| /* |
| * QEMU sPAPR PCI host originated from Uninorth PCI host |
| * |
| * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. |
| * Copyright (C) 2011 David Gibson, IBM Corporation. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "hw/hw.h" |
| #include "hw/sysbus.h" |
| #include "hw/pci/pci.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "hw/pci/pci_host.h" |
| #include "hw/ppc/spapr.h" |
| #include "hw/pci-host/spapr.h" |
| #include "exec/address-spaces.h" |
| #include "exec/ram_addr.h" |
| #include <libfdt.h> |
| #include "trace.h" |
| #include "qemu/error-report.h" |
| #include "qapi/qmp/qerror.h" |
| |
| #include "hw/pci/pci_bridge.h" |
| #include "hw/pci/pci_bus.h" |
| #include "hw/pci/pci_ids.h" |
| #include "hw/ppc/spapr_drc.h" |
| #include "sysemu/device_tree.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/hostmem.h" |
| #include "sysemu/numa.h" |
| |
| /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ |
| #define RTAS_QUERY_FN 0 |
| #define RTAS_CHANGE_FN 1 |
| #define RTAS_RESET_FN 2 |
| #define RTAS_CHANGE_MSI_FN 3 |
| #define RTAS_CHANGE_MSIX_FN 4 |
| |
| /* Interrupt types to return on RTAS_CHANGE_* */ |
| #define RTAS_TYPE_MSI 1 |
| #define RTAS_TYPE_MSIX 2 |
| |
| #define FDT_NAME_MAX 128 |
| |
| #define _FDT(exp) \ |
| do { \ |
| int ret = (exp); \ |
| if (ret < 0) { \ |
| return ret; \ |
| } \ |
| } while (0) |
| |
| sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid) |
| { |
| sPAPRPHBState *sphb; |
| |
| QLIST_FOREACH(sphb, &spapr->phbs, list) { |
| if (sphb->buid != buid) { |
| continue; |
| } |
| return sphb; |
| } |
| |
| return NULL; |
| } |
| |
| PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid, |
| uint32_t config_addr) |
| { |
| sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid); |
| PCIHostState *phb = PCI_HOST_BRIDGE(sphb); |
| int bus_num = (config_addr >> 16) & 0xFF; |
| int devfn = (config_addr >> 8) & 0xFF; |
| |
| if (!phb) { |
| return NULL; |
| } |
| |
| return pci_find_device(phb->bus, bus_num, devfn); |
| } |
| |
| static uint32_t rtas_pci_cfgaddr(uint32_t arg) |
| { |
| /* This handles the encoding of extended config space addresses */ |
| return ((arg >> 20) & 0xf00) | (arg & 0xff); |
| } |
| |
| static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid, |
| uint32_t addr, uint32_t size, |
| target_ulong rets) |
| { |
| PCIDevice *pci_dev; |
| uint32_t val; |
| |
| if ((size != 1) && (size != 2) && (size != 4)) { |
| /* access must be 1, 2 or 4 bytes */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| pci_dev = spapr_pci_find_dev(spapr, buid, addr); |
| addr = rtas_pci_cfgaddr(addr); |
| |
| if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { |
| /* Access must be to a valid device, within bounds and |
| * naturally aligned */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| val = pci_host_config_read_common(pci_dev, addr, |
| pci_config_size(pci_dev), size); |
| |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, val); |
| } |
| |
| static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint64_t buid; |
| uint32_t size, addr; |
| |
| if ((nargs != 4) || (nret != 2)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| size = rtas_ld(args, 3); |
| addr = rtas_ld(args, 0); |
| |
| finish_read_pci_config(spapr, buid, addr, size, rets); |
| } |
| |
| static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint32_t size, addr; |
| |
| if ((nargs != 2) || (nret != 2)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| size = rtas_ld(args, 1); |
| addr = rtas_ld(args, 0); |
| |
| finish_read_pci_config(spapr, 0, addr, size, rets); |
| } |
| |
| static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid, |
| uint32_t addr, uint32_t size, |
| uint32_t val, target_ulong rets) |
| { |
| PCIDevice *pci_dev; |
| |
| if ((size != 1) && (size != 2) && (size != 4)) { |
| /* access must be 1, 2 or 4 bytes */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| pci_dev = spapr_pci_find_dev(spapr, buid, addr); |
| addr = rtas_pci_cfgaddr(addr); |
| |
| if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { |
| /* Access must be to a valid device, within bounds and |
| * naturally aligned */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), |
| val, size); |
| |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| } |
| |
| static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint64_t buid; |
| uint32_t val, size, addr; |
| |
| if ((nargs != 5) || (nret != 1)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| val = rtas_ld(args, 4); |
| size = rtas_ld(args, 3); |
| addr = rtas_ld(args, 0); |
| |
| finish_write_pci_config(spapr, buid, addr, size, val, rets); |
| } |
| |
| static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint32_t val, size, addr; |
| |
| if ((nargs != 3) || (nret != 1)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| |
| val = rtas_ld(args, 2); |
| size = rtas_ld(args, 1); |
| addr = rtas_ld(args, 0); |
| |
| finish_write_pci_config(spapr, 0, addr, size, val, rets); |
| } |
| |
| /* |
| * Set MSI/MSIX message data. |
| * This is required for msi_notify()/msix_notify() which |
| * will write at the addresses via spapr_msi_write(). |
| * |
| * If hwaddr == 0, all entries will have .data == first_irq i.e. |
| * table will be reset. |
| */ |
| static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, |
| unsigned first_irq, unsigned req_num) |
| { |
| unsigned i; |
| MSIMessage msg = { .address = addr, .data = first_irq }; |
| |
| if (!msix) { |
| msi_set_message(pdev, msg); |
| trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); |
| return; |
| } |
| |
| for (i = 0; i < req_num; ++i) { |
| msix_set_message(pdev, i, msg); |
| trace_spapr_pci_msi_setup(pdev->name, i, msg.address); |
| if (addr) { |
| ++msg.data; |
| } |
| } |
| } |
| |
| static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| uint32_t config_addr = rtas_ld(args, 0); |
| uint64_t buid = rtas_ldq(args, 1); |
| unsigned int func = rtas_ld(args, 3); |
| unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ |
| unsigned int seq_num = rtas_ld(args, 5); |
| unsigned int ret_intr_type; |
| unsigned int irq, max_irqs = 0; |
| sPAPRPHBState *phb = NULL; |
| PCIDevice *pdev = NULL; |
| spapr_pci_msi *msi; |
| int *config_addr_key; |
| Error *err = NULL; |
| |
| switch (func) { |
| case RTAS_CHANGE_MSI_FN: |
| case RTAS_CHANGE_FN: |
| ret_intr_type = RTAS_TYPE_MSI; |
| break; |
| case RTAS_CHANGE_MSIX_FN: |
| ret_intr_type = RTAS_TYPE_MSIX; |
| break; |
| default: |
| error_report("rtas_ibm_change_msi(%u) is not implemented", func); |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| return; |
| } |
| |
| /* Fins sPAPRPHBState */ |
| phb = spapr_pci_find_phb(spapr, buid); |
| if (phb) { |
| pdev = spapr_pci_find_dev(spapr, buid, config_addr); |
| } |
| if (!phb || !pdev) { |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| return; |
| } |
| |
| msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); |
| |
| /* Releasing MSIs */ |
| if (!req_num) { |
| if (!msi) { |
| trace_spapr_pci_msi("Releasing wrong config", config_addr); |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| spapr_ics_free(spapr->ics, msi->first_irq, msi->num); |
| if (msi_present(pdev)) { |
| spapr_msi_setmsg(pdev, 0, false, 0, 0); |
| } |
| if (msix_present(pdev)) { |
| spapr_msi_setmsg(pdev, 0, true, 0, 0); |
| } |
| g_hash_table_remove(phb->msi, &config_addr); |
| |
| trace_spapr_pci_msi("Released MSIs", config_addr); |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, 0); |
| return; |
| } |
| |
| /* Enabling MSI */ |
| |
| /* Check if the device supports as many IRQs as requested */ |
| if (ret_intr_type == RTAS_TYPE_MSI) { |
| max_irqs = msi_nr_vectors_allocated(pdev); |
| } else if (ret_intr_type == RTAS_TYPE_MSIX) { |
| max_irqs = pdev->msix_entries_nr; |
| } |
| if (!max_irqs) { |
| error_report("Requested interrupt type %d is not enabled for device %x", |
| ret_intr_type, config_addr); |
| rtas_st(rets, 0, -1); /* Hardware error */ |
| return; |
| } |
| /* Correct the number if the guest asked for too many */ |
| if (req_num > max_irqs) { |
| trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); |
| req_num = max_irqs; |
| irq = 0; /* to avoid misleading trace */ |
| goto out; |
| } |
| |
| /* Allocate MSIs */ |
