define E1000E_MIN_XITR     (500) | 
|  |  | 
|  | #define E1000E_MAX_TX_FRAGS (64) | 
|  |  | 
|  | union e1000_rx_desc_union { | 
|  | struct e1000_rx_desc legacy; | 
|  | union e1000_rx_desc_extended extended; | 
|  | union e1000_rx_desc_packet_split packet_split; | 
|  | }; | 
|  |  | 
|  | static ssize_t | 
|  | e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt, | 
|  | bool has_vnet); | 
|  |  | 
|  | static inline void | 
|  | e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val); | 
|  |  | 
|  | static void e1000e_reset(E1000ECore *core, bool sw); | 
|  |  | 
|  | static inline void | 
|  | e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp) | 
|  | { | 
|  | if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) { | 
|  | trace_e1000e_wrn_no_ts_support(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length) | 
|  | { | 
|  | if (cmd_and_length & E1000_TXD_CMD_SNAP) { | 
|  | trace_e1000e_wrn_no_snap_support(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_raise_legacy_irq(E1000ECore *core) | 
|  | { | 
|  | trace_e1000e_irq_legacy_notify(true); | 
|  | e1000x_inc_reg_if_not_full(core->mac, IAC); | 
|  | pci_set_irq(core->owner, 1); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_lower_legacy_irq(E1000ECore *core) | 
|  | { | 
|  | trace_e1000e_irq_legacy_notify(false); | 
|  | pci_set_irq(core->owner, 0); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer) | 
|  | { | 
|  | int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * | 
|  | timer->delay_resolution_ns; | 
|  |  | 
|  | trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); | 
|  |  | 
|  | timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); | 
|  |  | 
|  | timer->running = true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer) | 
|  | { | 
|  | if (timer->running) { | 
|  | e1000e_intrmgr_rearm_timer(timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer) | 
|  | { | 
|  | if (timer->running) { | 
|  | timer_del(timer->timer); | 
|  | timer->running = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core) | 
|  | { | 
|  | trace_e1000e_irq_fire_delayed_interrupts(); | 
|  | e1000e_set_interrupt_cause(core, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_on_timer(void *opaque) | 
|  | { | 
|  | E1000IntrDelayTimer *timer = opaque; | 
|  |  | 
|  | trace_e1000e_irq_throttling_timer(timer->delay_reg << 2); | 
|  |  | 
|  | timer->running = false; | 
|  | e1000e_intrmgr_fire_delayed_interrupts(timer->core); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_on_throttling_timer(void *opaque) | 
|  | { | 
|  | E1000IntrDelayTimer *timer = opaque; | 
|  |  | 
|  | timer->running = false; | 
|  |  | 
|  | if (timer->core->mac[IMS] & timer->core->mac[ICR]) { | 
|  | if (msi_enabled(timer->core->owner)) { | 
|  | trace_e1000e_irq_msi_notify_postponed(); | 
|  | msi_notify(timer->core->owner, 0); | 
|  | } else { | 
|  | trace_e1000e_irq_legacy_notify_postponed(); | 
|  | e1000e_raise_legacy_irq(timer->core); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_on_msix_throttling_timer(void *opaque) | 
|  | { | 
|  | E1000IntrDelayTimer *timer = opaque; | 
|  | int idx = timer - &timer->core->eitr[0]; | 
|  |  | 
|  | timer->running = false; | 
|  |  | 
|  | trace_e1000e_irq_msix_notify_postponed_vec(idx); | 
|  | msix_notify(timer->core->owner, idx); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | core->radv.delay_reg = RADV; | 
|  | core->rdtr.delay_reg = RDTR; | 
|  | core->raid.delay_reg = RAID; | 
|  | core->tadv.delay_reg = TADV; | 
|  | core->tidv.delay_reg = TIDV; | 
|  |  | 
|  | core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; | 
|  | core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; | 
|  | core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; | 
|  | core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; | 
|  | core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; | 
|  |  | 
|  | core->radv.core = core; | 
|  | core->rdtr.core = core; | 
|  | core->raid.core = core; | 
|  | core->tadv.core = core; | 
|  | core->tidv.core = core; | 
|  |  | 
|  | core->itr.core = core; | 
|  | core->itr.delay_reg = ITR; | 
|  | core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; | 
|  |  | 
|  | for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { | 
|  | core->eitr[i].core = core; | 
|  | core->eitr[i].delay_reg = EITR + i; | 
|  | core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; | 
|  | } | 
|  |  | 
|  | if (!create) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | core->radv.timer = | 
|  | timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv); | 
|  | core->rdtr.timer = | 
|  | timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr); | 
|  | core->raid.timer = | 
|  | timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid); | 
|  |  | 
|  | core->tadv.timer = | 
|  | timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv); | 
|  | core->tidv.timer = | 
|  | timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv); | 
|  |  | 
|  | core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | 
|  | e1000e_intrmgr_on_throttling_timer, | 
|  | &core->itr); | 
|  |  | 
|  | for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { | 
|  | core->eitr[i].timer = | 
|  | timer_new_ns(QEMU_CLOCK_VIRTUAL, | 
|  | e1000e_intrmgr_on_msix_throttling_timer, | 
|  | &core->eitr[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_intrmgr_stop_delay_timers(E1000ECore *core) | 
|  | { | 
|  | e1000e_intrmgr_stop_timer(&core->radv); | 
|  | e1000e_intrmgr_stop_timer(&core->rdtr); | 
|  | e1000e_intrmgr_stop_timer(&core->raid); | 
|  | e1000e_intrmgr_stop_timer(&core->tidv); | 
|  | e1000e_intrmgr_stop_timer(&core->tadv); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes) | 
|  | { | 
|  | uint32_t delayable_causes; | 
|  | uint32_t rdtr = core->mac[RDTR]; | 
|  | uint32_t radv = core->mac[RADV]; | 
|  | uint32_t raid = core->mac[RAID]; | 
|  |  | 
|  | if (msix_enabled(core->owner)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | delayable_causes = E1000_ICR_RXQ0 | | 
|  | E1000_ICR_RXQ1 | | 
|  | E1000_ICR_RXT0; | 
|  |  | 
|  | if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) { | 
|  | delayable_causes |= E1000_ICR_ACK; | 
|  | } | 
|  |  | 
|  | /* Clean up all causes that may be delayed */ | 
|  | core->delayed_causes |= *causes & delayable_causes; | 
|  | *causes &= ~delayable_causes; | 
|  |  | 
|  | /* | 
|  | * Check if delayed RX interrupts disabled by client | 
|  | * or if there are causes that cannot be delayed | 
|  | */ | 
|  | if ((rdtr == 0) || (*causes != 0)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if delayed RX ACK interrupts disabled by client | 
|  | * and there is an ACK packet received | 
|  | */ | 
|  | if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* All causes delayed */ | 
|  | e1000e_intrmgr_rearm_timer(&core->rdtr); | 
|  |  | 
|  | if (!core->radv.running && (radv != 0)) { | 
|  | e1000e_intrmgr_rearm_timer(&core->radv); | 
|  | } | 
|  |  | 
|  | if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) { | 
|  | e1000e_intrmgr_rearm_timer(&core->raid); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes) | 
|  | { | 
|  | static const uint32_t delayable_causes = E1000_ICR_TXQ0 | | 
|  | E1000_ICR_TXQ1 | | 
|  | E1000_ICR_TXQE | | 
|  | E1000_ICR_TXDW; | 
|  |  | 
|  | if (msix_enabled(core->owner)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Clean up all causes that may be delayed */ | 
|  | core->delayed_causes |= *causes & delayable_causes; | 
|  | *causes &= ~delayable_causes; | 
|  |  | 
|  | /* If there are causes that cannot be delayed */ | 
|  | if (*causes != 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* All causes delayed */ | 
|  | e1000e_intrmgr_rearm_timer(&core->tidv); | 
|  |  | 
|  | if (!core->tadv.running && (core->mac[TADV] != 0)) { | 
|  | e1000e_intrmgr_rearm_timer(&core->tadv); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_intmgr_collect_delayed_causes(E1000ECore *core) | 
|  | { | 
|  | uint32_t res; | 
|  |  | 
|  | if (msix_enabled(core->owner)) { | 
|  | assert(core->delayed_causes == 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | res = core->delayed_causes; | 
|  | core->delayed_causes = 0; | 
|  |  | 
|  | e1000e_intrmgr_stop_delay_timers(core); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_fire_all_timers(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (core->itr.running) { | 
|  | timer_del(core->itr.timer); | 
|  | e1000e_intrmgr_on_throttling_timer(&core->itr); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { | 
|  | if (core->eitr[i].running) { | 
|  | timer_del(core->eitr[i].timer); | 
|  | e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_resume(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | e1000e_intmgr_timer_resume(&core->radv); | 
|  | e1000e_intmgr_timer_resume(&core->rdtr); | 
|  | e1000e_intmgr_timer_resume(&core->raid); | 
|  | e1000e_intmgr_timer_resume(&core->tidv); | 
|  | e1000e_intmgr_timer_resume(&core->tadv); | 
|  |  | 
|  | e1000e_intmgr_timer_resume(&core->itr); | 
|  |  | 
|  | for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { | 
|  | e1000e_intmgr_timer_resume(&core->eitr[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_reset(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | core->delayed_causes = 0; | 
|  |  | 
|  | e1000e_intrmgr_stop_delay_timers(core); | 
|  |  | 
|  | e1000e_intrmgr_stop_timer(&core->itr); | 
|  |  | 
|  | for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { | 
|  | e1000e_intrmgr_stop_timer(&core->eitr[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_pci_unint(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | timer_free(core->radv.timer); | 
|  | timer_free(core->rdtr.timer); | 
|  | timer_free(core->raid.timer); | 
|  |  | 
|  | timer_free(core->tadv.timer); | 
|  | timer_free(core->tidv.timer); | 
|  |  | 
|  | timer_free(core->itr.timer); | 
|  |  | 
|  | for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { | 
|  | timer_free(core->eitr[i].timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_intrmgr_pci_realize(E1000ECore *core) | 
|  | { | 
|  | e1000e_intrmgr_initialize_all_timers(core, true); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_rx_csum_enabled(E1000ECore *core) | 
|  | { | 
|  | return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_rx_use_legacy_descriptor(E1000ECore *core) | 
|  | { | 
|  | return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_rx_use_ps_descriptor(E1000ECore *core) | 
|  | { | 
|  | return !e1000e_rx_use_legacy_descriptor(core) && | 
|  | (core->mac[RCTL] & E1000_RCTL_DTYP_PS); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_rss_enabled(E1000ECore *core) | 
|  | { | 
|  | return E1000_MRQC_ENABLED(core->mac[MRQC]) && | 
|  | !e1000e_rx_csum_enabled(core) && | 
|  | !e1000e_rx_use_legacy_descriptor(core); | 
|  | } | 
|  |  | 
|  | typedef struct E1000E_RSSInfo_st { | 
|  | bool enabled; | 
|  | uint32_t hash; | 
|  | uint32_t queue; | 
|  | uint32_t type; | 
|  | } E1000E_RSSInfo; | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt) | 
|  | { | 
|  | bool hasip4, hasip6; | 
|  | EthL4HdrProto l4hdr_proto; | 
|  |  | 
|  | assert(e1000e_rss_enabled(core)); | 
|  |  | 
|  | net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); | 
|  |  | 
|  | if (hasip4) { | 
|  | trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC], | 
|  | E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), | 
|  | E1000_MRQC_EN_IPV4(core->mac[MRQC])); | 
|  |  | 
|  | if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && | 
|  | E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { | 
|  | return E1000_MRQ_RSS_TYPE_IPV4TCP; | 
|  | } | 
|  |  | 
|  | if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { | 
|  | return E1000_MRQ_RSS_TYPE_IPV4; | 
|  | } | 
|  | } else if (hasip6) { | 
|  | eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); | 
|  |  | 
|  | bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; | 
|  | bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; | 
|  |  | 
|  | /* | 
|  | * Following two traces must not be combined because resulting | 
|  | * event will have 11 arguments totally and some trace backends | 
|  | * (at least "ust") have limitation of maximum 10 arguments per | 
|  | * event. Events with more arguments fail to compile for | 
|  | * backends like these. | 
|  | */ | 
|  | trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); | 
|  | trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto, | 
|  | ip6info->has_ext_hdrs, | 
|  | ip6info->rss_ex_dst_valid, | 
|  | ip6info->rss_ex_src_valid, | 
|  | core->mac[MRQC], | 
|  | E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]), | 
|  | E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), | 
|  | E1000_MRQC_EN_IPV6(core->mac[MRQC])); | 
|  |  | 
|  | if ((!ex_dis || !ip6info->has_ext_hdrs) && | 
|  | (!new_ex_dis || !(ip6info->rss_ex_dst_valid || | 
|  | ip6info->rss_ex_src_valid))) { | 
|  |  | 
|  | if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && | 
|  | E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) { | 
|  | return E1000_MRQ_RSS_TYPE_IPV6TCPEX; | 
