| /* |
| * M68K helper routines |
| * |
| * Copyright (c) 2007 CodeSourcery |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/semihost.h" |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void m68k_cpu_do_interrupt(CPUState *cs) |
| { |
| cs->exception_index = -1; |
| } |
| |
| static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) |
| { |
| } |
| |
| #else |
| |
| /* Try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, |
| int mmu_idx, uintptr_t retaddr) |
| { |
| int ret; |
| |
| ret = m68k_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx); |
| if (unlikely(ret)) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| cpu_restore_state(cs, retaddr); |
| } |
| cpu_loop_exit(cs); |
| } |
| } |
| |
| static void do_rte(CPUM68KState *env) |
| { |
| uint32_t sp; |
| uint32_t fmt; |
| |
| sp = env->aregs[7]; |
| fmt = cpu_ldl_kernel(env, sp); |
| env->pc = cpu_ldl_kernel(env, sp + 4); |
| sp |= (fmt >> 28) & 3; |
| env->aregs[7] = sp + 8; |
| |
| helper_set_sr(env, fmt); |
| } |
| |
| static void do_interrupt_all(CPUM68KState *env, int is_hw) |
| { |
| CPUState *cs = CPU(m68k_env_get_cpu(env)); |
| uint32_t sp; |
| uint32_t fmt; |
| uint32_t retaddr; |
| uint32_t vector; |
| |
| fmt = 0; |
| retaddr = env->pc; |
| |
| if (!is_hw) { |
| switch (cs->exception_index) { |
| case EXCP_RTE: |
| /* Return from an exception. */ |
| do_rte(env); |
| return; |
| case EXCP_HALT_INSN: |
| if (semihosting_enabled() |
| && (env->sr & SR_S) != 0 |
| && (env->pc & 3) == 0 |
| && cpu_lduw_code(env, env->pc - 4) == 0x4e71 |
| && cpu_ldl_code(env, env->pc) == 0x4e7bf000) { |
| env->pc += 4; |
| do_m68k_semihosting(env, env->dregs[0]); |
| return; |
| } |
| cs->halted = 1; |
| cs->exception_index = EXCP_HLT; |
| cpu_loop_exit(cs); |
| return; |
| } |
| if (cs->exception_index >= EXCP_TRAP0 |
| && cs->exception_index <= EXCP_TRAP15) { |
| /* Move the PC after the trap instruction. */ |
| retaddr += 2; |
| } |
| } |
| |
| vector = cs->exception_index << 2; |
| |
| fmt |= 0x40000000; |
| fmt |= vector << 16; |
| fmt |= env->sr; |
| fmt |= cpu_m68k_get_ccr(env); |
| |
| env->sr |= SR_S; |
| if (is_hw) { |
| env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); |
| env->sr &= ~SR_M; |
| } |
| m68k_switch_sp(env); |
| sp = env->aregs[7]; |
| fmt |= (sp & 3) << 28; |
| |
| /* ??? This could cause MMU faults. */ |
| sp &= ~3; |
| sp -= 4; |
| cpu_stl_kernel(env, sp, retaddr); |
| sp -= 4; |
| cpu_stl_kernel(env, sp, fmt); |
| env->aregs[7] = sp; |
| /* Jump to vector. */ |
| env->pc = cpu_ldl_kernel(env, env->vbr + vector); |
| } |
| |
| void m68k_cpu_do_interrupt(CPUState *cs) |
| { |
| M68kCPU *cpu = M68K_CPU(cs); |
| CPUM68KState *env = &cpu->env; |
| |
| do_interrupt_all(env, 0); |
| } |
| |
| static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) |
| { |
| do_interrupt_all(env, 1); |
| } |
| #endif |
| |
| bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| M68kCPU *cpu = M68K_CPU(cs); |
| CPUM68KState *env = &cpu->env; |
| |
| if (interrupt_request & CPU_INTERRUPT_HARD |
| && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { |
| /* Real hardware gets the interrupt vector via an IACK cycle |
| at this point. Current emulated hardware doesn't rely on |
| this, so we provide/save the vector when the interrupt is |
| first signalled. */ |
| cs->exception_index = env->pending_vector; |
| do_interrupt_m68k_hardirq(env); |
| return true; |
| } |
| return false; |
| } |
| |