| irq = spapr_ics_alloc_block(spapr->ics, req_num, false, |
| ret_intr_type == RTAS_TYPE_MSI, &err); |
| if (err) { |
| error_reportf_err(err, "Can't allocate MSIs for device %x: ", |
| config_addr); |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| /* Release previous MSIs */ |
| if (msi) { |
| spapr_ics_free(spapr->ics, msi->first_irq, msi->num); |
| g_hash_table_remove(phb->msi, &config_addr); |
| } |
| |
| /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ |
| spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, |
| irq, req_num); |
| |
| /* Add MSI device to cache */ |
| msi = g_new(spapr_pci_msi, 1); |
| msi->first_irq = irq; |
| msi->num = req_num; |
| config_addr_key = g_new(int, 1); |
| *config_addr_key = config_addr; |
| g_hash_table_insert(phb->msi, config_addr_key, msi); |
| |
| out: |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, req_num); |
| rtas_st(rets, 2, ++seq_num); |
| if (nret > 3) { |
| rtas_st(rets, 3, ret_intr_type); |
| } |
| |
| trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); |
| } |
| |
| static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| uint32_t token, |
| uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, |
| target_ulong rets) |
| { |
| uint32_t config_addr = rtas_ld(args, 0); |
| uint64_t buid = rtas_ldq(args, 1); |
| unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); |
| sPAPRPHBState *phb = NULL; |
| PCIDevice *pdev = NULL; |
| spapr_pci_msi *msi; |
| |
| /* Find sPAPRPHBState */ |
| phb = spapr_pci_find_phb(spapr, buid); |
| if (phb) { |
| pdev = spapr_pci_find_dev(spapr, buid, config_addr); |
| } |
| if (!phb || !pdev) { |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| return; |
| } |
| |
| /* Find device descriptor and start IRQ */ |
| msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); |
| if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { |
| trace_spapr_pci_msi("Failed to return vector", config_addr); |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| intr_src_num = msi->first_irq + ioa_intr_num; |
| trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, |
| intr_src_num); |
| |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, intr_src_num); |
| rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ |
| } |
| |
| static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| sPAPRPHBState *sphb; |
| uint32_t addr, option; |
| uint64_t buid; |
| int ret; |
| |
| if ((nargs != 4) || (nret != 1)) { |
| goto param_error_exit; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| addr = rtas_ld(args, 0); |
| option = rtas_ld(args, 3); |
| |
| sphb = spapr_pci_find_phb(spapr, buid); |
| if (!sphb) { |
| goto param_error_exit; |
| } |
| |
| if (!spapr_phb_eeh_available(sphb)) { |
| goto param_error_exit; |
| } |
| |
| ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); |
| rtas_st(rets, 0, ret); |
| return; |
| |
| param_error_exit: |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| } |
| |
| static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| sPAPRPHBState *sphb; |
| PCIDevice *pdev; |
| uint32_t addr, option; |
| uint64_t buid; |
| |
| if ((nargs != 4) || (nret != 2)) { |
| goto param_error_exit; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| sphb = spapr_pci_find_phb(spapr, buid); |
| if (!sphb) { |
| goto param_error_exit; |
| } |
| |
| if (!spapr_phb_eeh_available(sphb)) { |
| goto param_error_exit; |
| } |
| |
| /* |
| * We always have PE address of form "00BB0001". "BB" |
| * represents the bus number of PE's primary bus. |
| */ |
| option = rtas_ld(args, 3); |
| switch (option) { |
| case RTAS_GET_PE_ADDR: |
| addr = rtas_ld(args, 0); |
| pdev = spapr_pci_find_dev(spapr, buid, addr); |
| if (!pdev) { |
| goto param_error_exit; |
| } |
| |
| rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1); |
| break; |
| case RTAS_GET_PE_MODE: |
| rtas_st(rets, 1, RTAS_PE_MODE_SHARED); |
| break; |
| default: |
| goto param_error_exit; |
| } |
| |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| return; |
| |
| param_error_exit: |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| } |
| |
| static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| sPAPRPHBState *sphb; |
| uint64_t buid; |
| int state, ret; |
| |
| if ((nargs != 3) || (nret != 4 && nret != 5)) { |
| goto param_error_exit; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| sphb = spapr_pci_find_phb(spapr, buid); |
| if (!sphb) { |
| goto param_error_exit; |
| } |
| |
| if (!spapr_phb_eeh_available(sphb)) { |
| goto param_error_exit; |
| } |
| |
| ret = spapr_phb_vfio_eeh_get_state(sphb, &state); |
| rtas_st(rets, 0, ret); |
| if (ret != RTAS_OUT_SUCCESS) { |
| return; |
| } |
| |
| rtas_st(rets, 1, state); |
| rtas_st(rets, 2, RTAS_EEH_SUPPORT); |
| rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); |
| if (nret >= 5) { |
| rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); |
| } |
| return; |
| |
| param_error_exit: |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| } |
| |
| static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| sPAPRPHBState *sphb; |
| uint32_t option; |
| uint64_t buid; |
| int ret; |
| |
| if ((nargs != 4) || (nret != 1)) { |
| goto param_error_exit; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| option = rtas_ld(args, 3); |
| sphb = spapr_pci_find_phb(spapr, buid); |
| if (!sphb) { |
| goto param_error_exit; |
| } |
| |
| if (!spapr_phb_eeh_available(sphb)) { |
| goto param_error_exit; |
| } |
| |
| ret = spapr_phb_vfio_eeh_reset(sphb, option); |
| rtas_st(rets, 0, ret); |
| return; |
| |
| param_error_exit: |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| } |
| |
| static void rtas_ibm_configure_pe(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| sPAPRPHBState *sphb; |
| uint64_t buid; |
| int ret; |
| |
| if ((nargs != 3) || (nret != 1)) { |
| goto param_error_exit; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| sphb = spapr_pci_find_phb(spapr, buid); |
| if (!sphb) { |
| goto param_error_exit; |
| } |
| |
| if (!spapr_phb_eeh_available(sphb)) { |
| goto param_error_exit; |
| } |
| |
| ret = spapr_phb_vfio_eeh_configure(sphb); |
| rtas_st(rets, 0, ret); |
| return; |
| |
| param_error_exit: |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| } |
| |
| /* To support it later */ |
| static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| sPAPRPHBState *sphb; |
| int option; |
| uint64_t buid; |
| |
| if ((nargs != 8) || (nret != 1)) { |
| goto param_error_exit; |
| } |
| |
| buid = rtas_ldq(args, 1); |
| sphb = spapr_pci_find_phb(spapr, buid); |
| if (!sphb) { |
| goto param_error_exit; |
| } |
| |
| if (!spapr_phb_eeh_available(sphb)) { |
| goto param_error_exit; |
| } |
| |
| option = rtas_ld(args, 7); |
| switch (option) { |
| case RTAS_SLOT_TEMP_ERR_LOG: |
| case RTAS_SLOT_PERM_ERR_LOG: |
| break; |
| default: |
| goto param_error_exit; |
| } |
| |
| /* We don't have error log yet */ |
| rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); |
| return; |
| |
| param_error_exit: |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| } |
| |
| static int pci_spapr_swizzle(int slot, int pin) |
| { |
| return (slot + pin) % PCI_NUM_PINS; |
| } |
| |
| static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) |
| { |
| /* |
| * Here we need to convert pci_dev + irq_num to some unique value |
| * which is less than number of IRQs on the specific bus (4). We |
| * use standard PCI swizzling, that is (slot number + pin number) |
| * % 4. |
| */ |
| return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); |
| } |
| |
| static void pci_spapr_set_irq(void *opaque, int irq_num, int level) |
| { |
| /* |
| * Here we use the number returned by pci_spapr_map_irq to find a |
| * corresponding qemu_irq. |
| */ |
| sPAPRPHBState *phb = opaque; |
| |
| trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); |
| qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); |
| } |
| |
| static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) |
| { |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); |
| PCIINTxRoute route; |
| |
| route.mode = PCI_INTX_ENABLED; |
| route.irq = sphb->lsi_table[pin].irq; |
| |
| return route; |
| } |
| |
| /* |
| * MSI/MSIX memory region implementation. |
| * The handler handles both MSI and MSIX. |