|  | } | 
|  |  | 
|  | if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { | 
|  | return E1000_MRQ_RSS_TYPE_IPV6EX; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { | 
|  | return E1000_MRQ_RSS_TYPE_IPV6; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | return E1000_MRQ_RSS_TYPE_NONE; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_rss_calc_hash(E1000ECore *core, | 
|  | struct NetRxPkt *pkt, | 
|  | E1000E_RSSInfo *info) | 
|  | { | 
|  | NetRxPktRssType type; | 
|  |  | 
|  | assert(e1000e_rss_enabled(core)); | 
|  |  | 
|  | switch (info->type) { | 
|  | case E1000_MRQ_RSS_TYPE_IPV4: | 
|  | type = NetPktRssIpV4; | 
|  | break; | 
|  | case E1000_MRQ_RSS_TYPE_IPV4TCP: | 
|  | type = NetPktRssIpV4Tcp; | 
|  | break; | 
|  | case E1000_MRQ_RSS_TYPE_IPV6TCPEX: | 
|  | type = NetPktRssIpV6TcpEx; | 
|  | break; | 
|  | case E1000_MRQ_RSS_TYPE_IPV6: | 
|  | type = NetPktRssIpV6; | 
|  | break; | 
|  | case E1000_MRQ_RSS_TYPE_IPV6EX: | 
|  | type = NetPktRssIpV6Ex; | 
|  | break; | 
|  | default: | 
|  | assert(false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_rss_parse_packet(E1000ECore *core, | 
|  | struct NetRxPkt *pkt, | 
|  | E1000E_RSSInfo *info) | 
|  | { | 
|  | trace_e1000e_rx_rss_started(); | 
|  |  | 
|  | if (!e1000e_rss_enabled(core)) { | 
|  | info->enabled = false; | 
|  | info->hash = 0; | 
|  | info->queue = 0; | 
|  | info->type = 0; | 
|  | trace_e1000e_rx_rss_disabled(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->enabled = true; | 
|  |  | 
|  | info->type = e1000e_rss_get_hash_type(core, pkt); | 
|  |  | 
|  | trace_e1000e_rx_rss_type(info->type); | 
|  |  | 
|  | if (info->type == E1000_MRQ_RSS_TYPE_NONE) { | 
|  | info->hash = 0; | 
|  | info->queue = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->hash = e1000e_rss_calc_hash(core, pkt, info); | 
|  | info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx) | 
|  | { | 
|  | if (tx->props.tse && tx->cptse) { | 
|  | if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | net_tx_pkt_update_ip_checksums(tx->tx_pkt); | 
|  | e1000x_inc_reg_if_not_full(core->mac, TSCTC); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (tx->sum_needed & E1000_TXD_POPTS_TXSM) { | 
|  | if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tx->sum_needed & E1000_TXD_POPTS_IXSM) { | 
|  | net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void e1000e_tx_pkt_callback(void *core, | 
|  | const struct iovec *iov, | 
|  | int iovcnt, | 
|  | const struct iovec *virt_iov, | 
|  | int virt_iovcnt) | 
|  | { | 
|  | e1000e_receive_internal(core, virt_iov, virt_iovcnt, true); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index) | 
|  | { | 
|  | int target_queue = MIN(core->max_queue_num, queue_index); | 
|  | NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); | 
|  |  | 
|  | if (!e1000e_setup_tx_offloads(core, tx)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | net_tx_pkt_dump(tx->tx_pkt); | 
|  |  | 
|  | if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) || | 
|  | ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { | 
|  | return net_tx_pkt_send_custom(tx->tx_pkt, false, | 
|  | e1000e_tx_pkt_callback, core); | 
|  | } else { | 
|  | return net_tx_pkt_send(tx->tx_pkt, queue); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt) | 
|  | { | 
|  | static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, | 
|  | PTC1023, PTC1522 }; | 
|  |  | 
|  | size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4; | 
|  |  | 
|  | e1000x_increase_size_stats(core->mac, PTCregs, tot_len); | 
|  | e1000x_inc_reg_if_not_full(core->mac, TPT); | 
|  | e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); | 
|  |  | 
|  | switch (net_tx_pkt_get_packet_type(tx_pkt)) { | 
|  | case ETH_PKT_BCAST: | 
|  | e1000x_inc_reg_if_not_full(core->mac, BPTC); | 
|  | break; | 
|  | case ETH_PKT_MCAST: | 
|  | e1000x_inc_reg_if_not_full(core->mac, MPTC); | 
|  | break; | 
|  | case ETH_PKT_UCAST: | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | e1000x_inc_reg_if_not_full(core->mac, GPTC); | 
|  | e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_process_tx_desc(E1000ECore *core, | 
|  | struct e1000e_tx *tx, | 
|  | struct e1000_tx_desc *dp, | 
|  | int queue_index) | 
|  | { | 
|  | uint32_t txd_lower = le32_to_cpu(dp->lower.data); | 
|  | uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); | 
|  | unsigned int split_size = txd_lower & 0xffff; | 
|  | uint64_t addr; | 
|  | struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; | 
|  | bool eop = txd_lower & E1000_TXD_CMD_EOP; | 
|  |  | 
|  | if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ | 
|  | e1000x_read_tx_ctx_descr(xp, &tx->props); | 
|  | e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length)); | 
|  | return; | 
|  | } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { | 
|  | /* data descriptor */ | 
|  | tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8; | 
|  | tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; | 
|  | e1000e_process_ts_option(core, dp); | 
|  | } else { | 
|  | /* legacy descriptor */ | 
|  | e1000e_process_ts_option(core, dp); | 
|  | tx->cptse = 0; | 
|  | } | 
|  |  | 
|  | addr = le64_to_cpu(dp->buffer_addr); | 
|  |  | 
|  | if (!tx->skip_cp) { | 
|  | if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner, | 
|  | addr, split_size)) { | 
|  | tx->skip_cp = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (eop) { | 
|  | if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { | 
|  | if (e1000x_vlan_enabled(core->mac) && | 
|  | e1000x_is_vlan_txd(txd_lower)) { | 
|  | net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, | 
|  | le16_to_cpu(dp->upper.fields.special), core->mac[VET]); | 
|  | } | 
|  | if (e1000e_tx_pkt_send(core, tx, queue_index)) { | 
|  | e1000e_on_tx_done_update_stats(core, tx->tx_pkt); | 
|  | } | 
|  | } | 
|  |  | 
|  | tx->skip_cp = false; | 
|  | net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner); | 
|  |  | 
|  | tx->sum_needed = 0; | 
|  | tx->cptse = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint32_t | 
|  | e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx) | 
|  | { | 
|  | if (!msix_enabled(core->owner)) { | 
|  | return E1000_ICR_TXDW; | 
|  | } | 
|  |  | 
|  | return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1; | 
|  | } | 
|  |  | 
|  | static inline uint32_t | 
|  | e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx, | 
|  | bool min_threshold_hit) | 
|  | { | 
|  | if (!msix_enabled(core->owner)) { | 
|  | return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0); | 
|  | } | 
|  |  | 
|  | return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base, | 
|  | struct e1000_tx_desc *dp, bool *ide, int queue_idx) | 
|  | { | 
|  | uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); | 
|  |  | 
|  | if (!(txd_lower & E1000_TXD_CMD_RS) && | 
|  | !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false; | 
|  |  | 
|  | txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD; | 
|  |  | 
|  | dp->upper.data = cpu_to_le32(txd_upper); | 
|  | pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp), | 
|  | &dp->upper, sizeof(dp->upper)); | 
|  | return e1000e_tx_wb_interrupt_cause(core, queue_idx); | 
|  | } | 
|  |  | 
|  | typedef struct E1000ERingInfo { | 
|  | int dbah; | 
|  | int dbal; | 
|  | int dlen; | 
|  | int dh; | 
|  | int dt; | 
|  | int idx; | 
|  | } E1000ERingInfo; | 
|  |  | 
|  | static inline bool | 
|  | e1000e_ring_empty(E1000ECore *core, const E1000ERingInfo *r) | 
|  | { | 
|  | return core->mac[r->dh] == core->mac[r->dt] || | 
|  | core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; | 
|  | } | 
|  |  | 
|  | static inline uint64_t | 
|  | e1000e_ring_base(E1000ECore *core, const E1000ERingInfo *r) | 
|  | { | 
|  | uint64_t bah = core->mac[r->dbah]; | 
|  | uint64_t bal = core->mac[r->dbal]; | 
|  |  | 
|  | return (bah << 32) + bal; | 
|  | } | 
|  |  | 
|  | static inline uint64_t | 
|  | e1000e_ring_head_descr(E1000ECore *core, const E1000ERingInfo *r) | 
|  | { | 
|  | return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_ring_advance(E1000ECore *core, const E1000ERingInfo *r, uint32_t count) | 
|  | { | 
|  | core->mac[r->dh] += count; | 
|  |  | 
|  | if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { | 
|  | core->mac[r->dh] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint32_t | 
|  | e1000e_ring_free_descr_num(E1000ECore *core, const E1000ERingInfo *r) | 
|  | { | 
|  | trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], | 
|  | core->mac[r->dh],  core->mac[r->dt]); | 
|  |  | 
|  | if (core->mac[r->dh] <= core->mac[r->dt]) { | 
|  | return core->mac[r->dt] - core->mac[r->dh]; | 
|  | } | 
|  |  | 
|  | if (core->mac[r->dh] > core->mac[r->dt]) { | 
|  | return core->mac[r->dlen] / E1000_RING_DESC_LEN + | 
|  | core->mac[r->dt] - core->mac[r->dh]; | 
|  | } | 
|  |  | 
|  | g_assert_not_reached(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_ring_enabled(E1000ECore *core, const E1000ERingInfo *r) | 
|  | { | 
|  | return core->mac[r->dlen] > 0; | 
|  | } | 
|  |  | 
|  | static inline uint32_t | 
|  | e1000e_ring_len(E1000ECore *core, const E1000ERingInfo *r) | 
|  | { | 
|  | return core->mac[r->dlen]; | 
|  | } | 
|  |  | 
|  | typedef struct E1000E_TxRing_st { | 
|  | const E1000ERingInfo *i; | 
|  | struct e1000e_tx *tx; | 
|  | } E1000E_TxRing; | 
|  |  | 
|  | static inline int | 
|  | e1000e_mq_queue_idx(int base_reg_idx, int reg_idx) | 
|  | { | 
|  | return (reg_idx - base_reg_idx) / (0x100 >> 2); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx) | 
|  | { | 
|  | static const E1000ERingInfo i[E1000E_NUM_QUEUES] = { | 
|  | { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 }, | 
|  | { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 } | 
|  | }; | 
|  |  | 
|  | assert(idx < ARRAY_SIZE(i)); | 
|  |  | 
|  | txr->i     = &i[idx]; | 
|  | txr->tx    = &core->tx[idx]; | 
|  | } | 
|  |  | 
|  | typedef struct E1000E_RxRing_st { | 
|  | const E1000ERingInfo *i; | 
|  | } E1000E_RxRing; | 
|  |  | 
|  | static inline void | 
|  | e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx) | 
|  | { | 
|  | static const E1000ERingInfo i[E1000E_NUM_QUEUES] = { | 
|  | { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, | 
|  | { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 } | 
|  | }; | 
|  |  | 
|  | assert(idx < ARRAY_SIZE(i)); | 
|  |  | 
|  | rxr->i      = &i[idx]; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr) | 
|  | { | 
|  | dma_addr_t base; | 
|  | struct e1000_tx_desc desc; | 
|  | bool ide = false; | 
|  | const E1000ERingInfo *txi = txr->i; | 
|  | uint32_t cause = E1000_ICS_TXQE; | 
|  |  | 
|  | if (!(core->mac[TCTL] & E1000_TCTL_EN)) { | 
|  | trace_e1000e_tx_disabled(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (!e1000e_ring_empty(core, txi)) { | 
|  | base = e1000e_ring_head_descr(core, txi); | 
|  |  | 
|  | pci_dma_read(core->owner, base, &desc, sizeof(desc)); | 
|  |  | 
|  | trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr, | 
|  | desc.lower.data, desc.upper.data); | 
|  |  | 
|  | e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx); | 
|  | cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx); | 
|  |  | 
|  | e1000e_ring_advance(core, txi, 1); | 
|  | } | 
|  |  | 
|  | if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) { | 
|  | e1000e_set_interrupt_cause(core, cause); | 
|  | } | 
|  |  | 
|  | net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000e_has_rxbufs(E1000ECore *core, const E1000ERingInfo *r, | 
|  | size_t total_size) | 
|  | { | 
|  | uint32_t bufs = e1000e_ring_free_descr_num(core, r); | 
|  |  | 
|  | trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, | 
|  | core->rx_desc_buf_size); | 
|  |  | 
|  | return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * | 
|  | core->rx_desc_buf_size; | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000e_start_recv(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | trace_e1000e_rx_start_recv(); | 
|  |  | 
|  | for (i = 0; i <= core->max_queue_num; i++) { | 
|  | qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | e1000e_can_receive(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!e1000x_rx_ready(core->owner, core->mac)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < E1000E_NUM_QUEUES; i++) { | 
|  | E1000E_RxRing rxr; | 
|  |  | 
|  | e1000e_rx_ring_init(core, &rxr, i); | 
|  | if (e1000e_ring_enabled(core, rxr.i) && | 
|  | e1000e_has_rxbufs(core, rxr.i, 1)) { | 
|  | trace_e1000e_rx_can_recv(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_e1000e_rx_can_recv_rings_full(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ssize_t | 
|  | e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size) | 
|  | { | 
|  | const struct iovec iov = { | 
|  | .iov_base = (uint8_t *)buf, | 
|  | .iov_len = size | 
|  | }; | 
|  |  | 
|  | return e1000e_receive_iov(core, &iov, 1); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_rx_l3_cso_enabled(E1000ECore *core) | 
|  | { | 
|  | return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_rx_l4_cso_enabled(E1000ECore *core) | 