| static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr) |
| { |
| CPUState *cs = CPU(m68k_env_get_cpu(env)); |
| |
| cs->exception_index = tt; |
| cpu_loop_exit_restore(cs, raddr); |
| } |
| |
| static void raise_exception(CPUM68KState *env, int tt) |
| { |
| raise_exception_ra(env, tt, 0); |
| } |
| |
| void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt) |
| { |
| raise_exception(env, tt); |
| } |
| |
| void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den) |
| { |
| uint32_t num = env->dregs[destr]; |
| uint32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot > 0xffff) { |
| env->cc_v = -1; |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->dregs[destr] = deposit32(quot, 16, 16, rem); |
| env->cc_z = (int16_t)quot; |
| env->cc_n = (int16_t)quot; |
| env->cc_v = 0; |
| } |
| |
| void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den) |
| { |
| int32_t num = env->dregs[destr]; |
| uint32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot != (int16_t)quot) { |
| env->cc_v = -1; |
| /* nothing else is modified */ |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->dregs[destr] = deposit32(quot, 16, 16, rem); |
| env->cc_z = (int16_t)quot; |
| env->cc_n = (int16_t)quot; |
| env->cc_v = 0; |
| } |
| |
| void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den) |
| { |
| uint32_t num = env->dregs[numr]; |
| uint32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { |
| if (numr == regr) { |
| env->dregs[numr] = quot; |
| } else { |
| env->dregs[regr] = rem; |
| } |
| } else { |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| } |
| |
| void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den) |
| { |
| int32_t num = env->dregs[numr]; |
| int32_t quot, rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { |
| if (numr == regr) { |
| env->dregs[numr] = quot; |
| } else { |
| env->dregs[regr] = rem; |
| } |
| } else { |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| } |
| |
| void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den) |
| { |
| uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); |
| uint64_t quot; |
| uint32_t rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot > 0xffffffffULL) { |
| env->cc_v = -1; |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| /* |
| * If Dq and Dr are the same, the quotient is returned. |
| * therefore we set Dq last. |
| */ |
| |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| |
| void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den) |
| { |
| int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); |
| int64_t quot; |
| int32_t rem; |
| |
| if (den == 0) { |
| raise_exception_ra(env, EXCP_DIV0, GETPC()); |
| } |
| quot = num / den; |
| rem = num % den; |
| |
| env->cc_c = 0; /* always cleared, even if overflow */ |
| if (quot != (int32_t)quot) { |
| env->cc_v = -1; |
| /* real 68040 keeps N and unset Z on overflow, |
| * whereas documentation says "undefined" |
| */ |
| env->cc_z = 1; |
| return; |
| } |
| env->cc_z = quot; |
| env->cc_n = quot; |
| env->cc_v = 0; |
| |
| /* |
| * If Dq and Dr are the same, the quotient is returned. |
| * therefore we set Dq last. |
| */ |
| |
| env->dregs[regr] = rem; |
| env->dregs[numr] = quot; |
| } |
| |
| /* We're executing in a serial context -- no need to be atomic. */ |
| void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) |
| { |
| uint32_t Dc1 = extract32(regs, 9, 3); |
| uint32_t Dc2 = extract32(regs, 6, 3); |