| * For MSI-X, the vector number is encoded as a part of the address, |
| * data is set to 0. |
| * For MSI, the vector number is encoded in least bits in data. |
| */ |
| static void spapr_msi_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| uint32_t irq = data; |
| |
| trace_spapr_pci_msi_write(addr, data, irq); |
| |
| qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq)); |
| } |
| |
| static const MemoryRegionOps spapr_msi_ops = { |
| /* There is no .read as the read result is undefined by PCI spec */ |
| .read = NULL, |
| .write = spapr_msi_write, |
| .endianness = DEVICE_LITTLE_ENDIAN |
| }; |
| |
| /* |
| * PHB PCI device |
| */ |
| static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) |
| { |
| sPAPRPHBState *phb = opaque; |
| |
| return &phb->iommu_as; |
| } |
| |
| static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) |
| { |
| char *path = NULL, *buf = NULL, *host = NULL; |
| |
| /* Get the PCI VFIO host id */ |
| host = object_property_get_str(OBJECT(pdev), "host", NULL); |
| if (!host) { |
| goto err_out; |
| } |
| |
| /* Construct the path of the file that will give us the DT location */ |
| path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); |
| g_free(host); |
| if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) { |
| goto err_out; |
| } |
| g_free(path); |
| |
| /* Construct and read from host device tree the loc-code */ |
| path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); |
| g_free(buf); |
| if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) { |
| goto err_out; |
| } |
| return buf; |
| |
| err_out: |
| g_free(path); |
| return NULL; |
| } |
| |
| static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) |
| { |
| char *buf; |
| const char *devtype = "qemu"; |
| uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); |
| |
| if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { |
| buf = spapr_phb_vfio_get_loc_code(sphb, pdev); |
| if (buf) { |
| return buf; |
| } |
| devtype = "vfio"; |
| } |
| /* |
| * For emulated devices and VFIO-failure case, make up |
| * the loc-code. |
| */ |
| buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", |
| devtype, pdev->name, sphb->index, busnr, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| return buf; |
| } |
| |
| /* Macros to operate with address in OF binding to PCI */ |
| #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) |
| #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ |
| #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ |
| #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ |
| #define b_ss(x) b_x((x), 24, 2) /* the space code */ |
| #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ |
| #define b_ddddd(x) b_x((x), 11, 5) /* device number */ |
| #define b_fff(x) b_x((x), 8, 3) /* function number */ |
| #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ |
| |
| /* for 'reg'/'assigned-addresses' OF properties */ |
| #define RESOURCE_CELLS_SIZE 2 |
| #define RESOURCE_CELLS_ADDRESS 3 |
| |
| typedef struct ResourceFields { |
| uint32_t phys_hi; |
| uint32_t phys_mid; |
| uint32_t phys_lo; |
| uint32_t size_hi; |
| uint32_t size_lo; |
| } QEMU_PACKED ResourceFields; |
| |
| typedef struct ResourceProps { |
| ResourceFields reg[8]; |
| ResourceFields assigned[7]; |
| uint32_t reg_len; |
| uint32_t assigned_len; |
| } ResourceProps; |
| |
| /* fill in the 'reg'/'assigned-resources' OF properties for |
| * a PCI device. 'reg' describes resource requirements for a |
| * device's IO/MEM regions, 'assigned-addresses' describes the |
| * actual resource assignments. |
| * |
| * the properties are arrays of ('phys-addr', 'size') pairs describing |
| * the addressable regions of the PCI device, where 'phys-addr' is a |
| * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to |
| * (phys.hi, phys.mid, phys.lo), and 'size' is a |
| * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). |
| * |
| * phys.hi = 0xYYXXXXZZ, where: |
| * 0xYY = npt000ss |
| * ||| | |
| * ||| +-- space code |
| * ||| | |
| * ||| + 00 if configuration space |
| * ||| + 01 if IO region, |
| * ||| + 10 if 32-bit MEM region |
| * ||| + 11 if 64-bit MEM region |
| * ||| |
| * ||+------ for non-relocatable IO: 1 if aliased |
| * || for relocatable IO: 1 if below 64KB |
| * || for MEM: 1 if below 1MB |
| * |+------- 1 if region is prefetchable |
| * +-------- 1 if region is non-relocatable |
| * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function |
| * bits respectively |
| * 0xZZ = rrrrrrrr, the register number of the BAR corresponding |
| * to the region |
| * |
| * phys.mid and phys.lo correspond respectively to the hi/lo portions |
| * of the actual address of the region. |
| * |
| * how the phys-addr/size values are used differ slightly between |
| * 'reg' and 'assigned-addresses' properties. namely, 'reg' has |
| * an additional description for the config space region of the |
| * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 |
| * to describe the region as relocatable, with an address-mapping |
| * that corresponds directly to the PHB's address space for the |
| * resource. 'assigned-addresses' always has n=1 set with an absolute |
| * address assigned for the resource. in general, 'assigned-addresses' |
| * won't be populated, since addresses for PCI devices are generally |
| * unmapped initially and left to the guest to assign. |
| * |
| * note also that addresses defined in these properties are, at least |
| * for PAPR guests, relative to the PHBs IO/MEM windows, and |
| * correspond directly to the addresses in the BARs. |
| * |
| * in accordance with PCI Bus Binding to Open Firmware, |
| * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, |
| * Appendix C. |
| */ |
| static void populate_resource_props(PCIDevice *d, ResourceProps *rp) |
| { |
| int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); |
| uint32_t dev_id = (b_bbbbbbbb(bus_num) | |
| b_ddddd(PCI_SLOT(d->devfn)) | |
| b_fff(PCI_FUNC(d->devfn))); |
| ResourceFields *reg, *assigned; |
| int i, reg_idx = 0, assigned_idx = 0; |
| |
| /* config space region */ |
| reg = &rp->reg[reg_idx++]; |
| reg->phys_hi = cpu_to_be32(dev_id); |
| reg->phys_mid = 0; |
| reg->phys_lo = 0; |
| reg->size_hi = 0; |
| reg->size_lo = 0; |
| |
| for (i = 0; i < PCI_NUM_REGIONS; i++) { |
| if (!d->io_regions[i].size) { |
| continue; |
| } |
| |
| reg = &rp->reg[reg_idx++]; |
| |
| reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); |
| if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { |
| reg->phys_hi |= cpu_to_be32(b_ss(1)); |
| } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { |
| reg->phys_hi |= cpu_to_be32(b_ss(3)); |
| } else { |
| reg->phys_hi |= cpu_to_be32(b_ss(2)); |
| } |
| reg->phys_mid = 0; |
| reg->phys_lo = 0; |
| reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); |
| reg->size_lo = cpu_to_be32(d->io_regions[i].size); |
| |
| if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { |
| continue; |
| } |
| |
| assigned = &rp->assigned[assigned_idx++]; |
| assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1)); |
| assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); |
| assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); |
| assigned->size_hi = reg->size_hi; |
| assigned->size_lo = reg->size_lo; |
| } |
| |
| rp->reg_len = reg_idx * sizeof(ResourceFields); |
| rp->assigned_len = assigned_idx * sizeof(ResourceFields); |
| } |
| |
| typedef struct PCIClass PCIClass; |
| typedef struct PCISubClass PCISubClass; |
| typedef struct PCIIFace PCIIFace; |
| |
| struct PCIIFace { |
| int iface; |
| const char *name; |
| }; |
| |
| struct PCISubClass { |
| int subclass; |
| const char *name; |
| const PCIIFace *iface; |
| }; |
| |
| struct PCIClass { |
| const char *name; |
| const PCISubClass *subc; |
| }; |
| |
| static const PCISubClass undef_subclass[] = { |
| { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass mass_subclass[] = { |
| { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, |
| { PCI_CLASS_STORAGE_IDE, "ide", NULL }, |
| { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, |
| { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, |
| { PCI_CLASS_STORAGE_RAID, "raid", NULL }, |
| { PCI_CLASS_STORAGE_ATA, "ata", NULL }, |
| { PCI_CLASS_STORAGE_SATA, "sata", NULL }, |