|  | { | 
|  | return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000e_receive_filter(E1000ECore *core, const void *buf) | 
|  | { | 
|  | return (!e1000x_is_vlan_packet(buf, core->mac[VET]) || | 
|  | e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) && | 
|  | e1000x_rx_group_filter(core->mac, buf); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc, | 
|  | hwaddr *buff_addr) | 
|  | { | 
|  | *buff_addr = le64_to_cpu(desc->buffer_addr); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc, | 
|  | hwaddr *buff_addr) | 
|  | { | 
|  | *buff_addr = le64_to_cpu(desc->read.buffer_addr); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_read_ps_rx_descr(E1000ECore *core, | 
|  | union e1000_rx_desc_packet_split *desc, | 
|  | hwaddr buff_addr[MAX_PS_BUFFERS]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_PS_BUFFERS; i++) { | 
|  | buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]); | 
|  | } | 
|  |  | 
|  | trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1], | 
|  | buff_addr[2], buff_addr[3]); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc, | 
|  | hwaddr buff_addr[MAX_PS_BUFFERS]) | 
|  | { | 
|  | if (e1000e_rx_use_legacy_descriptor(core)) { | 
|  | e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]); | 
|  | buff_addr[1] = buff_addr[2] = buff_addr[3] = 0; | 
|  | } else { | 
|  | if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { | 
|  | e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr); | 
|  | } else { | 
|  | e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]); | 
|  | buff_addr[1] = buff_addr[2] = buff_addr[3] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_verify_csum_in_sw(E1000ECore *core, | 
|  | struct NetRxPkt *pkt, | 
|  | uint32_t *status_flags, | 
|  | EthL4HdrProto l4hdr_proto) | 
|  | { | 
|  | bool csum_valid; | 
|  | uint32_t csum_error; | 
|  |  | 
|  | if (e1000e_rx_l3_cso_enabled(core)) { | 
|  | if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { | 
|  | trace_e1000e_rx_metadata_l3_csum_validation_failed(); | 
|  | } else { | 
|  | csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; | 
|  | *status_flags |= E1000_RXD_STAT_IPCS | csum_error; | 
|  | } | 
|  | } else { | 
|  | trace_e1000e_rx_metadata_l3_cso_disabled(); | 
|  | } | 
|  |  | 
|  | if (!e1000e_rx_l4_cso_enabled(core)) { | 
|  | trace_e1000e_rx_metadata_l4_cso_disabled(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (l4hdr_proto != ETH_L4_HDR_PROTO_TCP && | 
|  | l4hdr_proto != ETH_L4_HDR_PROTO_UDP) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { | 
|  | trace_e1000e_rx_metadata_l4_csum_validation_failed(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; | 
|  | *status_flags |= E1000_RXD_STAT_TCPCS | csum_error; | 
|  |  | 
|  | if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { | 
|  | *status_flags |= E1000_RXD_STAT_UDPCS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt) | 
|  | { | 
|  | if (!net_rx_pkt_is_tcp_ack(rx_pkt)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) { | 
|  | return !net_rx_pkt_has_tcp_data(rx_pkt); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_build_rx_metadata(E1000ECore *core, | 
|  | struct NetRxPkt *pkt, | 
|  | bool is_eop, | 
|  | const E1000E_RSSInfo *rss_info, | 
|  | uint32_t *rss, uint32_t *mrq, | 
|  | uint32_t *status_flags, | 
|  | uint16_t *ip_id, | 
|  | uint16_t *vlan_tag) | 
|  | { | 
|  | struct virtio_net_hdr *vhdr; | 
|  | bool hasip4, hasip6; | 
|  | EthL4HdrProto l4hdr_proto; | 
|  | uint32_t pkt_type; | 
|  |  | 
|  | *status_flags = E1000_RXD_STAT_DD; | 
|  |  | 
|  | /* No additional metadata needed for non-EOP descriptors */ | 
|  | if (!is_eop) { | 
|  | goto func_exit; | 
|  | } | 
|  |  | 
|  | *status_flags |= E1000_RXD_STAT_EOP; | 
|  |  | 
|  | net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); | 
|  | trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto); | 
|  |  | 
|  | /* VLAN state */ | 
|  | if (net_rx_pkt_is_vlan_stripped(pkt)) { | 
|  | *status_flags |= E1000_RXD_STAT_VP; | 
|  | *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); | 
|  | trace_e1000e_rx_metadata_vlan(*vlan_tag); | 
|  | } | 
|  |  | 
|  | /* Packet parsing results */ | 
|  | if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { | 
|  | if (rss_info->enabled) { | 
|  | *rss = cpu_to_le32(rss_info->hash); | 
|  | *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8)); | 
|  | trace_e1000e_rx_metadata_rss(*rss, *mrq); | 
|  | } | 
|  | } else if (hasip4) { | 
|  | *status_flags |= E1000_RXD_STAT_IPIDV; | 
|  | *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); | 
|  | trace_e1000e_rx_metadata_ip_id(*ip_id); | 
|  | } | 
|  |  | 
|  | if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) { | 
|  | *status_flags |= E1000_RXD_STAT_ACK; | 
|  | trace_e1000e_rx_metadata_ack(); | 
|  | } | 
|  |  | 
|  | if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) { | 
|  | trace_e1000e_rx_metadata_ipv6_filtering_disabled(); | 
|  | pkt_type = E1000_RXD_PKT_MAC; | 
|  | } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP || | 
|  | l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { | 
|  | pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP; | 
|  | } else if (hasip4 || hasip6) { | 
|  | pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6; | 
|  | } else { | 
|  | pkt_type = E1000_RXD_PKT_MAC; | 
|  | } | 
|  |  | 
|  | *status_flags |= E1000_RXD_PKT_TYPE(pkt_type); | 
|  | trace_e1000e_rx_metadata_pkt_type(pkt_type); | 
|  |  | 
|  | /* RX CSO information */ | 
|  | if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { | 
|  | trace_e1000e_rx_metadata_ipv6_sum_disabled(); | 
|  | goto func_exit; | 
|  | } | 
|  |  | 
|  | vhdr = net_rx_pkt_get_vhdr(pkt); | 
|  |  | 
|  | if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && | 
|  | !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { | 
|  | trace_e1000e_rx_metadata_virthdr_no_csum_info(); | 
|  | e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto); | 
|  | goto func_exit; | 
|  | } | 
|  |  | 
|  | if (e1000e_rx_l3_cso_enabled(core)) { | 
|  | *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0; | 
|  | } else { | 
|  | trace_e1000e_rx_metadata_l3_cso_disabled(); | 
|  | } | 
|  |  | 
|  | if (e1000e_rx_l4_cso_enabled(core)) { | 
|  | switch (l4hdr_proto) { | 
|  | case ETH_L4_HDR_PROTO_TCP: | 
|  | *status_flags |= E1000_RXD_STAT_TCPCS; | 
|  | break; | 
|  |  | 
|  | case ETH_L4_HDR_PROTO_UDP: | 
|  | *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | trace_e1000e_rx_metadata_l4_cso_disabled(); | 
|  | } | 
|  |  | 
|  | func_exit: | 
|  | trace_e1000e_rx_metadata_status_flags(*status_flags); | 
|  | *status_flags = cpu_to_le32(*status_flags); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc, | 
|  | struct NetRxPkt *pkt, | 
|  | const E1000E_RSSInfo *rss_info, | 
|  | uint16_t length) | 
|  | { | 
|  | uint32_t status_flags, rss, mrq; | 
|  | uint16_t ip_id; | 
|  |  | 
|  | assert(!rss_info->enabled); | 
|  |  | 
|  | desc->length = cpu_to_le16(length); | 
|  | desc->csum = 0; | 
|  |  | 
|  | e1000e_build_rx_metadata(core, pkt, pkt != NULL, | 
|  | rss_info, | 
|  | &rss, &mrq, | 
|  | &status_flags, &ip_id, | 
|  | &desc->special); | 
|  | desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); | 
|  | desc->status = (uint8_t) le32_to_cpu(status_flags); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc, | 
|  | struct NetRxPkt *pkt, | 
|  | const E1000E_RSSInfo *rss_info, | 
|  | uint16_t length) | 
|  | { | 
|  | memset(&desc->wb, 0, sizeof(desc->wb)); | 
|  |  | 
|  | desc->wb.upper.length = cpu_to_le16(length); | 
|  |  | 
|  | e1000e_build_rx_metadata(core, pkt, pkt != NULL, | 
|  | rss_info, | 
|  | &desc->wb.lower.hi_dword.rss, | 
|  | &desc->wb.lower.mrq, | 
|  | &desc->wb.upper.status_error, | 
|  | &desc->wb.lower.hi_dword.csum_ip.ip_id, | 
|  | &desc->wb.upper.vlan); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_write_ps_rx_descr(E1000ECore *core, | 
|  | union e1000_rx_desc_packet_split *desc, | 
|  | struct NetRxPkt *pkt, | 
|  | const E1000E_RSSInfo *rss_info, | 
|  | size_t ps_hdr_len, | 
|  | uint16_t(*written)[MAX_PS_BUFFERS]) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | memset(&desc->wb, 0, sizeof(desc->wb)); | 
|  |  | 
|  | desc->wb.middle.length0 = cpu_to_le16((*written)[0]); | 
|  |  | 
|  | for (i = 0; i < PS_PAGE_BUFFERS; i++) { | 
|  | desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]); | 
|  | } | 
|  |  | 
|  | e1000e_build_rx_metadata(core, pkt, pkt != NULL, | 
|  | rss_info, | 
|  | &desc->wb.lower.hi_dword.rss, | 
|  | &desc->wb.lower.mrq, | 
|  | &desc->wb.middle.status_error, | 
|  | &desc->wb.lower.hi_dword.csum_ip.ip_id, | 
|  | &desc->wb.middle.vlan); | 
|  |  | 
|  | desc->wb.upper.header_status = | 
|  | cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0)); | 
|  |  | 
|  | trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1], | 
|  | (*written)[2], (*written)[3]); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc, | 
|  | struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, | 
|  | size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS]) | 
|  | { | 
|  | if (e1000e_rx_use_legacy_descriptor(core)) { | 
|  | assert(ps_hdr_len == 0); | 
|  | e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, | 
|  | (*written)[0]); | 
|  | } else { | 
|  | if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { | 
|  | e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info, | 
|  | ps_hdr_len, written); | 
|  | } else { | 
|  | assert(ps_hdr_len == 0); | 
|  | e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info, | 
|  | (*written)[0]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr, | 
|  | union e1000_rx_desc_union *desc, dma_addr_t len) | 
|  | { | 
|  | PCIDevice *dev = core->owner; | 
|  |  | 
|  | if (e1000e_rx_use_legacy_descriptor(core)) { | 
|  | struct e1000_rx_desc *d = &desc->legacy; | 
|  | size_t offset = offsetof(struct e1000_rx_desc, status); | 
|  | uint8_t status = d->status; | 
|  |  | 
|  | d->status &= ~E1000_RXD_STAT_DD; | 
|  | pci_dma_write(dev, addr, desc, len); | 
|  |  | 
|  | if (status & E1000_RXD_STAT_DD) { | 
|  | d->status = status; | 
|  | pci_dma_write(dev, addr + offset, &status, sizeof(status)); | 
|  | } | 
|  | } else { | 
|  | if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { | 
|  | union e1000_rx_desc_packet_split *d = &desc->packet_split; | 
|  | size_t offset = offsetof(union e1000_rx_desc_packet_split, | 
|  | wb.middle.status_error); | 
|  | uint32_t status = d->wb.middle.status_error; | 
|  |  | 
|  | d->wb.middle.status_error &= ~E1000_RXD_STAT_DD; | 
|  | pci_dma_write(dev, addr, desc, len); | 
|  |  | 
|  | if (status & E1000_RXD_STAT_DD) { | 
|  | d->wb.middle.status_error = status; | 
|  | pci_dma_write(dev, addr + offset, &status, sizeof(status)); | 
|  | } | 
|  | } else { | 
|  | union e1000_rx_desc_extended *d = &desc->extended; | 
|  | size_t offset = offsetof(union e1000_rx_desc_extended, | 
|  | wb.upper.status_error); | 
|  | uint32_t status = d->wb.upper.status_error; | 
|  |  | 
|  | d->wb.upper.status_error &= ~E1000_RXD_STAT_DD; | 
|  | pci_dma_write(dev, addr, desc, len); | 
|  |  | 
|  | if (status & E1000_RXD_STAT_DD) { | 
|  | d->wb.upper.status_error = status; | 
|  | pci_dma_write(dev, addr + offset, &status, sizeof(status)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef struct E1000EBAState { | 
|  | uint16_t written[MAX_PS_BUFFERS]; | 
|  | uint8_t cur_idx; | 
|  | } E1000EBAState; | 
|  |  | 
|  | static inline void | 
|  | e1000e_write_hdr_frag_to_rx_buffers(E1000ECore *core, | 
|  | hwaddr ba[MAX_PS_BUFFERS], | 
|  | E1000EBAState *bastate, | 
|  | const char *data, | 
|  | dma_addr_t data_len) | 
|  | { | 
|  | assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]); | 
|  |  | 
|  | pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len); | 
|  | bastate->written[0] += data_len; | 
|  |  | 
|  | bastate->cur_idx = 1; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_write_payload_frag_to_rx_buffers(E1000ECore *core, | 
|  | hwaddr ba[MAX_PS_BUFFERS], | 
|  | E1000EBAState *bastate, | 
|  | const char *data, | 
|  | dma_addr_t data_len) | 
|  | { | 
|  | while (data_len > 0) { | 
|  | uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx]; | 
|  | uint32_t cur_buf_bytes_left = cur_buf_len - | 
|  | bastate->written[bastate->cur_idx]; | 
|  | uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left); | 
|  |  | 
|  | trace_e1000e_rx_desc_buff_write(bastate->cur_idx, | 
|  | ba[bastate->cur_idx], | 
|  | bastate->written[bastate->cur_idx], | 
|  | data, | 
|  | bytes_to_write); | 
|  |  | 
|  | pci_dma_write(core->owner, | 
|  | ba[bastate->cur_idx] + bastate->written[bastate->cur_idx], | 
|  | data, bytes_to_write); | 
|  |  | 
|  | bastate->written[bastate->cur_idx] += bytes_to_write; | 
|  | data += bytes_to_write; | 
|  | data_len -= bytes_to_write; | 
|  |  | 
|  | if (bastate->written[bastate->cur_idx] == cur_buf_len) { | 
|  | bastate->cur_idx++; | 
|  | } | 
|  |  | 
|  | assert(bastate->cur_idx < MAX_PS_BUFFERS); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size) | 
|  | { | 