| uint32_t Du1 = extract32(regs, 3, 3); |
| uint32_t Du2 = extract32(regs, 0, 3); |
| int16_t c1 = env->dregs[Dc1]; |
| int16_t c2 = env->dregs[Dc2]; |
| int16_t u1 = env->dregs[Du1]; |
| int16_t u2 = env->dregs[Du2]; |
| int16_t l1, l2; |
| uintptr_t ra = GETPC(); |
| |
| l1 = cpu_lduw_data_ra(env, a1, ra); |
| l2 = cpu_lduw_data_ra(env, a2, ra); |
| if (l1 == c1 && l2 == c2) { |
| cpu_stw_data_ra(env, a1, u1, ra); |
| cpu_stw_data_ra(env, a2, u2, ra); |
| } |
| |
| if (c1 != l1) { |
| env->cc_n = l1; |
| env->cc_v = c1; |
| } else { |
| env->cc_n = l2; |
| env->cc_v = c2; |
| } |
| env->cc_op = CC_OP_CMPW; |
| env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1); |
| env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2); |
| } |
| |
| static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2, |
| bool parallel) |
| { |
| uint32_t Dc1 = extract32(regs, 9, 3); |
| uint32_t Dc2 = extract32(regs, 6, 3); |
| uint32_t Du1 = extract32(regs, 3, 3); |
| uint32_t Du2 = extract32(regs, 0, 3); |
| uint32_t c1 = env->dregs[Dc1]; |
| uint32_t c2 = env->dregs[Dc2]; |
| uint32_t u1 = env->dregs[Du1]; |
| uint32_t u2 = env->dregs[Du2]; |
| uint32_t l1, l2; |
| uintptr_t ra = GETPC(); |
| #if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY) |
| int mmu_idx = cpu_mmu_index(env, 0); |
| TCGMemOpIdx oi; |
| #endif |
| |
| if (parallel) { |
| /* We're executing in a parallel context -- must be atomic. */ |
| #ifdef CONFIG_ATOMIC64 |
| uint64_t c, u, l; |
| if ((a1 & 7) == 0 && a2 == a1 + 4) { |
| c = deposit64(c2, 32, 32, c1); |
| u = deposit64(u2, 32, 32, u1); |
| #ifdef CONFIG_USER_ONLY |
| l = helper_atomic_cmpxchgq_be(env, a1, c, u); |
| #else |
| oi = make_memop_idx(MO_BEQ, mmu_idx); |
| l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra); |
| #endif |
| l1 = l >> 32; |
| l2 = l; |
| } else if ((a2 & 7) == 0 && a1 == a2 + 4) { |
| c = deposit64(c1, 32, 32, c2); |
| u = deposit64(u1, 32, 32, u2); |
| #ifdef CONFIG_USER_ONLY |
| l = helper_atomic_cmpxchgq_be(env, a2, c, u); |
| #else |
| oi = make_memop_idx(MO_BEQ, mmu_idx); |
| l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra); |
| #endif |
| l2 = l >> 32; |
| l1 = l; |
| } else |
| #endif |
| { |
| /* Tell the main loop we need to serialize this insn. */ |
| cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); |
| } |
| } else { |
| /* We're executing in a serial context -- no need to be atomic. */ |
| l1 = cpu_ldl_data_ra(env, a1, ra); |
| l2 = cpu_ldl_data_ra(env, a2, ra); |
| if (l1 == c1 && l2 == c2) { |
| cpu_stl_data_ra(env, a1, u1, ra); |
| cpu_stl_data_ra(env, a2, u2, ra); |
| } |
| } |
| |
| if (c1 != l1) { |
| env->cc_n = l1; |
| env->cc_v = c1; |
| } else { |
| env->cc_n = l2; |
| env->cc_v = c2; |
| } |
| env->cc_op = CC_OP_CMPL; |
| env->dregs[Dc1] = l1; |
| env->dregs[Dc2] = l2; |
| } |
| |
| void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) |
| { |
| do_cas2l(env, regs, a1, a2, false); |
| } |
| |
| void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1, |
| uint32_t a2) |
| { |
| do_cas2l(env, regs, a1, a2, true); |
| } |
| |
| struct bf_data { |
| uint32_t addr; |
| uint32_t bofs; |
| uint32_t blen; |
| uint32_t len; |
| }; |
| |
| static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len) |
| { |
| int bofs, blen; |
| |
| /* Bound length; map 0 to 32. */ |
| len = ((len - 1) & 31) + 1; |
| |
| /* Note that ofs is signed. */ |
| addr += ofs / 8; |
| bofs = ofs % 8; |
| if (bofs < 0) { |
| bofs += 8; |
| addr -= 1; |