| { PCI_CLASS_STORAGE_SAS, "sas", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass net_subclass[] = { |
| { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, |
| { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, |
| { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, |
| { PCI_CLASS_NETWORK_ATM, "atm", NULL }, |
| { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, |
| { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, |
| { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass displ_subclass[] = { |
| { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, |
| { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, |
| { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass media_subclass[] = { |
| { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, |
| { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, |
| { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass mem_subclass[] = { |
| { PCI_CLASS_MEMORY_RAM, "memory", NULL }, |
| { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass bridg_subclass[] = { |
| { PCI_CLASS_BRIDGE_HOST, "host", NULL }, |
| { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, |
| { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, |
| { PCI_CLASS_BRIDGE_MC, "mca", NULL }, |
| { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, |
| { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, |
| { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, |
| { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, |
| { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, |
| { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, |
| { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass comm_subclass[] = { |
| { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, |
| { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, |
| { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, |
| { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, |
| { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, |
| { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, |
| { 0xFF, NULL, NULL, }, |
| }; |
| |
| static const PCIIFace pic_iface[] = { |
| { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, |
| { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, |
| { 0xFF, NULL }, |
| }; |
| |
| static const PCISubClass sys_subclass[] = { |
| { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, |
| { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, |
| { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, |
| { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, |
| { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, |
| { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass inp_subclass[] = { |
| { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, |
| { PCI_CLASS_INPUT_PEN, "pen", NULL }, |
| { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, |
| { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, |
| { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass dock_subclass[] = { |
| { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass cpu_subclass[] = { |
| { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, |
| { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, |
| { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, |
| { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCIIFace usb_iface[] = { |
| { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, |
| { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, |
| { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, |
| { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, |
| { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, |
| { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, |
| { 0xFF, NULL }, |
| }; |
| |
| static const PCISubClass ser_subclass[] = { |
| { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, |
| { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, |
| { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, |
| { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, |
| { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, |
| { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, |
| { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, |
| { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, |
| { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, |
| { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass wrl_subclass[] = { |
| { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, |
| { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, |
| { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, |
| { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, |
| { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass sat_subclass[] = { |
| { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, |
| { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, |
| { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, |
| { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass crypt_subclass[] = { |
| { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, |
| { PCI_CLASS_CRYPT_ENTERTAINMENT, |
| "entertainment-encryption", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCISubClass spc_subclass[] = { |
| { PCI_CLASS_SP_DPIO, "dpio", NULL }, |
| { PCI_CLASS_SP_PERF, "counter", NULL }, |
| { PCI_CLASS_SP_SYNCH, "measurement", NULL }, |
| { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, |
| { 0xFF, NULL, NULL }, |
| }; |
| |
| static const PCIClass pci_classes[] = { |
| { "legacy-device", undef_subclass }, |
| { "mass-storage", mass_subclass }, |
| { "network", net_subclass }, |
| { "display", displ_subclass, }, |
| { "multimedia-device", media_subclass }, |
| { "memory-controller", mem_subclass }, |
| { "unknown-bridge", bridg_subclass }, |
| { "communication-controller", comm_subclass}, |
| { "system-peripheral", sys_subclass }, |
| { "input-controller", inp_subclass }, |
| { "docking-station", dock_subclass }, |
| { "cpu", cpu_subclass }, |
| { "serial-bus", ser_subclass }, |
| { "wireless-controller", wrl_subclass }, |
| { "intelligent-io", NULL }, |
| { "satellite-device", sat_subclass }, |
| { "encryption", crypt_subclass }, |
| { "data-processing-controller", spc_subclass }, |
| }; |
| |
| static const char *pci_find_device_name(uint8_t class, uint8_t subclass, |
| uint8_t iface) |
| { |
| const PCIClass *pclass; |
| const PCISubClass *psubclass; |
| const PCIIFace *piface; |
| const char *name; |
| |
| if (class >= ARRAY_SIZE(pci_classes)) { |
| return "pci"; |
| } |
| |
| pclass = pci_classes + class; |
| name = pclass->name; |
| |
| if (pclass->subc == NULL) { |
| return name; |
| } |
| |
| psubclass = pclass->subc; |
| while ((psubclass->subclass & 0xff) != 0xff) { |
| if ((psubclass->subclass & 0xff) == subclass) { |
| name = psubclass->name; |
| break; |
| } |
| psubclass++; |
| } |
| |
| piface = psubclass->iface; |
| if (piface == NULL) { |
| return name; |
| } |
| while ((piface->iface & 0xff) != 0xff) { |
| if ((piface->iface & 0xff) == iface) { |
| name = piface->name; |
| break; |
| } |
| piface++; |
| } |
| |
| return name; |
| } |
| |
| static void pci_get_node_name(char *nodename, int len, PCIDevice *dev) |
| { |
| int slot = PCI_SLOT(dev->devfn); |
| int func = PCI_FUNC(dev->devfn); |
| uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); |
| const char *name; |
| |
| name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, |
| ccode & 0xff); |
| |
| if (func != 0) { |
| snprintf(nodename, len, "%s@%x,%x", name, slot, func); |
| } else { |
| snprintf(nodename, len, "%s@%x", name, slot); |
| } |
| } |
| |
| static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, |
| PCIDevice *pdev); |
| |
| static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, |
| sPAPRPHBState *sphb) |
| { |
| ResourceProps rp; |
| bool is_bridge = false; |
| int pci_status, err; |
| char *buf = NULL; |
| uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); |
| uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); |
| uint32_t max_msi, max_msix; |
| |
| if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == |
| PCI_HEADER_TYPE_BRIDGE) { |
| is_bridge = true; |
| } |
| |
| /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ |
| _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", |
| pci_default_read_config(dev, PCI_VENDOR_ID, 2))); |
| _FDT(fdt_setprop_cell(fdt, offset, "device-id", |
| pci_default_read_config(dev, PCI_DEVICE_ID, 2))); |
| _FDT(fdt_setprop_cell(fdt, offset, "revision-id", |
| pci_default_read_config(dev, PCI_REVISION_ID, 1))); |
| _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); |
| if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { |
| _FDT(fdt_setprop_cell(fdt, offset, "interrupts", |
| pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); |
| } |
| |
| if (!is_bridge) { |
| _FDT(fdt_setprop_cell(fdt, offset, "min-grant", |
| pci_default_read_config(dev, PCI_MIN_GNT, 1))); |
| _FDT(fdt_setprop_cell(fdt, offset, "max-latency", |
| pci_default_read_config(dev, PCI_MAX_LAT, 1))); |
| } |
| |
| if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { |
| _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", |
| pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); |
| } |
| |
| if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { |
| _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", |
| pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); |
| } |
| |
| _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", |
| pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); |
| |
| /* the following fdt cells are masked off the pci status register */ |
| pci_status = pci_default_read_config(dev, PCI_STATUS, 2); |
| _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", |
| PCI_STATUS_DEVSEL_MASK & pci_status)); |
| |
| if (pci_status & PCI_STATUS_FAST_BACK) { |
| _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); |
| } |
| if (pci_status & PCI_STATUS_66MHZ) { |
| _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); |
| } |
| if (pci_status & PCI_STATUS_UDF) { |
| _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); |
| } |
| |
| _FDT(fdt_setprop_string(fdt, offset, "name", |
| pci_find_device_name((ccode >> 16) & 0xff, |
| (ccode >> 8) & 0xff, |
| ccode & 0xff))); |
| buf = spapr_phb_get_loc_code(sphb, dev); |
| if (!buf) { |
| error_report("Failed setting the ibm,loc-code"); |
| return -1; |
| } |
| |
| err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf); |
| g_free(buf); |
| if (err < 0) { |
| return err; |
| } |
| |
| if (drc_index) { |
| _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); |
| } |
| |
| _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", |
| RESOURCE_CELLS_ADDRESS)); |
| _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", |
| RESOURCE_CELLS_SIZE)); |
| |
| max_msi = msi_nr_vectors_allocated(dev); |
| if (max_msi) { |
| _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); |
| } |
| max_msix = dev->msix_entries_nr; |
| if (max_msix) { |
| _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); |
| } |
| |
| populate_resource_props(dev, &rp); |
| _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); |
| _FDT(fdt_setprop(fdt, offset, "assigned-addresses", |
| (uint8_t *)rp.assigned, rp.assigned_len)); |
| |
| if (sphb->pcie_ecs && pci_is_express(dev)) { |
| _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); |
| } |
| |
| return 0; |
| } |
| |
| /* create OF node for pci device and required OF DT properties */ |
| static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev, |
| void *fdt, int node_offset) |
| { |
| int offset, ret; |
| char nodename[FDT_NAME_MAX]; |
| |
| pci_get_node_name(nodename, FDT_NAME_MAX, dev); |
| offset = fdt_add_subnode(fdt, node_offset, nodename); |
| ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb); |
| |
| g_assert(!ret); |
| if (ret) { |
| return 0; |
| } |
| return offset; |
| } |
| |
| /* Callback to be called during DRC release. */ |
| void spapr_phb_remove_pci_device_cb(DeviceState *dev) |
| { |
| /* some version guests do not wait for completion of a device |
| * cleanup (generally done asynchronously by the kernel) before |
| * signaling to QEMU that the device is safe, but instead sleep |
| * for some 'safe' period of time. unfortunately on a busy host |
| * this sleep isn't guaranteed to be long enough, resulting in |
| * bad things like IRQ lines being left asserted during final |
| * device removal. to deal with this we call reset just prior |
| * to finalizing the device, which will put the device back into |
| * an 'idle' state, as the device cleanup code expects. |
| */ |
| pci_device_reset(PCI_DEVICE(dev)); |
| object_unparent(OBJECT(dev)); |
| } |
| |
| static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb, |
| uint32_t busnr, |
| int32_t devfn) |
| { |
| return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, |
| (phb->index << 16) | (busnr << 8) | devfn); |
| } |
| |
| static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb, |
| PCIDevice *pdev) |
| { |
| uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); |
| return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); |
| } |
| |
| static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, |
| PCIDevice *pdev) |
| { |
| sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); |
| |
| if (!drc) { |
| return 0; |
| } |
| |
| return spapr_drc_index(drc); |
| } |
| |
| static void spapr_pci_plug(HotplugHandler *plug_handler, |
| DeviceState *plugged_dev, Error **errp) |
| { |
| sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); |
| PCIDevice *pdev = PCI_DEVICE(plugged_dev); |
| sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); |
| Error *local_err = NULL; |
| PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); |
| uint32_t slotnr = PCI_SLOT(pdev->devfn); |
| void *fdt = NULL; |
| int fdt_start_offset, fdt_size; |
| |
| /* if DR is disabled we don't need to do anything in the case of |
| * hotplug or coldplug callbacks |
| */ |
| if (!phb->dr_enabled) { |
| /* if this is a hotplug operation initiated by the user |
| * we need to let them know it's not enabled |
| */ |
| if (plugged_dev->hotplugged) { |
| error_setg(&local_err, QERR_BUS_NO_HOTPLUG, |
| object_get_typename(OBJECT(phb))); |
| } |
| goto out; |
| } |
| |
| g_assert(drc); |
| |
| /* Following the QEMU convention used for PCIe multifunction |
| * hotplug, we do not allow functions to be hotplugged to a |
| * slot that already has function 0 present |
| */ |
| if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && |
| PCI_FUNC(pdev->devfn) != 0) { |
| error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," |
| " additional functions can no longer be exposed to guest.", |
| slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); |
| goto out; |
| } |
| |
| fdt = create_device_tree(&fdt_size); |
| fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0); |
| if (!fdt_start_offset) { |
| error_setg(&local_err, "Failed to create pci child device tree node"); |
| goto out; |
| } |
| |
| spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| /* If this is function 0, signal hotplug for all the device functions. |
| * Otherwise defer sending the hotplug event. |
| */ |
| if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) { |
| int i; |
| |
| for (i = 0; i < 8; i++) { |
| sPAPRDRConnector *func_drc; |
| sPAPRDRConnectorClass *func_drck; |
| sPAPRDREntitySense state; |
| |
| func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), |
| PCI_DEVFN(slotnr, i)); |
| func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); |
| state = func_drck->dr_entity_sense(func_drc); |
| |
| if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { |
| spapr_hotplug_req_add_by_index(func_drc); |
| } |
| } |
| } |
| |
| out: |
| if (local_err) { |
| error_propagate(errp, local_err); |
| g_free(fdt); |
| } |
| } |
| |
| static void spapr_pci_unplug_request(HotplugHandler *plug_handler, |
| DeviceState *plugged_dev, Error **errp) |
| { |
| sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); |
| PCIDevice *pdev = PCI_DEVICE(plugged_dev); |
| sPAPRDRConnectorClass *drck; |
| sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); |
| Error *local_err = NULL; |
| |
| if (!phb->dr_enabled) { |
| error_setg(errp, QERR_BUS_NO_HOTPLUG, |
| object_get_typename(OBJECT(phb))); |
| return; |
| } |
| |
| g_assert(drc); |
| g_assert(drc->dev == plugged_dev); |
| |
| drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); |
| if (!drck->release_pending(drc)) { |
| PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); |
| uint32_t slotnr = PCI_SLOT(pdev->devfn); |
| sPAPRDRConnector *func_drc; |
| sPAPRDRConnectorClass *func_drck; |
| sPAPRDREntitySense state; |
| int i; |
| |
| /* ensure any other present functions are pending unplug */ |
| if (PCI_FUNC(pdev->devfn) == 0) { |
| for (i = 1; i < 8; i++) { |
| func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), |
| PCI_DEVFN(slotnr, i)); |
| func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); |
| state = func_drck->dr_entity_sense(func_drc); |
| if (state == SPAPR_DR_ENTITY_SENSE_PRESENT |
| && !func_drck->release_pending(func_drc)) { |
| error_setg(errp, |
| "PCI: slot %d, function %d still present. " |
| "Must unplug all non-0 functions first.", |
| slotnr, i); |
| return; |
| } |
| } |
| } |
| |
| spapr_drc_detach(drc, DEVICE(pdev), &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| /* if this isn't func 0, defer unplug event. otherwise signal removal |
| * for all present functions |
| */ |
| if (PCI_FUNC(pdev->devfn) == 0) { |
| for (i = 7; i >= 0; i--) { |
| func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), |
| PCI_DEVFN(slotnr, i)); |
| func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); |
| state = func_drck->dr_entity_sense(func_drc); |
| if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { |
| spapr_hotplug_req_remove_by_index(func_drc); |
| } |
| } |
| } |
| } |
| } |
| |
| static void spapr_phb_realize(DeviceState *dev, Error **errp) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| SysBusDevice *s = SYS_BUS_DEVICE(dev); |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); |
| PCIHostState *phb = PCI_HOST_BRIDGE(s); |
| char *namebuf; |
| int i; |
| PCIBus *bus; |
| uint64_t msi_window_size = 4096; |
| sPAPRTCETable *tcet; |
| const unsigned windows_supported = |
| sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1; |
| |
| if (sphb->index != (uint32_t)-1) { |
| sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| Error *local_err = NULL; |
| |
| if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1) |
| || (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2) |
| || (sphb->mem_win_addr != (hwaddr)-1) |
| || (sphb->mem64_win_addr != (hwaddr)-1) |
| || (sphb->io_win_addr != (hwaddr)-1)) { |
| error_setg(errp, "Either \"index\" or other parameters must" |
| " be specified for PAPR PHB, not both"); |
| return; |
| } |
| |
| smc->phb_placement(spapr, sphb->index, |
| &sphb->buid, &sphb->io_win_addr, |
| &sphb->mem_win_addr, &sphb->mem64_win_addr, |
| windows_supported, sphb->dma_liobn, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| } |
| |
| if (sphb->buid == (uint64_t)-1) { |
| error_setg(errp, "BUID not specified for PHB"); |
| return; |
| } |
| |
| if ((sphb->dma_liobn[0] == (uint32_t)-1) || |
| ((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) { |
| error_setg(errp, "LIOBN(s) not specified for PHB"); |
| return; |
| } |
| |
| if (sphb->mem_win_addr == (hwaddr)-1) { |
| error_setg(errp, "Memory window address not specified for PHB"); |
| return; |
| } |
| |
| if (sphb->io_win_addr == (hwaddr)-1) { |
| error_setg(errp, "IO window address not specified for PHB"); |
| return; |
| } |
| |
| if (sphb->mem64_win_size != 0) { |
| if (sphb->mem64_win_addr == (hwaddr)-1) { |
| error_setg(errp, |
| "64-bit memory window address not specified for PHB"); |
| return; |
| } |
| |
| if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { |
| error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx |
| " (max 2 GiB)", sphb->mem_win_size); |
| return; |
| } |
| |
| if (sphb->mem64_win_pciaddr == (hwaddr)-1) { |
| /* 64-bit window defaults to identity mapping */ |
| sphb->mem64_win_pciaddr = sphb->mem64_win_addr; |
| } |
| } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { |
| /* |
| * For compatibility with old configuration, if no 64-bit MMIO |
| * window is specified, but the ordinary (32-bit) memory |
| * window is specified as > 2GiB, we treat it as a 2GiB 32-bit |
| * window, with a 64-bit MMIO window following on immediately |
| * afterwards |
| */ |
| sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; |
| sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; |
| sphb->mem64_win_pciaddr = |
| SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; |
| sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; |
| } |
| |
| if (spapr_pci_find_phb(spapr, sphb->buid)) { |
| error_setg(errp, "PCI host bridges must have unique BUIDs"); |
| return; |
| } |
| |
| if (sphb->numa_node != -1 && |
| (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { |
| error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); |
| return; |
| } |
| |
| sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); |
| |
| namebuf = alloca(strlen(sphb->dtbusname) + 32); |
| |
| /* Initialize memory regions */ |
| sprintf(namebuf, "%s.mmio", sphb->dtbusname); |
| memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); |
| |
| sprintf(namebuf, "%s.mmio32-alias", sphb->dtbusname); |
| memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), |
| namebuf, &sphb->memspace, |
| SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); |
| memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, |
| &sphb->mem32window); |
| |
| sprintf(namebuf, "%s.mmio64-alias", sphb->dtbusname); |
| memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), |
| namebuf, &sphb->memspace, |
| sphb->mem64_win_pciaddr, sphb->mem64_win_size); |
| memory_region_add_subregion(get_system_memory(), sphb->mem64_win_addr, |
| &sphb->mem64window); |
| |
| /* Initialize IO regions */ |
| sprintf(namebuf, "%s.io", sphb->dtbusname); |
| memory_region_init(&sphb->iospace, OBJECT(sphb), |
| namebuf, SPAPR_PCI_IO_WIN_SIZE); |
| |
| sprintf(namebuf, "%s.io-alias", sphb->dtbusname); |
| memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, |
| &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); |
| memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, |
| &sphb->iowindow); |
| |
| bus = pci_register_bus(dev, NULL, |
| pci_spapr_set_irq, pci_spapr_map_irq, sphb, |
| &sphb->memspace, &sphb->iospace, |
| PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); |
| phb->bus = bus; |
| qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL); |
| |
| /* |
| * Initialize PHB address space. |
| * By default there will be at least one subregion for default |
| * 32bit DMA window. |
| * Later the guest might want to create another DMA window |
| * which will become another memory subregion. |
| */ |
| sprintf(namebuf, "%s.iommu-root", sphb->dtbusname); |
| |
| memory_region_init(&sphb->iommu_root, OBJECT(sphb), |
| namebuf, UINT64_MAX); |
| address_space_init(&sphb->iommu_as, &sphb->iommu_root, |
| sphb->dtbusname); |
| |
| /* |
| * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, |
| * we need to allocate some memory to catch those writes coming |
| * from msi_notify()/msix_notify(). |
| * As MSIMessage:addr is going to be the same and MSIMessage:data |
| * is going to be a VIRQ number, 4 bytes of the MSI MR will only |
| * be used. |
| * |
| * For KVM we want to ensure that this memory is a full page so that |
| * our memory slot is of page size granularity. |
| */ |
| #ifdef CONFIG_KVM |
| if (kvm_enabled()) { |
| msi_window_size = getpagesize(); |
| } |
| #endif |
| |
| memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr, |
| "msi", msi_window_size); |
| memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, |
| &sphb->msiwindow); |
| |
| pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); |
| |
| pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); |
| |
| QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); |
| |
| /* Initialize the LSI table */ |
| for (i = 0; i < PCI_NUM_PINS; i++) { |
| uint32_t irq; |
| Error *local_err = NULL; |
| |
| irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| error_prepend(errp, "can't allocate LSIs: "); |
| return; |
| } |
| |
| sphb->lsi_table[i].irq = irq; |
| } |
| |
| /* allocate connectors for child PCI devices */ |
| if (sphb->dr_enabled) { |
| for (i = 0; i < PCI_SLOT_MAX * 8; i++) { |
| spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI, |
| (sphb->index << 16) | i); |
| } |
| } |
| |
| /* DMA setup */ |