|  | eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt); | 
|  | e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000ERingInfo *rxi) | 
|  | { | 
|  | return e1000e_ring_free_descr_num(core, rxi) == | 
|  | e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len) | 
|  | { | 
|  | bool hasip4, hasip6; | 
|  | EthL4HdrProto l4hdr_proto; | 
|  | bool fragment; | 
|  |  | 
|  | if (!e1000e_rx_use_ps_descriptor(core)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); | 
|  |  | 
|  | if (hasip4) { | 
|  | fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; | 
|  | } else if (hasip6) { | 
|  | fragment = net_rx_pkt_get_ip6_info(pkt)->fragment; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP || | 
|  | l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { | 
|  | *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt); | 
|  | } else { | 
|  | *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt); | 
|  | } | 
|  |  | 
|  | if ((*hdr_len > core->rxbuf_sizes[0]) || | 
|  | (*hdr_len > net_rx_pkt_get_total_len(pkt))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt, | 
|  | const E1000E_RxRing *rxr, | 
|  | const E1000E_RSSInfo *rss_info) | 
|  | { | 
|  | PCIDevice *d = core->owner; | 
|  | dma_addr_t base; | 
|  | union e1000_rx_desc_union desc; | 
|  | size_t desc_size; | 
|  | size_t desc_offset = 0; | 
|  | size_t iov_ofs = 0; | 
|  |  | 
|  | struct iovec *iov = net_rx_pkt_get_iovec(pkt); | 
|  | size_t size = net_rx_pkt_get_total_len(pkt); | 
|  | size_t total_size = size + e1000x_fcs_len(core->mac); | 
|  | const E1000ERingInfo *rxi; | 
|  | size_t ps_hdr_len = 0; | 
|  | bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len); | 
|  | bool is_first = true; | 
|  |  | 
|  | rxi = rxr->i; | 
|  |  | 
|  | do { | 
|  | hwaddr ba[MAX_PS_BUFFERS]; | 
|  | E1000EBAState bastate = { { 0 } }; | 
|  | bool is_last = false; | 
|  |  | 
|  | desc_size = total_size - desc_offset; | 
|  |  | 
|  | if (desc_size > core->rx_desc_buf_size) { | 
|  | desc_size = core->rx_desc_buf_size; | 
|  | } | 
|  |  | 
|  | if (e1000e_ring_empty(core, rxi)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | base = e1000e_ring_head_descr(core, rxi); | 
|  |  | 
|  | pci_dma_read(d, base, &desc, core->rx_desc_len); | 
|  |  | 
|  | trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); | 
|  |  | 
|  | e1000e_read_rx_descr(core, &desc, ba); | 
|  |  | 
|  | if (ba[0]) { | 
|  | if (desc_offset < size) { | 
|  | static const uint32_t fcs_pad; | 
|  | size_t iov_copy; | 
|  | size_t copy_size = size - desc_offset; | 
|  | if (copy_size > core->rx_desc_buf_size) { | 
|  | copy_size = core->rx_desc_buf_size; | 
|  | } | 
|  |  | 
|  | /* For PS mode copy the packet header first */ | 
|  | if (do_ps) { | 
|  | if (is_first) { | 
|  | size_t ps_hdr_copied = 0; | 
|  | do { | 
|  | iov_copy = MIN(ps_hdr_len - ps_hdr_copied, | 
|  | iov->iov_len - iov_ofs); | 
|  |  | 
|  | e1000e_write_hdr_frag_to_rx_buffers(core, ba, | 
|  | &bastate, | 
|  | iov->iov_base, | 
|  | iov_copy); | 
|  |  | 
|  | copy_size -= iov_copy; | 
|  | ps_hdr_copied += iov_copy; | 
|  |  | 
|  | iov_ofs += iov_copy; | 
|  | if (iov_ofs == iov->iov_len) { | 
|  | iov++; | 
|  | iov_ofs = 0; | 
|  | } | 
|  | } while (ps_hdr_copied < ps_hdr_len); | 
|  |  | 
|  | is_first = false; | 
|  | } else { | 
|  | /* Leave buffer 0 of each descriptor except first */ | 
|  | /* empty as per spec 7.1.5.1                      */ | 
|  | e1000e_write_hdr_frag_to_rx_buffers(core, ba, &bastate, | 
|  | NULL, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy packet payload */ | 
|  | while (copy_size) { | 
|  | iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); | 
|  |  | 
|  | e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate, | 
|  | iov->iov_base + | 
|  | iov_ofs, | 
|  | iov_copy); | 
|  |  | 
|  | copy_size -= iov_copy; | 
|  | iov_ofs += iov_copy; | 
|  | if (iov_ofs == iov->iov_len) { | 
|  | iov++; | 
|  | iov_ofs = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (desc_offset + desc_size >= total_size) { | 
|  | /* Simulate FCS checksum presence in the last descriptor */ | 
|  | e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate, | 
|  | (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); | 
|  | } | 
|  | } | 
|  | } else { /* as per intel docs; skip descriptors with null buf addr */ | 
|  | trace_e1000e_rx_null_descriptor(); | 
|  | } | 
|  | desc_offset += desc_size; | 
|  | if (desc_offset >= total_size) { | 
|  | is_last = true; | 
|  | } | 
|  |  | 
|  | e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL, | 
|  | rss_info, do_ps ? ps_hdr_len : 0, &bastate.written); | 
|  | e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len); | 
|  |  | 
|  | e1000e_ring_advance(core, rxi, | 
|  | core->rx_desc_len / E1000_MIN_RX_DESC_LEN); | 
|  |  | 
|  | } while (desc_offset < total_size); | 
|  |  | 
|  | e1000e_update_rx_stats(core, size, total_size); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt) | 
|  | { | 
|  | struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); | 
|  |  | 
|  | if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { | 
|  | net_rx_pkt_fix_l4_csum(pkt); | 
|  | } | 
|  | } | 
|  |  | 
|  | ssize_t | 
|  | e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt) | 
|  | { | 
|  | return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt, | 
|  | bool has_vnet) | 
|  | { | 
|  | uint32_t causes = 0; | 
|  | uint8_t buf[ETH_ZLEN]; | 
|  | struct iovec min_iov; | 
|  | size_t size, orig_size; | 
|  | size_t iov_ofs = 0; | 
|  | E1000E_RxRing rxr; | 
|  | E1000E_RSSInfo rss_info; | 
|  | size_t total_size; | 
|  | ssize_t retval; | 
|  | bool rdmts_hit; | 
|  |  | 
|  | trace_e1000e_rx_receive_iov(iovcnt); | 
|  |  | 
|  | if (!e1000x_hw_rx_enabled(core->mac)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Pull virtio header in */ | 
|  | if (has_vnet) { | 
|  | net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); | 
|  | iov_ofs = sizeof(struct virtio_net_hdr); | 
|  | } else { | 
|  | net_rx_pkt_unset_vhdr(core->rx_pkt); | 
|  | } | 
|  |  | 
|  | orig_size = iov_size(iov, iovcnt); | 
|  | size = orig_size - iov_ofs; | 
|  |  | 
|  | /* Pad to minimum Ethernet frame length */ | 
|  | if (size < sizeof(buf)) { | 
|  | iov_to_buf(iov, iovcnt, iov_ofs, buf, size); | 
|  | memset(&buf[size], 0, sizeof(buf) - size); | 
|  | e1000x_inc_reg_if_not_full(core->mac, RUC); | 
|  | min_iov.iov_base = buf; | 
|  | min_iov.iov_len = size = sizeof(buf); | 
|  | iovcnt = 1; | 
|  | iov = &min_iov; | 
|  | iov_ofs = 0; | 
|  | } else { | 
|  | iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4); | 
|  | } | 
|  |  | 
|  | /* Discard oversized packets if !LPE and !SBP. */ | 
|  | if (e1000x_is_oversized(core->mac, size)) { | 
|  | return orig_size; | 
|  | } | 
|  |  | 
|  | net_rx_pkt_set_packet_type(core->rx_pkt, | 
|  | get_eth_packet_type(PKT_GET_ETH_HDR(buf))); | 
|  |  | 
|  | if (!e1000e_receive_filter(core, buf)) { | 
|  | trace_e1000e_rx_flt_dropped(); | 
|  | return orig_size; | 
|  | } | 
|  |  | 
|  | net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, | 
|  | e1000x_vlan_enabled(core->mac) ? 0 : -1, | 
|  | core->mac[VET], 0); | 
|  |  | 
|  | e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info); | 
|  | e1000e_rx_ring_init(core, &rxr, rss_info.queue); | 
|  |  | 
|  | total_size = net_rx_pkt_get_total_len(core->rx_pkt) + | 
|  | e1000x_fcs_len(core->mac); | 
|  |  | 
|  | if (e1000e_has_rxbufs(core, rxr.i, total_size)) { | 
|  | e1000e_rx_fix_l4_csum(core, core->rx_pkt); | 
|  |  | 
|  | e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); | 
|  |  | 
|  | retval = orig_size; | 
|  |  | 
|  | /* Perform small receive detection (RSRPD) */ | 
|  | if (total_size < core->mac[RSRPD]) { | 
|  | causes |= E1000_ICS_SRPD; | 
|  | } | 
|  |  | 
|  | /* Perform ACK receive detection */ | 
|  | if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) && | 
|  | (e1000e_is_tcp_ack(core, core->rx_pkt))) { | 
|  | causes |= E1000_ICS_ACK; | 
|  | } | 
|  |  | 
|  | /* Check if receive descriptor minimum threshold hit */ | 
|  | rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i); | 
|  | causes |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit); | 
|  |  | 
|  | trace_e1000e_rx_written_to_guest(rxr.i->idx); | 
|  | } else { | 
|  | causes |= E1000_ICS_RXO; | 
|  | retval = 0; | 
|  |  | 
|  | trace_e1000e_rx_not_written_to_guest(rxr.i->idx); | 
|  | } | 
|  |  | 
|  | if (!e1000e_intrmgr_delay_rx_causes(core, &causes)) { | 
|  | trace_e1000e_rx_interrupt_set(causes); | 
|  | e1000e_set_interrupt_cause(core, causes); | 
|  | } else { | 
|  | trace_e1000e_rx_interrupt_delayed(causes); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_have_autoneg(E1000ECore *core) | 
|  | { | 
|  | return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN; | 
|  | } | 
|  |  | 
|  | static void e1000e_update_flowctl_status(E1000ECore *core) | 
|  | { | 
|  | if (e1000e_have_autoneg(core) && | 
|  | core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) { | 
|  | trace_e1000e_link_autoneg_flowctl(true); | 
|  | core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; | 
|  | } else { | 
|  | trace_e1000e_link_autoneg_flowctl(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_link_down(E1000ECore *core) | 
|  | { | 
|  | e1000x_update_regs_on_link_down(core->mac, core->phy[0]); | 
|  | e1000e_update_flowctl_status(core); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val) | 
|  | { | 
|  | /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */ | 
|  | core->phy[0][MII_BMCR] = val & ~(0x3f | | 
|  | MII_BMCR_RESET | | 
|  | MII_BMCR_ANRESTART); | 
|  |  | 
|  | if ((val & MII_BMCR_ANRESTART) && | 
|  | e1000e_have_autoneg(core)) { | 
|  | e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val) | 
|  | { | 
|  | core->phy[0][PHY_OEM_BITS] = val & ~BIT(10); | 
|  |  | 
|  | if (val & BIT(10)) { | 
|  | e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val) | 
|  | { | 
|  | core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK; | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000e_core_set_link_status(E1000ECore *core) | 
|  | { | 
|  | NetClientState *nc = qemu_get_queue(core->owner_nic); | 
|  | uint32_t old_status = core->mac[STATUS]; | 
|  |  | 
|  | trace_e1000e_link_status_changed(nc->link_down ? false : true); | 
|  |  | 
|  | if (nc->link_down) { | 
|  | e1000x_update_regs_on_link_down(core->mac, core->phy[0]); | 
|  | } else { | 
|  | if (e1000e_have_autoneg(core) && | 
|  | !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) { | 
|  | e1000x_restart_autoneg(core->mac, core->phy[0], | 
|  | core->autoneg_timer); | 
|  | } else { | 
|  | e1000x_update_regs_on_link_up(core->mac, core->phy[0]); | 
|  | e1000e_start_recv(core); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (core->mac[STATUS] != old_status) { | 
|  | e1000e_set_interrupt_cause(core, E1000_ICR_LSC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | trace_e1000e_core_ctrl_write(index, val); | 
|  |  | 
|  | /* RST is self clearing */ | 
|  | core->mac[CTRL] = val & ~E1000_CTRL_RST; | 
|  | core->mac[CTRL_DUP] = core->mac[CTRL]; | 
|  |  | 
|  | trace_e1000e_link_set_params( | 
|  | !!(val & E1000_CTRL_ASDE), | 
|  | (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, | 
|  | !!(val & E1000_CTRL_FRCSPD), | 
|  | !!(val & E1000_CTRL_FRCDPX), | 
|  | !!(val & E1000_CTRL_RFCE), | 
|  | !!(val & E1000_CTRL_TFCE)); | 
|  |  | 
|  | if (val & E1000_CTRL_RST) { | 
|  | trace_e1000e_core_ctrl_sw_reset(); | 
|  | e1000e_reset(core, true); | 
|  | } | 
|  |  | 
|  | if (val & E1000_CTRL_PHY_RST) { | 
|  | trace_e1000e_core_ctrl_phy_reset(); | 
|  | core->mac[STATUS] |= E1000_STATUS_PHYRA; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | trace_e1000e_rx_set_rfctl(val); | 
|  |  | 
|  | if (!(val & E1000_RFCTL_ISCSI_DIS)) { | 
|  | trace_e1000e_wrn_iscsi_filtering_not_supported(); | 
|  | } | 
|  |  | 
|  | if (!(val & E1000_RFCTL_NFSW_DIS)) { | 
|  | trace_e1000e_wrn_nfsw_filtering_not_supported(); | 
|  | } | 
|  |  | 
|  | if (!(val & E1000_RFCTL_NFSR_DIS)) { | 
|  | trace_e1000e_wrn_nfsr_filtering_not_supported(); | 
|  | } | 
|  |  | 
|  | core->mac[RFCTL] = val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_calc_per_desc_buf_size(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  | core->rx_desc_buf_size = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) { | 
|  | core->rx_desc_buf_size += core->rxbuf_sizes[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_parse_rxbufsize(E1000ECore *core) | 
|  | { | 
|  | uint32_t rctl = core->mac[RCTL]; | 
|  |  | 
|  | memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes)); | 
|  |  | 
|  | if (rctl & E1000_RCTL_DTYP_MASK) { | 
|  | uint32_t bsize; | 
|  |  | 
|  | bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK; | 
|  | core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128; | 
|  |  | 
|  | bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK; | 
|  | core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024; | 
|  |  | 
|  | bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK; | 