| } |
| |
| /* Compute the number of bytes required (minus one) to |
| satisfy the bitfield. */ |
| blen = (bofs + len - 1) / 8; |
| |
| /* Canonicalize the bit offset for data loaded into a 64-bit big-endian |
| word. For the cases where BLEN is not a power of 2, adjust ADDR so |
| that we can use the next power of two sized load without crossing a |
| page boundary, unless the field itself crosses the boundary. */ |
| switch (blen) { |
| case 0: |
| bofs += 56; |
| break; |
| case 1: |
| bofs += 48; |
| break; |
| case 2: |
| if (addr & 1) { |
| bofs += 8; |
| addr -= 1; |
| } |
| /* fallthru */ |
| case 3: |
| bofs += 32; |
| break; |
| case 4: |
| if (addr & 3) { |
| bofs += 8 * (addr & 3); |
| addr &= -4; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| return (struct bf_data){ |
| .addr = addr, |
| .bofs = bofs, |
| .blen = blen, |
| .len = len, |
| }; |
| } |
| |
| static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen, |
| uintptr_t ra) |
| { |
| switch (blen) { |
| case 0: |
| return cpu_ldub_data_ra(env, addr, ra); |
| case 1: |
| return cpu_lduw_data_ra(env, addr, ra); |
| case 2: |
| case 3: |
| return cpu_ldl_data_ra(env, addr, ra); |
| case 4: |
| return cpu_ldq_data_ra(env, addr, ra); |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void bf_store(CPUM68KState *env, uint32_t addr, int blen, |
| uint64_t data, uintptr_t ra) |
| { |
| switch (blen) { |
| case 0: |
| cpu_stb_data_ra(env, addr, data, ra); |
| break; |
| case 1: |
| cpu_stw_data_ra(env, addr, data, ra); |
| break; |
| case 2: |
| case 3: |
| cpu_stl_data_ra(env, addr, data, ra); |
| break; |
| case 4: |
| cpu_stq_data_ra(env, addr, data, ra); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| |
| return (int64_t)(data << d.bofs) >> (64 - d.len); |
| } |
| |
| uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| |
| /* Put CC_N at the top of the high word; put the zero-extended value |
| at the bottom of the low word. */ |
| data <<= d.bofs; |
| data >>= 64 - d.len; |
| data |= data << (64 - d.len); |
| |
| return data; |
| } |
| |
| uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs); |
| |
| bf_store(env, d.addr, d.blen, data, ra); |
| |
| /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */ |
| return val << (32 - d.len); |
| } |
| |
| uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| bf_store(env, d.addr, d.blen, data ^ mask, ra); |
| |
| return ((data & mask) << d.bofs) >> 32; |
| } |
| |
| uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| bf_store(env, d.addr, d.blen, data & ~mask, ra); |
| |
| return ((data & mask) << d.bofs) >> 32; |
| } |
| |
| uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| |
| bf_store(env, d.addr, d.blen, data | mask, ra); |
| |
| return ((data & mask) << d.bofs) >> 32; |
| } |
| |
| uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len) |
| { |
| return (n ? clz32(n) : len) + ofs; |
| } |
| |
| uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr, |
| int32_t ofs, uint32_t len) |
| { |
| uintptr_t ra = GETPC(); |
| struct bf_data d = bf_prep(addr, ofs, len); |
| uint64_t data = bf_load(env, d.addr, d.blen, ra); |
| uint64_t mask = -1ull << (64 - d.len) >> d.bofs; |
| uint64_t n = (data & mask) << d.bofs; |
| uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len); |
| |
| /* Return FFO in the low word and N in the high word. |
| Note that because of MASK and the shift, the low word |
| is already zero. */ |
| return n | ffo; |
| } |