| if (((sphb->page_size_mask & qemu_getrampagesize()) == 0) |
| && kvm_enabled()) { |
| error_report("System page size 0x%lx is not enabled in page_size_mask " |
| "(0x%"PRIx64"). Performance may be slow", |
| qemu_getrampagesize(), sphb->page_size_mask); |
| } |
| |
| for (i = 0; i < windows_supported; ++i) { |
| tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); |
| if (!tcet) { |
| error_setg(errp, "Creating window#%d failed for %s", |
| i, sphb->dtbusname); |
| return; |
| } |
| memory_region_add_subregion_overlap(&sphb->iommu_root, 0, |
| spapr_tce_get_iommu(tcet), 0); |
| } |
| |
| sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); |
| } |
| |
| static int spapr_phb_children_reset(Object *child, void *opaque) |
| { |
| DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); |
| |
| if (dev) { |
| device_reset(dev); |
| } |
| |
| return 0; |
| } |
| |
| void spapr_phb_dma_reset(sPAPRPHBState *sphb) |
| { |
| int i; |
| sPAPRTCETable *tcet; |
| |
| for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { |
| tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); |
| |
| if (tcet && tcet->nb_table) { |
| spapr_tce_table_disable(tcet); |
| } |
| } |
| |
| /* Register default 32bit DMA window */ |
| tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); |
| spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, |
| sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); |
| } |
| |
| static void spapr_phb_reset(DeviceState *qdev) |
| { |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); |
| |
| spapr_phb_dma_reset(sphb); |
| |
| /* Reset the IOMMU state */ |
| object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); |
| |
| if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { |
| spapr_phb_vfio_reset(qdev); |
| } |
| } |
| |
| static Property spapr_phb_properties[] = { |
| DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), |
| DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1), |
| DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1), |
| DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1), |
| DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), |
| DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, |
| SPAPR_PCI_MEM32_WIN_SIZE), |
| DEFINE_PROP_UINT64("mem64_win_addr", sPAPRPHBState, mem64_win_addr, -1), |
| DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size, |
| SPAPR_PCI_MEM64_WIN_SIZE), |
| DEFINE_PROP_UINT64("mem64_win_pciaddr", sPAPRPHBState, mem64_win_pciaddr, |
| -1), |
| DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1), |
| DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, |
| SPAPR_PCI_IO_WIN_SIZE), |
| DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled, |
| true), |
| /* Default DMA window is 0..1GB */ |
| DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0), |
| DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000), |
| DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr, |
| 0x800000000000000ULL), |
| DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true), |
| DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask, |
| (1ULL << 12) | (1ULL << 16)), |
| DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1), |
| DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState, |
| pre_2_8_migration, false), |
| DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState, |
| pcie_ecs, true), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static const VMStateDescription vmstate_spapr_pci_lsi = { |
| .name = "spapr_pci/lsi", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL), |
| |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_spapr_pci_msi = { |
| .name = "spapr_pci/msi", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField []) { |
| VMSTATE_UINT32(key, spapr_pci_msi_mig), |
| VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), |
| VMSTATE_UINT32(value.num, spapr_pci_msi_mig), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void spapr_pci_pre_save(void *opaque) |
| { |
| sPAPRPHBState *sphb = opaque; |
| GHashTableIter iter; |
| gpointer key, value; |
| int i; |
| |
| if (sphb->pre_2_8_migration) { |
| sphb->mig_liobn = sphb->dma_liobn[0]; |
| sphb->mig_mem_win_addr = sphb->mem_win_addr; |
| sphb->mig_mem_win_size = sphb->mem_win_size; |
| sphb->mig_io_win_addr = sphb->io_win_addr; |
| sphb->mig_io_win_size = sphb->io_win_size; |
| |
| if ((sphb->mem64_win_size != 0) |
| && (sphb->mem64_win_addr |
| == (sphb->mem_win_addr + sphb->mem_win_size))) { |
| sphb->mig_mem_win_size += sphb->mem64_win_size; |
| } |
| } |
| |
| g_free(sphb->msi_devs); |
| sphb->msi_devs = NULL; |
| sphb->msi_devs_num = g_hash_table_size(sphb->msi); |
| if (!sphb->msi_devs_num) { |
| return; |
| } |
| sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig)); |
| |
| g_hash_table_iter_init(&iter, sphb->msi); |
| for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { |
| sphb->msi_devs[i].key = *(uint32_t *) key; |
| sphb->msi_devs[i].value = *(spapr_pci_msi *) value; |
| } |
| } |
| |
| static int spapr_pci_post_load(void *opaque, int version_id) |
| { |
| sPAPRPHBState *sphb = opaque; |
| gpointer key, value; |
| int i; |
| |
| for (i = 0; i < sphb->msi_devs_num; ++i) { |
| key = g_memdup(&sphb->msi_devs[i].key, |
| sizeof(sphb->msi_devs[i].key)); |
| value = g_memdup(&sphb->msi_devs[i].value, |
| sizeof(sphb->msi_devs[i].value)); |
| g_hash_table_insert(sphb->msi, key, value); |
| } |
| g_free(sphb->msi_devs); |
| sphb->msi_devs = NULL; |
| sphb->msi_devs_num = 0; |
| |
| return 0; |
| } |
| |
| static bool pre_2_8_migration(void *opaque, int version_id) |
| { |
| sPAPRPHBState *sphb = opaque; |
| |
| return sphb->pre_2_8_migration; |
| } |
| |
| static const VMStateDescription vmstate_spapr_pci = { |
| .name = "spapr_pci", |
| .version_id = 2, |
| .minimum_version_id = 2, |
| .pre_save = spapr_pci_pre_save, |
| .post_load = spapr_pci_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL), |
| VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration), |
| VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration), |
| VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration), |
| VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration), |
| VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration), |
| VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, |
| vmstate_spapr_pci_lsi, struct spapr_pci_lsi), |
| VMSTATE_INT32(msi_devs_num, sPAPRPHBState), |
| VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, |
| vmstate_spapr_pci_msi, spapr_pci_msi_mig), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, |
| PCIBus *rootbus) |
| { |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); |
| |
| return sphb->dtbusname; |
| } |
| |
| static void spapr_phb_class_init(ObjectClass *klass, void *data) |
| { |
| PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); |
| |
| hc->root_bus_path = spapr_phb_root_bus_path; |
| dc->realize = spapr_phb_realize; |
| dc->props = spapr_phb_properties; |
| dc->reset = spapr_phb_reset; |
| dc->vmsd = &vmstate_spapr_pci; |
| /* Supported by TYPE_SPAPR_MACHINE */ |
| dc->user_creatable = true; |
| set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); |
| hp->plug = spapr_pci_plug; |
| hp->unplug_request = spapr_pci_unplug_request; |
| } |
| |
| static const TypeInfo spapr_phb_info = { |
| .name = TYPE_SPAPR_PCI_HOST_BRIDGE, |
| .parent = TYPE_PCI_HOST_BRIDGE, |
| .instance_size = sizeof(sPAPRPHBState), |
| .class_init = spapr_phb_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_HOTPLUG_HANDLER }, |
| { } |
| } |
| }; |
| |
| PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index) |
| { |
| DeviceState *dev; |
| |
| dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| qdev_prop_set_uint32(dev, "index", index); |
| qdev_init_nofail(dev); |
| |
| return PCI_HOST_BRIDGE(dev); |
| } |
| |
| typedef struct sPAPRFDT { |
| void *fdt; |
| int node_off; |
| sPAPRPHBState *sphb; |
| } sPAPRFDT; |
| |
| static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, |
| void *opaque) |
| { |
| PCIBus *sec_bus; |
| sPAPRFDT *p = opaque; |
| int offset; |
| sPAPRFDT s_fdt; |
| |
| offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); |
| if (!offset) { |
| error_report("Failed to create pci child device tree node"); |
| return; |