|  | core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024; | 
|  |  | 
|  | bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK; | 
|  | core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024; | 
|  | } else if (rctl & E1000_RCTL_FLXBUF_MASK) { | 
|  | int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK; | 
|  | core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024; | 
|  | } else { | 
|  | core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl); | 
|  | } | 
|  |  | 
|  | trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1], | 
|  | core->rxbuf_sizes[2], core->rxbuf_sizes[3]); | 
|  |  | 
|  | e1000e_calc_per_desc_buf_size(core); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_calc_rxdesclen(E1000ECore *core) | 
|  | { | 
|  | if (e1000e_rx_use_legacy_descriptor(core)) { | 
|  | core->rx_desc_len = sizeof(struct e1000_rx_desc); | 
|  | } else { | 
|  | if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { | 
|  | core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split); | 
|  | } else { | 
|  | core->rx_desc_len = sizeof(union e1000_rx_desc_extended); | 
|  | } | 
|  | } | 
|  | trace_e1000e_rx_desc_len(core->rx_desc_len); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[RCTL] = val; | 
|  | trace_e1000e_rx_set_rctl(core->mac[RCTL]); | 
|  |  | 
|  | if (val & E1000_RCTL_EN) { | 
|  | e1000e_parse_rxbufsize(core); | 
|  | e1000e_calc_rxdesclen(core); | 
|  | core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 + | 
|  | E1000_RING_DESC_LEN_SHIFT; | 
|  |  | 
|  | e1000e_start_recv(core); | 
|  | } | 
|  | } | 
|  |  | 
|  | static | 
|  | void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE]) | 
|  | (E1000ECore *, int, uint16_t) = { | 
|  | [0] = { | 
|  | [MII_BMCR]     = e1000e_set_phy_ctrl, | 
|  | [PHY_PAGE]     = e1000e_set_phy_page, | 
|  | [PHY_OEM_BITS] = e1000e_set_phy_oem_bits | 
|  | } | 
|  | }; | 
|  |  | 
|  | static inline bool | 
|  | e1000e_postpone_interrupt(E1000IntrDelayTimer *timer) | 
|  | { | 
|  | if (timer->running) { | 
|  | trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (timer->core->mac[timer->delay_reg] != 0) { | 
|  | e1000e_intrmgr_rearm_timer(timer); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_itr_should_postpone(E1000ECore *core) | 
|  | { | 
|  | return e1000e_postpone_interrupt(&core->itr); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | e1000e_eitr_should_postpone(E1000ECore *core, int idx) | 
|  | { | 
|  | return e1000e_postpone_interrupt(&core->eitr[idx]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) | 
|  | { | 
|  | uint32_t effective_eiac; | 
|  |  | 
|  | if (E1000_IVAR_ENTRY_VALID(int_cfg)) { | 
|  | uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); | 
|  | if (vec < E1000E_MSIX_VEC_NUM) { | 
|  | if (!e1000e_eitr_should_postpone(core, vec)) { | 
|  | trace_e1000e_irq_msix_notify_vec(vec); | 
|  | msix_notify(core->owner, vec); | 
|  | } | 
|  | } else { | 
|  | trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); | 
|  | } | 
|  | } else { | 
|  | trace_e1000e_wrn_msix_invalid(cause, int_cfg); | 
|  | } | 
|  |  | 
|  | if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) { | 
|  | trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause); | 
|  | core->mac[IAM] &= ~cause; | 
|  | } | 
|  |  | 
|  | trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]); | 
|  |  | 
|  | effective_eiac = core->mac[EIAC] & cause; | 
|  |  | 
|  | core->mac[ICR] &= ~effective_eiac; | 
|  |  | 
|  | if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { | 
|  | core->mac[IMS] &= ~effective_eiac; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_msix_notify(E1000ECore *core, uint32_t causes) | 
|  | { | 
|  | if (causes & E1000_ICR_RXQ0) { | 
|  | e1000e_msix_notify_one(core, E1000_ICR_RXQ0, | 
|  | E1000_IVAR_RXQ0(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_RXQ1) { | 
|  | e1000e_msix_notify_one(core, E1000_ICR_RXQ1, | 
|  | E1000_IVAR_RXQ1(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_TXQ0) { | 
|  | e1000e_msix_notify_one(core, E1000_ICR_TXQ0, | 
|  | E1000_IVAR_TXQ0(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_TXQ1) { | 
|  | e1000e_msix_notify_one(core, E1000_ICR_TXQ1, | 
|  | E1000_IVAR_TXQ1(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_OTHER) { | 
|  | e1000e_msix_notify_one(core, E1000_ICR_OTHER, | 
|  | E1000_IVAR_OTHER(core->mac[IVAR])); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) | 
|  | { | 
|  | if (E1000_IVAR_ENTRY_VALID(int_cfg)) { | 
|  | uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); | 
|  | if (vec < E1000E_MSIX_VEC_NUM) { | 
|  | trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec); | 
|  | msix_clr_pending(core->owner, vec); | 
|  | } else { | 
|  | trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); | 
|  | } | 
|  | } else { | 
|  | trace_e1000e_wrn_msix_invalid(cause, int_cfg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_msix_clear(E1000ECore *core, uint32_t causes) | 
|  | { | 
|  | if (causes & E1000_ICR_RXQ0) { | 
|  | e1000e_msix_clear_one(core, E1000_ICR_RXQ0, | 
|  | E1000_IVAR_RXQ0(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_RXQ1) { | 
|  | e1000e_msix_clear_one(core, E1000_ICR_RXQ1, | 
|  | E1000_IVAR_RXQ1(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_TXQ0) { | 
|  | e1000e_msix_clear_one(core, E1000_ICR_TXQ0, | 
|  | E1000_IVAR_TXQ0(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_TXQ1) { | 
|  | e1000e_msix_clear_one(core, E1000_ICR_TXQ1, | 
|  | E1000_IVAR_TXQ1(core->mac[IVAR])); | 
|  | } | 
|  |  | 
|  | if (causes & E1000_ICR_OTHER) { | 
|  | e1000e_msix_clear_one(core, E1000_ICR_OTHER, | 
|  | E1000_IVAR_OTHER(core->mac[IVAR])); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_fix_icr_asserted(E1000ECore *core) | 
|  | { | 
|  | core->mac[ICR] &= ~E1000_ICR_ASSERTED; | 
|  | if (core->mac[ICR]) { | 
|  | core->mac[ICR] |= E1000_ICR_ASSERTED; | 
|  | } | 
|  |  | 
|  | trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); | 
|  | } | 
|  |  | 
|  | static void e1000e_raise_interrupts(E1000ECore *core, | 
|  | size_t index, uint32_t causes) | 
|  | { | 
|  | bool is_msix = msix_enabled(core->owner); | 
|  | uint32_t old_causes = core->mac[IMS] & core->mac[ICR]; | 
|  | uint32_t raised_causes; | 
|  |  | 
|  | trace_e1000e_irq_set(index << 2, | 
|  | core->mac[index], core->mac[index] | causes); | 
|  |  | 
|  | core->mac[index] |= causes; | 
|  |  | 
|  | /* Set ICR[OTHER] for MSI-X */ | 
|  | if (is_msix) { | 
|  | if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) { | 
|  | core->mac[ICR] |= E1000_ICR_OTHER; | 
|  | trace_e1000e_irq_add_msi_other(core->mac[ICR]); | 
|  | } | 
|  | } | 
|  |  | 
|  | e1000e_fix_icr_asserted(core); | 
|  |  | 
|  | /* | 
|  | * Make sure ICR and ICS registers have the same value. | 
|  | * The spec says that the ICS register is write-only.  However in practice, | 
|  | * on real hardware ICS is readable, and for reads it has the same value as | 
|  | * ICR (except that ICS does not have the clear on read behaviour of ICR). | 
|  | * | 
|  | * The VxWorks PRO/1000 driver uses this behaviour. | 
|  | */ | 
|  | core->mac[ICS] = core->mac[ICR]; | 
|  |  | 
|  | trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], | 
|  | core->mac[ICR], core->mac[IMS]); | 
|  |  | 
|  | raised_causes = core->mac[IMS] & core->mac[ICR] & ~old_causes; | 
|  | if (!raised_causes) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_msix) { | 
|  | e1000e_msix_notify(core, raised_causes & ~E1000_ICR_ASSERTED); | 
|  | } else if (!e1000e_itr_should_postpone(core)) { | 
|  | if (msi_enabled(core->owner)) { | 
|  | trace_e1000e_irq_msi_notify(raised_causes); | 
|  | msi_notify(core->owner, 0); | 
|  | } else { | 
|  | e1000e_raise_legacy_irq(core); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000e_lower_interrupts(E1000ECore *core, | 
|  | size_t index, uint32_t causes) | 
|  | { | 
|  | trace_e1000e_irq_clear(index << 2, | 
|  | core->mac[index], core->mac[index] & ~causes); | 
|  |  | 
|  | core->mac[index] &= ~causes; | 
|  |  | 
|  | /* | 
|  | * Make sure ICR and ICS registers have the same value. | 
|  | * The spec says that the ICS register is write-only.  However in practice, | 
|  | * on real hardware ICS is readable, and for reads it has the same value as | 
|  | * ICR (except that ICS does not have the clear on read behaviour of ICR). | 
|  | * | 
|  | * The VxWorks PRO/1000 driver uses this behaviour. | 
|  | */ | 
|  | core->mac[ICS] = core->mac[ICR]; | 
|  |  | 
|  | trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], | 
|  | core->mac[ICR], core->mac[IMS]); | 
|  |  | 
|  | if (!(core->mac[IMS] & core->mac[ICR]) && | 
|  | !msix_enabled(core->owner) && !msi_enabled(core->owner)) { | 
|  | e1000e_lower_legacy_irq(core); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val) | 
|  | { | 
|  | val |= e1000e_intmgr_collect_delayed_causes(core); | 
|  | e1000e_raise_interrupts(core, ICR, val); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | e1000e_autoneg_timer(void *opaque) | 
|  | { | 
|  | E1000ECore *core = opaque; | 
|  | if (!qemu_get_queue(core->owner_nic)->link_down) { | 
|  | e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]); | 
|  | e1000e_start_recv(core); | 
|  |  | 
|  | e1000e_update_flowctl_status(core); | 
|  | /* signal link status change to the guest */ | 
|  | e1000e_set_interrupt_cause(core, E1000_ICR_LSC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint16_t | 
|  | e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) | 
|  | { | 
|  | uint16_t index = (addr & 0x1ffff) >> 2; | 
|  | return index + (mac_reg_access[index] & 0xfffe); | 
|  | } | 
|  |  | 
|  | static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = { | 
|  | [0] = { | 
|  | [MII_BMCR]              = PHY_ANYPAGE | PHY_RW, | 
|  | [MII_BMSR]              = PHY_ANYPAGE | PHY_R, | 
|  | [MII_PHYID1]            = PHY_ANYPAGE | PHY_R, | 
|  | [MII_PHYID2]            = PHY_ANYPAGE | PHY_R, | 
|  | [MII_ANAR]              = PHY_ANYPAGE | PHY_RW, | 
|  | [MII_ANLPAR]            = PHY_ANYPAGE | PHY_R, | 
|  | [MII_ANER]              = PHY_ANYPAGE | PHY_R, | 
|  | [MII_ANNP]              = PHY_ANYPAGE | PHY_RW, | 
|  | [MII_ANLPRNP]           = PHY_ANYPAGE | PHY_R, | 
|  | [MII_CTRL1000]          = PHY_ANYPAGE | PHY_RW, | 
|  | [MII_STAT1000]          = PHY_ANYPAGE | PHY_R, | 
|  | [MII_EXTSTAT]           = PHY_ANYPAGE | PHY_R, | 
|  | [PHY_PAGE]              = PHY_ANYPAGE | PHY_RW, | 
|  |  | 
|  | [PHY_COPPER_CTRL1]      = PHY_RW, | 
|  | [PHY_COPPER_STAT1]      = PHY_R, | 
|  | [PHY_COPPER_CTRL3]      = PHY_RW, | 
|  | [PHY_RX_ERR_CNTR]       = PHY_R, | 
|  | [PHY_OEM_BITS]          = PHY_RW, | 
|  | [PHY_BIAS_1]            = PHY_RW, | 
|  | [PHY_BIAS_2]            = PHY_RW, | 
|  | [PHY_COPPER_INT_ENABLE] = PHY_RW, | 
|  | [PHY_COPPER_STAT2]      = PHY_R, | 
|  | [PHY_COPPER_CTRL2]      = PHY_RW | 
|  | }, | 
|  | [2] = { | 
|  | [PHY_MAC_CTRL1]         = PHY_RW, | 
|  | [PHY_MAC_INT_ENABLE]    = PHY_RW, | 
|  | [PHY_MAC_STAT]          = PHY_R, | 
|  | [PHY_MAC_CTRL2]         = PHY_RW | 
|  | }, | 
|  | [3] = { | 
|  | [PHY_LED_03_FUNC_CTRL1] = PHY_RW, | 
|  | [PHY_LED_03_POL_CTRL]   = PHY_RW, | 
|  | [PHY_LED_TIMER_CTRL]    = PHY_RW, | 
|  | [PHY_LED_45_CTRL]       = PHY_RW | 
|  | }, | 
|  | [5] = { | 
|  | [PHY_1000T_SKEW]        = PHY_R, | 
|  | [PHY_1000T_SWAP]        = PHY_R | 
|  | }, | 
|  | [6] = { | 
|  | [PHY_CRC_COUNTERS]      = PHY_R | 
|  | } | 
|  | }; | 
|  |  | 
|  | static bool | 
|  | e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr, | 
|  | char cap, uint8_t *page) | 
|  | { | 
|  | *page = | 
|  | (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0 | 
|  | : core->phy[0][PHY_PAGE]; | 
|  |  | 
|  | if (*page >= E1000E_PHY_PAGES) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return e1000e_phy_regcap[*page][addr] & cap; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_phy_reg_write(E1000ECore *core, uint8_t page, | 
|  | uint32_t addr, uint16_t data) | 
|  | { | 
|  | assert(page < E1000E_PHY_PAGES); | 
|  | assert(addr < E1000E_PHY_PAGE_SIZE); | 
|  |  | 
|  | if (e1000e_phyreg_writeops[page][addr]) { | 
|  | e1000e_phyreg_writeops[page][addr](core, addr, data); | 
|  | } else { | 
|  | core->phy[page][addr] = data; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_mdic(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | uint32_t data = val & E1000_MDIC_DATA_MASK; | 
|  | uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); | 
|  | uint8_t page; | 
|  |  | 
|  | if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ | 
|  | val = core->mac[MDIC] | E1000_MDIC_ERROR; | 
|  | } else if (val & E1000_MDIC_OP_READ) { | 
|  | if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) { | 
|  | trace_e1000e_core_mdic_read_unhandled(page, addr); | 
|  | val |= E1000_MDIC_ERROR; | 
|  | } else { | 
|  | val = (val ^ data) | core->phy[page][addr]; | 
|  | trace_e1000e_core_mdic_read(page, addr, val); | 
|  | } | 
|  | } else if (val & E1000_MDIC_OP_WRITE) { | 
|  | if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) { | 
|  | trace_e1000e_core_mdic_write_unhandled(page, addr); | 
|  | val |= E1000_MDIC_ERROR; | 
|  | } else { | 
|  | trace_e1000e_core_mdic_write(page, addr, data); | 
|  | e1000e_phy_reg_write(core, page, addr, data); | 
|  | } | 
|  | } | 
|  | core->mac[MDIC] = val | E1000_MDIC_READY; | 
|  |  | 
|  | if (val & E1000_MDIC_INT_EN) { | 
|  | e1000e_set_interrupt_cause(core, E1000_ICR_MDAC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_rdt(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[index] = val & 0xffff; | 
|  | trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val); | 
|  | e1000e_start_recv(core); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_status(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | if ((val & E1000_STATUS_PHYRA) == 0) { | 
|  | core->mac[index] &= ~E1000_STATUS_PHYRA; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), | 
|  | !!(val & E1000_CTRL_EXT_SPD_BYPS)); | 
|  |  | 
|  | /* Zero self-clearing bits */ | 
|  | val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); | 
|  | core->mac[CTRL_EXT] = val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; | 
|  |  | 
|  | if (!msix_enabled(core->owner)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { | 
|  | if (core->mac[PBACLR] & BIT(i)) { | 
|  | msix_clr_pending(core->owner, i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[FCRTH] = val & 0xFFF8; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[FCRTL] = val & 0x8000FFF8; | 
|  | } | 
|  |  | 
|  | #define E1000E_LOW_BITS_SET_FUNC(num)                                \ | 
|  | static void                                                      \ | 
|  | e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \ | 
|  | {                                                                \ | 
|  | core->mac[index] = val & (BIT(num) - 1);                     \ | 
|  | } | 
|  |  | 
|  | E1000E_LOW_BITS_SET_FUNC(4) | 
|  | E1000E_LOW_BITS_SET_FUNC(6) | 
|  | E1000E_LOW_BITS_SET_FUNC(11) | 
|  | E1000E_LOW_BITS_SET_FUNC(12) | 
|  | E1000E_LOW_BITS_SET_FUNC(13) | 
|  | E1000E_LOW_BITS_SET_FUNC(16) | 
|  |  | 
|  | static void | 
|  | e1000e_set_vet(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[VET] = val & 0xffff; | 
|  | trace_e1000e_vlan_vet(core->mac[VET]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_dlen(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[index] = val & E1000_XDLEN_MASK; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_dbal(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[index] = val & E1000_XDBAL_MASK; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_tctl(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | E1000E_TxRing txr; | 
|  | core->mac[index] = val; | 
|  |  | 
|  | if (core->mac[TARC0] & E1000_TARC_ENABLE) { | 
|  | e1000e_tx_ring_init(core, &txr, 0); | 
|  | e1000e_start_xmit(core, &txr); | 
|  | } | 
|  |  | 
|  | if (core->mac[TARC1] & E1000_TARC_ENABLE) { | 
|  | e1000e_tx_ring_init(core, &txr, 1); | 
|  | e1000e_start_xmit(core, &txr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_tdt(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | E1000E_TxRing txr; | 
|  | int qidx = e1000e_mq_queue_idx(TDT, index); | 
|  | uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1; | 
|  |  | 
|  | core->mac[index] = val & 0xffff; | 
|  |  | 
|  | if (core->mac[tarc_reg] & E1000_TARC_ENABLE) { | 
|  | e1000e_tx_ring_init(core, &txr, qidx); | 
|  | e1000e_start_xmit(core, &txr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_ics(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | trace_e1000e_irq_write_ics(val); | 
|  | e1000e_set_interrupt_cause(core, val); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_icr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | if ((core->mac[ICR] & E1000_ICR_ASSERTED) && | 
|  | (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { | 
|  | trace_e1000e_irq_icr_process_iame(); | 
|  | e1000e_lower_interrupts(core, IMS, core->mac[IAM]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Windows driver expects that the "receive overrun" bit and other | 
|  | * ones to be cleared when the "Other" bit (#24) is cleared. | 
|  | */ | 
|  | if (val & E1000_ICR_OTHER) { | 
|  | val |= E1000_ICR_OTHER_CAUSES; | 
|  | } | 
|  | e1000e_lower_interrupts(core, ICR, val); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_imc(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | trace_e1000e_irq_ims_clear_set_imc(val); | 
|  | e1000e_lower_interrupts(core, IMS, val); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_ims(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | static const uint32_t ims_ext_mask = | 
|  | E1000_IMS_RXQ0 | E1000_IMS_RXQ1 | | 
|  | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | | 
|  | E1000_IMS_OTHER; | 
|  |  | 
|  | static const uint32_t ims_valid_mask = | 
|  | E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  | | 
|  | E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 | | 
|  | E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD | | 
|  | E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 | | 
|  | E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 | | 
|  | E1000_IMS_OTHER; | 
|  |  | 
|  | uint32_t valid_val = val & ims_valid_mask; | 
|  |  | 
|  | if ((valid_val & ims_ext_mask) && | 
|  | (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) && | 
|  | msix_enabled(core->owner)) { | 
|  | e1000e_msix_clear(core, valid_val); | 
|  | } | 
|  |  | 
|  | if ((valid_val == ims_valid_mask) && | 
|  | (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) { | 
|  | trace_e1000e_irq_fire_all_timers(val); | 
|  | e1000e_intrmgr_fire_all_timers(core); | 
|  | } | 
|  |  | 
|  | e1000e_raise_interrupts(core, IMS, valid_val); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | e1000e_set_16bit(core, index, val); | 
|  |  | 
|  | if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) { | 
|  | trace_e1000e_irq_rdtr_fpd_running(); | 
|  | e1000e_intrmgr_fire_delayed_interrupts(core); | 
|  | } else { | 
|  | trace_e1000e_irq_rdtr_fpd_not_running(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_tidv(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | e1000e_set_16bit(core, index, val); | 
|  |  | 
|  | if ((val & E1000_TIDV_FPD) && (core->tidv.running)) { | 
|  | trace_e1000e_irq_tidv_fpd_running(); | 
|  | e1000e_intrmgr_fire_delayed_interrupts(core); | 
|  | } else { | 
|  | trace_e1000e_irq_tidv_fpd_not_running(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_readreg(E1000ECore *core, int index) | 
|  | { | 
|  | return core->mac[index]; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_ics_read(E1000ECore *core, int index) | 
|  | { | 
|  | trace_e1000e_irq_read_ics(core->mac[ICS]); | 
|  | return core->mac[ICS]; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_ims_read(E1000ECore *core, int index) | 
|  | { | 
|  | trace_e1000e_irq_read_ims(core->mac[IMS]); | 
|  | return core->mac[IMS]; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_swsm_read(E1000ECore *core, int index) | 
|  | { | 
|  | uint32_t val = core->mac[SWSM]; | 
|  | core->mac[SWSM] = val | E1000_SWSM_SMBI; | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_itr_read(E1000ECore *core, int index) | 
|  | { | 
|  | return core->itr_guest_value; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_eitr_read(E1000ECore *core, int index) | 
|  | { | 
|  | return core->eitr_guest_value[index - EITR]; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_icr_read(E1000ECore *core, int index) | 
|  | { | 
|  | uint32_t ret = core->mac[ICR]; | 
|  |  | 
|  | if (core->mac[IMS] == 0) { | 
|  | trace_e1000e_irq_icr_clear_zero_ims(); | 
|  | e1000e_lower_interrupts(core, ICR, 0xffffffff); | 
|  | } | 
|  |  | 
|  | if (!msix_enabled(core->owner)) { | 
|  | trace_e1000e_irq_icr_clear_nonmsix_icr_read(); | 
|  | e1000e_lower_interrupts(core, ICR, 0xffffffff); | 
|  | } | 
|  |  | 
|  | if (core->mac[ICR] & E1000_ICR_ASSERTED) { | 
|  | if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME) { | 
|  | trace_e1000e_irq_icr_clear_iame(); | 
|  | e1000e_lower_interrupts(core, ICR, 0xffffffff); | 
|  | trace_e1000e_irq_icr_process_iame(); | 
|  | e1000e_lower_interrupts(core, IMS, core->mac[IAM]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The datasheet does not say what happens when interrupt was asserted | 
|  | * (ICR.INT_ASSERT=1) and auto mask is *not* active. | 
|  | * However, section of 13.3.27 the PCIe* GbE Controllers Open Source | 
|  | * Software Developer’s Manual, which were written for older devices, | 
|  | * namely 631xESB/632xESB, 82563EB/82564EB, 82571EB/82572EI & | 
|  | * 82573E/82573V/82573L, does say: | 
|  | * > If IMS = 0b, then the ICR register is always clear-on-read. If IMS | 
|  | * > is not 0b, but some ICR bit is set where the corresponding IMS bit | 
|  | * > is not set, then a read does not clear the ICR register. For | 
|  | * > example, if IMS = 10101010b and ICR = 01010101b, then a read to the | 
|  | * > ICR register does not clear it. If IMS = 10101010b and | 
|  | * > ICR = 0101011b, then a read to the ICR register clears it entirely | 
|  | * > (ICR.INT_ASSERTED = 1b). | 
|  | * | 
|  | * Linux does no longer activate auto mask since commit | 
|  | * 0a8047ac68e50e4ccbadcfc6b6b070805b976885 and the real hardware | 
|  | * clears ICR even in such a case so we also should do so. | 
|  | */ | 
|  | if (core->mac[ICR] & core->mac[IMS]) { | 
|  | trace_e1000e_irq_icr_clear_icr_bit_ims(core->mac[ICR], | 
|  | core->mac[IMS]); | 
|  | e1000e_lower_interrupts(core, ICR, 0xffffffff); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_read_clr4(E1000ECore *core, int index) | 
|  | { | 
|  | uint32_t ret = core->mac[index]; | 
|  |  | 
|  | core->mac[index] = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_mac_read_clr8(E1000ECore *core, int index) | 
|  | { | 
|  | uint32_t ret = core->mac[index]; | 
|  |  | 
|  | core->mac[index] = 0; | 
|  | core->mac[index - 1] = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_get_ctrl(E1000ECore *core, int index) | 
|  | { | 
|  | uint32_t val = core->mac[CTRL]; | 
|  |  | 
|  | trace_e1000e_link_read_params( | 
|  | !!(val & E1000_CTRL_ASDE), | 
|  | (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, | 
|  | !!(val & E1000_CTRL_FRCSPD), | 
|  | !!(val & E1000_CTRL_FRCDPX), | 
|  | !!(val & E1000_CTRL_RFCE), | 
|  | !!(val & E1000_CTRL_TFCE)); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_get_status(E1000ECore *core, int index) | 
|  | { | 
|  | uint32_t res = core->mac[STATUS]; | 
|  |  | 
|  | if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) { | 
|  | res |= E1000_STATUS_GIO_MASTER_ENABLE; | 
|  | } | 
|  |  | 
|  | if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { | 
|  | res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; | 
|  | } else { | 
|  | res |= E1000_STATUS_FD; | 
|  | } | 
|  |  | 
|  | if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || | 
|  | (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { | 
|  | switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { | 
|  | case E1000_CTRL_SPD_10: | 
|  | res |= E1000_STATUS_SPEED_10; | 
|  | break; | 
|  | case E1000_CTRL_SPD_100: | 
|  | res |= E1000_STATUS_SPEED_100; | 
|  | break; | 
|  | case E1000_CTRL_SPD_1000: | 
|  | default: | 
|  | res |= E1000_STATUS_SPEED_1000; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | res |= E1000_STATUS_SPEED_1000; | 
|  | } | 
|  |  | 
|  | trace_e1000e_link_status( | 
|  | !!(res & E1000_STATUS_LU), | 
|  | !!(res & E1000_STATUS_FD), | 
|  | (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT, | 
|  | (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000e_get_tarc(E1000ECore *core, int index) | 
|  | { | 
|  | return core->mac[index] & ((BIT(11) - 1) | | 
|  | BIT(27)      | | 
|  | BIT(28)      | | 
|  | BIT(29)      | | 
|  | BIT(30)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[index] = val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | uint32_t macaddr[2]; | 
|  |  | 
|  | core->mac[index] = val; | 
|  |  | 
|  | macaddr[0] = cpu_to_le32(core->mac[RA]); | 
|  | macaddr[1] = cpu_to_le32(core->mac[RA + 1]); | 
|  | qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), | 
|  | (uint8_t *) macaddr); | 
|  |  | 
|  | trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_eecd(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | static const uint32_t ro_bits = E1000_EECD_PRES          | | 
|  | E1000_EECD_AUTO_RD       | | 
|  | E1000_EECD_SIZE_EX_MASK; | 
|  |  | 
|  | core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_eerd(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; | 
|  | uint32_t flags = 0; | 
|  | uint32_t data = 0; | 
|  |  | 
|  | if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { | 
|  | data = core->eeprom[addr]; | 
|  | flags = E1000_EERW_DONE; | 
|  | } | 
|  |  | 
|  | core->mac[EERD] = flags                           | | 
|  | (addr << E1000_EERW_ADDR_SHIFT) | | 
|  | (data << E1000_EERW_DATA_SHIFT); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_eewr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; | 
|  | uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK; | 
|  | uint32_t flags = 0; | 
|  |  | 
|  | if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { | 