| } |
| |
| if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != |
| PCI_HEADER_TYPE_BRIDGE)) { |
| return; |
| } |
| |
| sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); |
| if (!sec_bus) { |
| return; |
| } |
| |
| s_fdt.fdt = p->fdt; |
| s_fdt.node_off = offset; |
| s_fdt.sphb = p->sphb; |
| pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus), |
| spapr_populate_pci_devices_dt, |
| &s_fdt); |
| } |
| |
| static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, |
| void *opaque) |
| { |
| unsigned int *bus_no = opaque; |
| unsigned int primary = *bus_no; |
| unsigned int subordinate = 0xff; |
| PCIBus *sec_bus = NULL; |
| |
| if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != |
| PCI_HEADER_TYPE_BRIDGE)) { |
| return; |
| } |
| |
| (*bus_no)++; |
| pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1); |
| pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); |
| pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); |
| |
| sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); |
| if (!sec_bus) { |
| return; |
| } |
| |
| pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1); |
| pci_for_each_device(sec_bus, pci_bus_num(sec_bus), |
| spapr_phb_pci_enumerate_bridge, bus_no); |
| pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); |
| } |
| |
| static void spapr_phb_pci_enumerate(sPAPRPHBState *phb) |
| { |
| PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; |
| unsigned int bus_no = 0; |
| |
| pci_for_each_device(bus, pci_bus_num(bus), |
| spapr_phb_pci_enumerate_bridge, |
| &bus_no); |
| |
| } |
| |
| int spapr_populate_pci_dt(sPAPRPHBState *phb, |
| uint32_t xics_phandle, |
| void *fdt) |
| { |
| int bus_off, i, j, ret; |
| char nodename[FDT_NAME_MAX]; |
| uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; |
| struct { |
| uint32_t hi; |
| uint64_t child; |
| uint64_t parent; |
| uint64_t size; |
| } QEMU_PACKED ranges[] = { |
| { |
| cpu_to_be32(b_ss(1)), cpu_to_be64(0), |
| cpu_to_be64(phb->io_win_addr), |
| cpu_to_be64(memory_region_size(&phb->iospace)), |
| }, |
| { |
| cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), |
| cpu_to_be64(phb->mem_win_addr), |
| cpu_to_be64(phb->mem_win_size), |
| }, |
| { |
| cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), |
| cpu_to_be64(phb->mem64_win_addr), |
| cpu_to_be64(phb->mem64_win_size), |
| }, |
| }; |
| const unsigned sizeof_ranges = |
| (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); |
| uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; |
| uint32_t interrupt_map_mask[] = { |
| cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; |
| uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; |
| uint32_t ddw_applicable[] = { |
| cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), |
| cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), |
| cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) |
| }; |
| uint32_t ddw_extensions[] = { |
| cpu_to_be32(1), |
| cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) |
| }; |
| uint32_t associativity[] = {cpu_to_be32(0x4), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(phb->numa_node)}; |
| sPAPRTCETable *tcet; |
| PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; |
| sPAPRFDT s_fdt; |
| |
| /* Start populating the FDT */ |
| snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid); |
| bus_off = fdt_add_subnode(fdt, 0, nodename); |
| if (bus_off < 0) { |
| return bus_off; |
| } |
| |
| /* Write PHB properties */ |
| _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); |
| _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); |
| _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); |
| _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); |
| _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); |
| _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR)); |
| |
| /* Dynamic DMA window */ |
| if (phb->ddw_enabled) { |
| _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, |
| sizeof(ddw_applicable))); |
| _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", |
| &ddw_extensions, sizeof(ddw_extensions))); |
| } |
| |
| /* Advertise NUMA via ibm,associativity */ |
| if (phb->numa_node != -1) { |
| _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, |
| sizeof(associativity))); |
| } |
| |
| /* Build the interrupt-map, this must matches what is done |
| * in pci_spapr_map_irq |
| */ |
| _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", |
| &interrupt_map_mask, sizeof(interrupt_map_mask))); |
| for (i = 0; i < PCI_SLOT_MAX; i++) { |
| for (j = 0; j < PCI_NUM_PINS; j++) { |
| uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; |
| int lsi_num = pci_spapr_swizzle(i, j); |
| |
| irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); |
| irqmap[1] = 0; |
| irqmap[2] = 0; |
| irqmap[3] = cpu_to_be32(j+1); |
| irqmap[4] = cpu_to_be32(xics_phandle); |
| irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); |
| irqmap[6] = cpu_to_be32(0x8); |
| } |
| } |
| /* Write interrupt map */ |
| _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, |
| sizeof(interrupt_map))); |
| |
| tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); |
| if (!tcet) { |
| return -1; |
| } |
| spapr_dma_dt(fdt, bus_off, "ibm,dma-window", |
| tcet->liobn, tcet->bus_offset, |
| tcet->nb_table << tcet->page_shift); |
| |
| /* Walk the bridges and program the bus numbers*/ |
| spapr_phb_pci_enumerate(phb); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); |
| |
| /* Populate tree nodes with PCI devices attached */ |
| s_fdt.fdt = fdt; |
| s_fdt.node_off = bus_off; |
| s_fdt.sphb = phb; |
| pci_for_each_device_reverse(bus, pci_bus_num(bus), |
| spapr_populate_pci_devices_dt, |
| &s_fdt); |
| |
| ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), |
| SPAPR_DR_CONNECTOR_TYPE_PCI); |
| if (ret) { |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| void spapr_pci_rtas_init(void) |
| { |
| spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", |
| rtas_read_pci_config); |
| spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", |
| rtas_write_pci_config); |
| spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", |
| rtas_ibm_read_pci_config); |
| spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", |
| rtas_ibm_write_pci_config); |
| if (msi_nonbroken) { |
| spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, |
| "ibm,query-interrupt-source-number", |
| rtas_ibm_query_interrupt_source_number); |
| spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", |
| rtas_ibm_change_msi); |
| } |
| |
| spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, |
| "ibm,set-eeh-option", |
| rtas_ibm_set_eeh_option); |
| spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, |
| "ibm,get-config-addr-info2", |
| rtas_ibm_get_config_addr_info2); |
| spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, |
| "ibm,read-slot-reset-state2", |
| rtas_ibm_read_slot_reset_state2); |
| spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, |
| "ibm,set-slot-reset", |
| rtas_ibm_set_slot_reset); |
| spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, |
| "ibm,configure-pe", |
| rtas_ibm_configure_pe); |
| spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, |
| "ibm,slot-error-detail", |
| rtas_ibm_slot_error_detail); |
| } |
| |
| static void spapr_pci_register_types(void) |
| { |
| type_register_static(&spapr_phb_info); |
| } |
| |
| type_init(spapr_pci_register_types) |
| |
| static int spapr_switch_one_vga(DeviceState *dev, void *opaque) |
| { |
| bool be = *(bool *)opaque; |
| |
| if (object_dynamic_cast(OBJECT(dev), "VGA") |
| || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { |
| object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", |
| &error_abort); |
| } |
| return 0; |
| } |
| |
| void spapr_pci_switch_vga(bool big_endian) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| sPAPRPHBState *sphb; |
| |
| /* |
| * For backward compatibility with existing guests, we switch |
| * the endianness of the VGA controller when changing the guest |
| * interrupt mode |
| */ |
| QLIST_FOREACH(sphb, &spapr->phbs, list) { |
| BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; |
| qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, |
| &big_endian); |
| } |
| } |