|  | core->eeprom[addr] = data; | 
|  | flags = E1000_EERW_DONE; | 
|  | } | 
|  |  | 
|  | core->mac[EERD] = flags                           | | 
|  | (addr << E1000_EERW_ADDR_SHIFT) | | 
|  | (data << E1000_EERW_DATA_SHIFT); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[RXDCTL] = core->mac[RXDCTL1] = val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_itr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | uint32_t interval = val & 0xffff; | 
|  |  | 
|  | trace_e1000e_irq_itr_set(val); | 
|  |  | 
|  | core->itr_guest_value = interval; | 
|  | core->mac[index] = MAX(interval, E1000E_MIN_XITR); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_eitr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | uint32_t interval = val & 0xffff; | 
|  | uint32_t eitr_num = index - EITR; | 
|  |  | 
|  | trace_e1000e_irq_eitr_set(eitr_num, val); | 
|  |  | 
|  | core->eitr_guest_value[eitr_num] = interval; | 
|  | core->mac[index] = MAX(interval, E1000E_MIN_XITR); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) { | 
|  |  | 
|  | if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "e1000e: PSRCTL.BSIZE0 cannot be zero"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "e1000e: PSRCTL.BSIZE1 cannot be zero"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | core->mac[PSRCTL] = val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_update_rx_offloads(E1000ECore *core) | 
|  | { | 
|  | int cso_state = e1000e_rx_l4_cso_enabled(core); | 
|  |  | 
|  | trace_e1000e_rx_set_cso(cso_state); | 
|  |  | 
|  | if (core->has_vnet) { | 
|  | qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, | 
|  | cso_state, 0, 0, 0, 0, 0, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[RXCSUM] = val; | 
|  | e1000e_update_rx_offloads(core); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_set_gcr(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; | 
|  | core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; | 
|  | } | 
|  |  | 
|  | static uint32_t e1000e_get_systiml(E1000ECore *core, int index) | 
|  | { | 
|  | e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH); | 
|  | return core->mac[SYSTIML]; | 
|  | } | 
|  |  | 
|  | static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index) | 
|  | { | 
|  | core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID; | 
|  | return core->mac[RXSATRH]; | 
|  | } | 
|  |  | 
|  | static uint32_t e1000e_get_txstmph(E1000ECore *core, int index) | 
|  | { | 
|  | core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID; | 
|  | return core->mac[TXSTMPH]; | 
|  | } | 
|  |  | 
|  | static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | e1000x_set_timinca(core->mac, &core->timadj, val); | 
|  | } | 
|  |  | 
|  | static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val) | 
|  | { | 
|  | core->mac[TIMADJH] = val; | 
|  | core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32); | 
|  | } | 
|  |  | 
|  | #define e1000e_getreg(x)    [x] = e1000e_mac_readreg | 
|  | typedef uint32_t (*readops)(E1000ECore *, int); | 
|  | static const readops e1000e_macreg_readops[] = { | 
|  | e1000e_getreg(PBA), | 
|  | e1000e_getreg(WUFC), | 
|  | e1000e_getreg(MANC), | 
|  | e1000e_getreg(TOTL), | 
|  | e1000e_getreg(RDT0), | 
|  | e1000e_getreg(RDBAH0), | 
|  | e1000e_getreg(TDBAL1), | 
|  | e1000e_getreg(RDLEN0), | 
|  | e1000e_getreg(RDH1), | 
|  | e1000e_getreg(LATECOL), | 
|  | e1000e_getreg(SEQEC), | 
|  | e1000e_getreg(XONTXC), | 
|  | e1000e_getreg(AIT), | 
|  | e1000e_getreg(TDFH), | 
|  | e1000e_getreg(TDFT), | 
|  | e1000e_getreg(TDFHS), | 
|  | e1000e_getreg(TDFTS), | 
|  | e1000e_getreg(TDFPC), | 
|  | e1000e_getreg(WUS), | 
|  | e1000e_getreg(PBS), | 
|  | e1000e_getreg(RDFH), | 
|  | e1000e_getreg(RDFT), | 
|  | e1000e_getreg(RDFHS), | 
|  | e1000e_getreg(RDFTS), | 
|  | e1000e_getreg(RDFPC), | 
|  | e1000e_getreg(GORCL), | 
|  | e1000e_getreg(MGTPRC), | 
|  | e1000e_getreg(EERD), | 
|  | e1000e_getreg(EIAC), | 
|  | e1000e_getreg(PSRCTL), | 
|  | e1000e_getreg(MANC2H), | 
|  | e1000e_getreg(RXCSUM), | 
|  | e1000e_getreg(GSCL_3), | 
|  | e1000e_getreg(GSCN_2), | 
|  | e1000e_getreg(RSRPD), | 
|  | e1000e_getreg(RDBAL1), | 
|  | e1000e_getreg(FCAH), | 
|  | e1000e_getreg(FCRTH), | 
|  | e1000e_getreg(FLOP), | 
|  | e1000e_getreg(FLASHT), | 
|  | e1000e_getreg(RXSTMPH), | 
|  | e1000e_getreg(TXSTMPL), | 
|  | e1000e_getreg(TIMADJL), | 
|  | e1000e_getreg(TXDCTL), | 
|  | e1000e_getreg(RDH0), | 
|  | e1000e_getreg(TDT1), | 
|  | e1000e_getreg(TNCRS), | 
|  | e1000e_getreg(RJC), | 
|  | e1000e_getreg(IAM), | 
|  | e1000e_getreg(GSCL_2), | 
|  | e1000e_getreg(RDBAH1), | 
|  | e1000e_getreg(FLSWDATA), | 
|  | e1000e_getreg(TIPG), | 
|  | e1000e_getreg(FLMNGCTL), | 
|  | e1000e_getreg(FLMNGCNT), | 
|  | e1000e_getreg(TSYNCTXCTL), | 
|  | e1000e_getreg(EXTCNF_SIZE), | 
|  | e1000e_getreg(EXTCNF_CTRL), | 
|  | e1000e_getreg(EEMNGDATA), | 
|  | e1000e_getreg(CTRL_EXT), | 
|  | e1000e_getreg(SYSTIMH), | 
|  | e1000e_getreg(EEMNGCTL), | 
|  | e1000e_getreg(FLMNGDATA), | 
|  | e1000e_getreg(TSYNCRXCTL), | 
|  | e1000e_getreg(TDH), | 
|  | e1000e_getreg(LEDCTL), | 
|  | e1000e_getreg(TCTL), | 
|  | e1000e_getreg(TDBAL), | 
|  | e1000e_getreg(TDLEN), | 
|  | e1000e_getreg(TDH1), | 
|  | e1000e_getreg(RADV), | 
|  | e1000e_getreg(ECOL), | 
|  | e1000e_getreg(DC), | 
|  | e1000e_getreg(RLEC), | 
|  | e1000e_getreg(XOFFTXC), | 
|  | e1000e_getreg(RFC), | 
|  | e1000e_getreg(RNBC), | 
|  | e1000e_getreg(MGTPTC), | 
|  | e1000e_getreg(TIMINCA), | 
|  | e1000e_getreg(RXCFGL), | 
|  | e1000e_getreg(MFUTP01), | 
|  | e1000e_getreg(FACTPS), | 
|  | e1000e_getreg(GSCL_1), | 
|  | e1000e_getreg(GSCN_0), | 
|  | e1000e_getreg(GCR2), | 
|  | e1000e_getreg(RDT1), | 
|  | e1000e_getreg(PBACLR), | 
|  | e1000e_getreg(FCTTV), | 
|  | e1000e_getreg(EEWR), | 
|  | e1000e_getreg(FLSWCTL), | 
|  | e1000e_getreg(RXDCTL1), | 
|  | e1000e_getreg(RXSATRL), | 
|  | e1000e_getreg(RXUDP), | 
|  | e1000e_getreg(TORL), | 
|  | e1000e_getreg(TDLEN1), | 
|  | e1000e_getreg(MCC), | 
|  | e1000e_getreg(WUC), | 
|  | e1000e_getreg(EECD), | 
|  | e1000e_getreg(MFUTP23), | 
|  | e1000e_getreg(RAID), | 
|  | e1000e_getreg(FCRTV), | 
|  | e1000e_getreg(TXDCTL1), | 
|  | e1000e_getreg(RCTL), | 
|  | e1000e_getreg(TDT), | 
|  | e1000e_getreg(MDIC), | 
|  | e1000e_getreg(FCRUC), | 
|  | e1000e_getreg(VET), | 
|  | e1000e_getreg(RDBAL0), | 
|  | e1000e_getreg(TDBAH1), | 
|  | e1000e_getreg(RDTR), | 
|  | e1000e_getreg(SCC), | 
|  | e1000e_getreg(COLC), | 
|  | e1000e_getreg(CEXTERR), | 
|  | e1000e_getreg(XOFFRXC), | 
|  | e1000e_getreg(IPAV), | 
|  | e1000e_getreg(GOTCL), | 
|  | e1000e_getreg(MGTPDC), | 
|  | e1000e_getreg(GCR), | 
|  | e1000e_getreg(IVAR), | 
|  | e1000e_getreg(POEMB), | 
|  | e1000e_getreg(MFVAL), | 
|  | e1000e_getreg(FUNCTAG), | 
|  | e1000e_getreg(GSCL_4), | 
|  | e1000e_getreg(GSCN_3), | 
|  | e1000e_getreg(MRQC), | 
|  | e1000e_getreg(RDLEN1), | 
|  | e1000e_getreg(FCT), | 
|  | e1000e_getreg(FLA), | 
|  | e1000e_getreg(FLOL), | 
|  | e1000e_getreg(RXDCTL), | 
|  | e1000e_getreg(RXSTMPL), | 
|  | e1000e_getreg(TIMADJH), | 
|  | e1000e_getreg(FCRTL), | 
|  | e1000e_getreg(TDBAH), | 
|  | e1000e_getreg(TADV), | 
|  | e1000e_getreg(XONRXC), | 
|  | e1000e_getreg(TSCTFC), | 
|  | e1000e_getreg(RFCTL), | 
|  | e1000e_getreg(GSCN_1), | 
|  | e1000e_getreg(FCAL), | 
|  | e1000e_getreg(FLSWCNT), | 
|  |  | 
|  | [TOTH]    = e1000e_mac_read_clr8, | 
|  | [GOTCH]   = e1000e_mac_read_clr8, | 
|  | [PRC64]   = e1000e_mac_read_clr4, | 
|  | [PRC255]  = e1000e_mac_read_clr4, | 
|  | [PRC1023] = e1000e_mac_read_clr4, | 
|  | [PTC64]   = e1000e_mac_read_clr4, | 
|  | [PTC255]  = e1000e_mac_read_clr4, | 
|  | [PTC1023] = e1000e_mac_read_clr4, | 
|  | [GPRC]    = e1000e_mac_read_clr4, | 
|  | [TPT]     = e1000e_mac_read_clr4, | 
|  | [RUC]     = e1000e_mac_read_clr4, | 
|  | [BPRC]    = e1000e_mac_read_clr4, | 
|  | [MPTC]    = e1000e_mac_read_clr4, | 
|  | [IAC]     = e1000e_mac_read_clr4, | 
|  | [ICR]     = e1000e_mac_icr_read, | 
|  | [STATUS]  = e1000e_get_status, | 
|  | [TARC0]   = e1000e_get_tarc, | 
|  | [ICS]     = e1000e_mac_ics_read, | 
|  | [TORH]    = e1000e_mac_read_clr8, | 
|  | [GORCH]   = e1000e_mac_read_clr8, | 
|  | [PRC127]  = e1000e_mac_read_clr4, | 
|  | [PRC511]  = e1000e_mac_read_clr4, | 
|  | [PRC1522] = e1000e_mac_read_clr4, | 
|  | [PTC127]  = e1000e_mac_read_clr4, | 
|  | [PTC511]  = e1000e_mac_read_clr4, | 
|  | [PTC1522] = e1000e_mac_read_clr4, | 
|  | [GPTC]    = e1000e_mac_read_clr4, | 
|  | [TPR]     = e1000e_mac_read_clr4, | 
|  | [ROC]     = e1000e_mac_read_clr4, | 
|  | [MPRC]    = e1000e_mac_read_clr4, | 
|  | [BPTC]    = e1000e_mac_read_clr4, | 
|  | [TSCTC]   = e1000e_mac_read_clr4, | 
|  | [ITR]     = e1000e_mac_itr_read, | 
|  | [CTRL]    = e1000e_get_ctrl, | 
|  | [TARC1]   = e1000e_get_tarc, | 
|  | [SWSM]    = e1000e_mac_swsm_read, | 
|  | [IMS]     = e1000e_mac_ims_read, | 
|  | [SYSTIML] = e1000e_get_systiml, | 
|  | [RXSATRH] = e1000e_get_rxsatrh, | 
|  | [TXSTMPH] = e1000e_get_txstmph, | 
|  |  | 
|  | [CRCERRS ... MPC]      = e1000e_mac_readreg, | 
|  | [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg, | 
|  | [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg, | 
|  | [RA ... RA + 31]       = e1000e_mac_readreg, | 
|  | [WUPM ... WUPM + 31]   = e1000e_mac_readreg, | 
|  | [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg, | 
|  | [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = e1000e_mac_readreg, | 
|  | [FFMT ... FFMT + 254]  = e1000e_mac_readreg, | 
|  | [FFVT ... FFVT + 254]  = e1000e_mac_readreg, | 
|  | [MDEF ... MDEF + 7]    = e1000e_mac_readreg, | 
|  | [FFLT ... FFLT + 10]   = e1000e_mac_readreg, | 
|  | [FTFT ... FTFT + 254]  = e1000e_mac_readreg, | 
|  | [PBM ... PBM + 10239]  = e1000e_mac_readreg, | 
|  | [RETA ... RETA + 31]   = e1000e_mac_readreg, | 
|  | [RSSRK ... RSSRK + 31] = e1000e_mac_readreg, | 
|  | [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg, | 
|  | [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read | 
|  | }; | 
|  | enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) }; | 
|  |  | 
|  | #define e1000e_putreg(x)    [x] = e1000e_mac_writereg | 
|  | typedef void (*writeops)(E1000ECore *, int, uint32_t); | 
|  | static const writeops e1000e_macreg_writeops[] = { | 
|  | e1000e_putreg(PBA), | 
|  | e1000e_putreg(SWSM), | 
|  | e1000e_putreg(WUFC), | 
|  | e1000e_putreg(RDBAH1), | 
|  | e1000e_putreg(TDBAH), | 
|  | e1000e_putreg(TXDCTL), | 
|  | e1000e_putreg(RDBAH0), | 
|  | e1000e_putreg(LEDCTL), | 
|  | e1000e_putreg(FCAL), | 
|  | e1000e_putreg(FCRUC), | 
|  | e1000e_putreg(WUC), | 
|  | e1000e_putreg(WUS), | 
|  | e1000e_putreg(IPAV), | 
|  | e1000e_putreg(TDBAH1), | 
|  | e1000e_putreg(IAM), | 
|  | e1000e_putreg(EIAC), | 
|  | e1000e_putreg(IVAR), | 
|  | e1000e_putreg(TARC0), | 
|  | e1000e_putreg(TARC1), | 
|  | e1000e_putreg(FLSWDATA), | 
|  | e1000e_putreg(POEMB), | 
|  | e1000e_putreg(MFUTP01), | 
|  | e1000e_putreg(MFUTP23), | 
|  | e1000e_putreg(MANC), | 
|  | e1000e_putreg(MANC2H), | 
|  | e1000e_putreg(MFVAL), | 
|  | e1000e_putreg(EXTCNF_CTRL), | 
|  | e1000e_putreg(FACTPS), | 
|  | e1000e_putreg(FUNCTAG), | 
|  | e1000e_putreg(GSCL_1), | 
|  | e1000e_putreg(GSCL_2), | 
|  | e1000e_putreg(GSCL_3), | 
|  | e1000e_putreg(GSCL_4), | 
|  | e1000e_putreg(GSCN_0), | 
|  | e1000e_putreg(GSCN_1), | 
|  | e1000e_putreg(GSCN_2), | 
|  | e1000e_putreg(GSCN_3), | 
|  | e1000e_putreg(GCR2), | 
|  | e1000e_putreg(MRQC), | 
|  | e1000e_putreg(FLOP), | 
|  | e1000e_putreg(FLOL), | 
|  | e1000e_putreg(FLSWCTL), | 
|  | e1000e_putreg(FLSWCNT), | 
|  | e1000e_putreg(FLA), | 
|  | e1000e_putreg(RXDCTL1), | 
|  | e1000e_putreg(TXDCTL1), | 
|  | e1000e_putreg(TIPG), | 
|  | e1000e_putreg(RXSTMPH), | 
|  | e1000e_putreg(RXSTMPL), | 
|  | e1000e_putreg(RXSATRL), | 
|  | e1000e_putreg(RXSATRH), | 
|  | e1000e_putreg(TXSTMPL), | 
|  | e1000e_putreg(TXSTMPH), | 
|  | e1000e_putreg(SYSTIML), | 
|  | e1000e_putreg(SYSTIMH), | 
|  | e1000e_putreg(TIMADJL), | 
|  | e1000e_putreg(RXUDP), | 
|  | e1000e_putreg(RXCFGL), | 
|  | e1000e_putreg(TSYNCRXCTL), | 
|  | e1000e_putreg(TSYNCTXCTL), | 
|  | e1000e_putreg(EXTCNF_SIZE), | 
|  | e1000e_putreg(EEMNGCTL), | 
|  | e1000e_putreg(RA), | 
|  |  | 
|  | [TDH1]     = e1000e_set_16bit, | 
|  | [TDT1]     = e1000e_set_tdt, | 
|  | [TCTL]     = e1000e_set_tctl, | 
|  | [TDT]      = e1000e_set_tdt, | 
|  | [MDIC]     = e1000e_set_mdic, | 
|  | [ICS]      = e1000e_set_ics, | 
|  | [TDH]      = e1000e_set_16bit, | 
|  | [RDH0]     = e1000e_set_16bit, | 
|  | [RDT0]     = e1000e_set_rdt, | 
|  | [IMC]      = e1000e_set_imc, | 
|  | [IMS]      = e1000e_set_ims, | 
|  | [ICR]      = e1000e_set_icr, | 
|  | [EECD]     = e1000e_set_eecd, | 
|  | [RCTL]     = e1000e_set_rx_control, | 
|  | [CTRL]     = e1000e_set_ctrl, | 
|  | [RDTR]     = e1000e_set_rdtr, | 
|  | [RADV]     = e1000e_set_16bit, | 
|  | [TADV]     = e1000e_set_16bit, | 
|  | [ITR]      = e1000e_set_itr, | 
|  | [EERD]     = e1000e_set_eerd, | 
|  | [AIT]      = e1000e_set_16bit, | 
|  | [TDFH]     = e1000e_set_13bit, | 
|  | [TDFT]     = e1000e_set_13bit, | 
|  | [TDFHS]    = e1000e_set_13bit, | 
|  | [TDFTS]    = e1000e_set_13bit, | 
|  | [TDFPC]    = e1000e_set_13bit, | 
|  | [RDFH]     = e1000e_set_13bit, | 
|  | [RDFHS]    = e1000e_set_13bit, | 
|  | [RDFT]     = e1000e_set_13bit, | 
|  | [RDFTS]    = e1000e_set_13bit, | 
|  | [RDFPC]    = e1000e_set_13bit, | 
|  | [PBS]      = e1000e_set_6bit, | 
|  | [GCR]      = e1000e_set_gcr, | 
|  | [PSRCTL]   = e1000e_set_psrctl, | 
|  | [RXCSUM]   = e1000e_set_rxcsum, | 
|  | [RAID]     = e1000e_set_16bit, | 
|  | [RSRPD]    = e1000e_set_12bit, | 
|  | [TIDV]     = e1000e_set_tidv, | 
|  | [TDLEN1]   = e1000e_set_dlen, | 
|  | [TDLEN]    = e1000e_set_dlen, | 
|  | [RDLEN0]   = e1000e_set_dlen, | 
|  | [RDLEN1]   = e1000e_set_dlen, | 
|  | [TDBAL]    = e1000e_set_dbal, | 
|  | [TDBAL1]   = e1000e_set_dbal, | 
|  | [RDBAL0]   = e1000e_set_dbal, | 
|  | [RDBAL1]   = e1000e_set_dbal, | 
|  | [RDH1]     = e1000e_set_16bit, | 
|  | [RDT1]     = e1000e_set_rdt, | 
|  | [STATUS]   = e1000e_set_status, | 
|  | [PBACLR]   = e1000e_set_pbaclr, | 
|  | [CTRL_EXT] = e1000e_set_ctrlext, | 
|  | [FCAH]     = e1000e_set_16bit, | 
|  | [FCT]      = e1000e_set_16bit, | 
|  | [FCTTV]    = e1000e_set_16bit, | 
|  | [FCRTV]    = e1000e_set_16bit, | 
|  | [FCRTH]    = e1000e_set_fcrth, | 
|  | [FCRTL]    = e1000e_set_fcrtl, | 
|  | [VET]      = e1000e_set_vet, | 
|  | [RXDCTL]   = e1000e_set_rxdctl, | 
|  | [FLASHT]   = e1000e_set_16bit, | 
|  | [EEWR]     = e1000e_set_eewr, | 
|  | [CTRL_DUP] = e1000e_set_ctrl, | 
|  | [RFCTL]    = e1000e_set_rfctl, | 
|  | [RA + 1]   = e1000e_mac_setmacaddr, | 
|  | [TIMINCA]  = e1000e_set_timinca, | 
|  | [TIMADJH]  = e1000e_set_timadjh, | 
|  |  | 
|  | [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg, | 
|  | [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg, | 
|  | [RA + 2 ... RA + 31]     = e1000e_mac_writereg, | 
|  | [WUPM ... WUPM + 31]     = e1000e_mac_writereg, | 
|  | [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg, | 
|  | [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]    = e1000e_mac_writereg, | 
|  | [FFMT ... FFMT + 254]    = e1000e_set_4bit, | 
|  | [FFVT ... FFVT + 254]    = e1000e_mac_writereg, | 
|  | [PBM ... PBM + 10239]    = e1000e_mac_writereg, | 
|  | [MDEF ... MDEF + 7]      = e1000e_mac_writereg, | 
|  | [FFLT ... FFLT + 10]     = e1000e_set_11bit, | 
|  | [FTFT ... FTFT + 254]    = e1000e_mac_writereg, | 
|  | [RETA ... RETA + 31]     = e1000e_mac_writereg, | 
|  | [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg, | 
|  | [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg, | 
|  | [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr | 
|  | }; | 
|  | enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) }; | 
|  |  | 
|  | enum { MAC_ACCESS_PARTIAL = 1 }; | 
|  |  | 
|  | /* | 
|  | * The array below combines alias offsets of the index values for the | 
|  | * MAC registers that have aliases, with the indication of not fully | 
|  | * implemented registers (lowest bit). This combination is possible | 
|  | * because all of the offsets are even. | 
|  | */ | 
|  | static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { | 
|  | /* Alias index offsets */ | 
|  | [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802, | 
|  | [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6, | 
|  | [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904, | 
|  | [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8, | 
|  | [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00, | 
|  | [RA_A ... RA_A + 31]      = 0x14f0, | 
|  | [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400, | 
|  | [RDBAL0_A ... RDLEN0_A] = 0x09bc, | 
|  | [TDBAL_A ... TDLEN_A]   = 0x0cf8, | 
|  | /* Access options */ | 
|  | [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL, | 
|  | [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL, | 
|  | [RDFPC] = MAC_ACCESS_PARTIAL, | 
|  | [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL, | 
|  | [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL, | 
|  | [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL, | 
|  | [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL, | 
|  | [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL, | 
|  | [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL, | 
|  | [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL, | 
|  | [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL, | 
|  | [TXDCTL1] = MAC_ACCESS_PARTIAL, | 
|  | [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL | 
|  | }; | 
|  |  | 
|  | void | 
|  | e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size) | 
|  | { | 
|  | uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); | 
|  |  | 
|  | if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) { | 
|  | if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { | 
|  | trace_e1000e_wrn_regs_write_trivial(index << 2); | 
|  | } | 
|  | trace_e1000e_core_write(index << 2, size, val); | 
|  | e1000e_macreg_writeops[index](core, index, val); | 
|  | } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { | 
|  | trace_e1000e_wrn_regs_write_ro(index << 2, size, val); | 
|  | } else { | 
|  | trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t | 
|  | e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size) | 
|  | { | 
|  | uint64_t val; | 
|  | uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); | 
|  |  | 
|  | if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { | 
|  | if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { | 
|  | trace_e1000e_wrn_regs_read_trivial(index << 2); | 
|  | } | 
|  | val = e1000e_macreg_readops[index](core, index); | 
|  | trace_e1000e_core_read(index << 2, size, val); | 
|  | return val; | 
|  | } else { | 
|  | trace_e1000e_wrn_regs_read_unknown(index << 2, size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000e_autoneg_resume(E1000ECore *core) | 
|  | { | 
|  | if (e1000e_have_autoneg(core) && | 
|  | !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) { | 
|  | qemu_get_queue(core->owner_nic)->link_down = false; | 
|  | timer_mod(core->autoneg_timer, | 
|  | qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000e_core_pci_realize(E1000ECore     *core, | 
|  | const uint16_t *eeprom_templ, | 
|  | uint32_t        eeprom_size, | 
|  | const uint8_t  *macaddr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, | 
|  | e1000e_autoneg_timer, core); | 
|  | e1000e_intrmgr_pci_realize(core); | 
|  |  | 
|  | for (i = 0; i < E1000E_NUM_QUEUES; i++) { | 
|  | net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS); | 
|  | } | 
|  |  | 
|  | net_rx_pkt_init(&core->rx_pkt); | 
|  |  | 
|  | e1000x_core_prepare_eeprom(core->eeprom, | 
|  | eeprom_templ, | 
|  | eeprom_size, | 
|  | PCI_DEVICE_GET_CLASS(core->owner)->device_id, | 
|  | macaddr); | 
|  | e1000e_update_rx_offloads(core); | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000e_core_pci_uninit(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | timer_free(core->autoneg_timer); | 
|  |  | 
|  | e1000e_intrmgr_pci_unint(core); | 
|  |  | 
|  | for (i = 0; i < E1000E_NUM_QUEUES; i++) { | 
|  | net_tx_pkt_uninit(core->tx[i].tx_pkt); | 
|  | } | 
|  |  | 
|  | net_rx_pkt_uninit(core->rx_pkt); | 
|  | } | 
|  |  | 
|  | static const uint16_t | 
|  | e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = { | 
|  | [0] = { | 
|  | [MII_BMCR] = MII_BMCR_SPEED1000 | | 
|  | MII_BMCR_FD        | | 
|  | MII_BMCR_AUTOEN, | 
|  |  | 
|  | [MII_BMSR] = MII_BMSR_EXTCAP    | | 
|  | MII_BMSR_LINK_ST   | | 
|  | MII_BMSR_AUTONEG   | | 
|  | MII_BMSR_MFPS      | | 
|  | MII_BMSR_EXTSTAT   | | 
|  | MII_BMSR_10T_HD    | | 
|  | MII_BMSR_10T_FD    | | 
|  | MII_BMSR_100TX_HD  | | 
|  | MII_BMSR_100TX_FD, | 
|  |  | 
|  | [MII_PHYID1]            = 0x141, | 
|  | [MII_PHYID2]            = E1000_PHY_ID2_82574x, | 
|  | [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 | | 
|  | MII_ANAR_10FD | MII_ANAR_TX | | 
|  | MII_ANAR_TXFD | MII_ANAR_PAUSE | | 
|  | MII_ANAR_PAUSE_ASYM, | 
|  | [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD | | 
|  | MII_ANLPAR_TX | MII_ANLPAR_TXFD | | 
|  | MII_ANLPAR_T4 | MII_ANLPAR_PAUSE, | 
|  | [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY, | 
|  | [MII_ANNP]              = 1 | MII_ANNP_MP, | 
|  | [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL | | 
|  | MII_CTRL1000_PORT | MII_CTRL1000_MASTER, | 
|  | [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL | | 
|  | MII_STAT1000_ROK | MII_STAT1000_LOK, | 
|  | [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD, | 
|  |  | 
|  | [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) | | 
|  | BIT(12) | BIT(13), | 
|  | [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15) | 
|  | }, | 
|  | [2] = { | 
|  | [PHY_MAC_CTRL1]         = BIT(3) | BIT(7), | 
|  | [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12) | 
|  | }, | 
|  | [3] = { | 
|  | [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14) | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const uint32_t e1000e_mac_reg_init[] = { | 
|  | [PBA]           =     0x00140014, | 
|  | [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18), | 
|  | [EXTCNF_CTRL]   = BIT(3), | 
|  | [EEMNGCTL]      = BIT(31), | 
|  | [FLASHT]        = 0x2, | 
|  | [FLSWCTL]       = BIT(30) | BIT(31), | 
|  | [FLOL]          = BIT(0), | 
|  | [RXDCTL]        = BIT(16), | 
|  | [RXDCTL1]       = BIT(16), | 
|  | [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20), | 
|  | [RXCFGL]        = 0x88F7, | 
|  | [RXUDP]         = 0x319, | 
|  | [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | | 
|  | E1000_CTRL_SPD_1000 | E1000_CTRL_SLU | | 
|  | E1000_CTRL_ADVD3WUC, | 
|  | [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU, | 
|  | [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) | | 
|  | (4 << E1000_PSRCTL_BSIZE1_SHIFT) | | 
|  | (4 << E1000_PSRCTL_BSIZE2_SHIFT), | 
|  | [TARC0]         = 0x3 | E1000_TARC_ENABLE, | 
|  | [TARC1]         = 0x3 | E1000_TARC_ENABLE, | 
|  | [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES, | 
|  | [EERD]          = E1000_EERW_DONE, | 
|  | [EEWR]          = E1000_EERW_DONE, | 
|  | [GCR]           = E1000_L0S_ADJUST | | 
|  | E1000_L1_ENTRY_LATENCY_MSB | | 
|  | E1000_L1_ENTRY_LATENCY_LSB, | 
|  | [TDFH]          = 0x600, | 
|  | [TDFT]          = 0x600, | 
|  | [TDFHS]         = 0x600, | 
|  | [TDFTS]         = 0x600, | 
|  | [POEMB]         = 0x30D, | 
|  | [PBS]           = 0x028, | 
|  | [MANC]          = E1000_MANC_DIS_IP_CHK_ARP, | 
|  | [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000, | 
|  | [SWSM]          = 1, | 
|  | [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, | 
|  | [ITR]           = E1000E_MIN_XITR, | 
|  | [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR, | 
|  | }; | 
|  |  | 
|  | static void e1000e_reset(E1000ECore *core, bool sw) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | timer_del(core->autoneg_timer); | 
|  |  | 
|  | e1000e_intrmgr_reset(core); | 
|  |  | 
|  | memset(core->phy, 0, sizeof core->phy); | 
|  | memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init); | 
|  |  | 
|  | for (i = 0; i < E1000E_MAC_SIZE; i++) { | 
|  | if (sw && (i == PBA || i == PBS || i == FLA)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ? | 
|  | e1000e_mac_reg_init[i] : 0; | 
|  | } | 
|  |  | 
|  | core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT; | 
|  |  | 
|  | if (qemu_get_queue(core->owner_nic)->link_down) { | 
|  | e1000e_link_down(core); | 
|  | } | 
|  |  | 
|  | e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(core->tx); i++) { | 
|  | memset(&core->tx[i].props, 0, sizeof(core->tx[i].props)); | 
|  | core->tx[i].skip_cp = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | e1000e_core_reset(E1000ECore *core) | 
|  | { | 
|  | e1000e_reset(core, false); | 
|  | } | 
|  |  | 
|  | void e1000e_core_pre_save(E1000ECore *core) | 
|  | { | 
|  | int i; | 
|  | NetClientState *nc = qemu_get_queue(core->owner_nic); | 
|  |  | 
|  | /* | 
|  | * If link is down and auto-negotiation is supported and ongoing, | 
|  | * complete auto-negotiation immediately. This allows us to look | 
|  | * at MII_BMSR_AN_COMP to infer link status on load. | 
|  | */ | 
|  | if (nc->link_down && e1000e_have_autoneg(core)) { | 
|  | core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP; | 
|  | e1000e_update_flowctl_status(core); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(core->tx); i++) { | 
|  | if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { | 
|  | core->tx[i].skip_cp = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | e1000e_core_post_load(E1000ECore *core) | 
|  | { | 
|  | NetClientState *nc = qemu_get_queue(core->owner_nic); | 
|  |  | 
|  | /* | 
|  | * nc.link_down can't be migrated, so infer link_down according | 
|  | * to link status bit in core.mac[STATUS]. | 
|  | */ | 
|  | nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; | 
|  |  | 
|  | /* | 
|  | * we need to restart intrmgr timers, as an older version of | 
|  | * QEMU can have stopped them before migration | 
|  | */ | 
|  | e1000e_intrmgr_resume(core); | 
|  | e1000e_autoneg_resume(core); | 
|  |  | 
|  | return 0; | 
|  | } |