| /* |
| * ARM virtual CPU header |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #ifndef CPU_ARM_H |
| #define CPU_ARM_H |
| |
| #include "config.h" |
| |
| #include "kvm-consts.h" |
| |
| #if defined(TARGET_AARCH64) |
| /* AArch64 definitions */ |
| # define TARGET_LONG_BITS 64 |
| #else |
| # define TARGET_LONG_BITS 32 |
| #endif |
| |
| #define TARGET_IS_BIENDIAN 1 |
| |
| #define CPUArchState struct CPUARMState |
| |
| #include "qemu-common.h" |
| #include "exec/cpu-defs.h" |
| |
| #include "fpu/softfloat.h" |
| |
| #define EXCP_UDEF 1 /* undefined instruction */ |
| #define EXCP_SWI 2 /* software interrupt */ |
| #define EXCP_PREFETCH_ABORT 3 |
| #define EXCP_DATA_ABORT 4 |
| #define EXCP_IRQ 5 |
| #define EXCP_FIQ 6 |
| #define EXCP_BKPT 7 |
| #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ |
| #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ |
| #define EXCP_STREX 10 |
| #define EXCP_HVC 11 /* HyperVisor Call */ |
| #define EXCP_HYP_TRAP 12 |
| #define EXCP_SMC 13 /* Secure Monitor Call */ |
| #define EXCP_VIRQ 14 |
| #define EXCP_VFIQ 15 |
| #define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */ |
| |
| #define ARMV7M_EXCP_RESET 1 |
| #define ARMV7M_EXCP_NMI 2 |
| #define ARMV7M_EXCP_HARD 3 |
| #define ARMV7M_EXCP_MEM 4 |
| #define ARMV7M_EXCP_BUS 5 |
| #define ARMV7M_EXCP_USAGE 6 |
| #define ARMV7M_EXCP_SVC 11 |
| #define ARMV7M_EXCP_DEBUG 12 |
| #define ARMV7M_EXCP_PENDSV 14 |
| #define ARMV7M_EXCP_SYSTICK 15 |
| |
| /* ARM-specific interrupt pending bits. */ |
| #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 |
| #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 |
| #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 |
| |
| /* The usual mapping for an AArch64 system register to its AArch32 |
| * counterpart is for the 32 bit world to have access to the lower |
| * half only (with writes leaving the upper half untouched). It's |
| * therefore useful to be able to pass TCG the offset of the least |
| * significant half of a uint64_t struct member. |
| */ |
| #ifdef HOST_WORDS_BIGENDIAN |
| #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
| #define offsetofhigh32(S, M) offsetof(S, M) |
| #else |
| #define offsetoflow32(S, M) offsetof(S, M) |
| #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) |
| #endif |
| |
| /* Meanings of the ARMCPU object's four inbound GPIO lines */ |
| #define ARM_CPU_IRQ 0 |
| #define ARM_CPU_FIQ 1 |
| #define ARM_CPU_VIRQ 2 |
| #define ARM_CPU_VFIQ 3 |
| |
| struct arm_boot_info; |
| |
| #define NB_MMU_MODES 7 |
| #define TARGET_INSN_START_EXTRA_WORDS 1 |
| |
| /* We currently assume float and double are IEEE single and double |
| precision respectively. |
| Doing runtime conversions is tricky because VFP registers may contain |
| integer values (eg. as the result of a FTOSI instruction). |
| s<2n> maps to the least significant half of d<n> |
| s<2n+1> maps to the most significant half of d<n> |
| */ |
| |
| /* CPU state for each instance of a generic timer (in cp15 c14) */ |
| typedef struct ARMGenericTimer { |
| uint64_t cval; /* Timer CompareValue register */ |
| uint64_t ctl; /* Timer Control register */ |
| } ARMGenericTimer; |
| |
| #define GTIMER_PHYS 0 |
| #define GTIMER_VIRT 1 |
| #define GTIMER_HYP 2 |
| #define GTIMER_SEC 3 |
| #define NUM_GTIMERS 4 |
| |
| typedef struct { |
| uint64_t raw_tcr; |
| uint32_t mask; |
| uint32_t base_mask; |
| } TCR; |
| |
| typedef struct CPUARMState { |
| /* Regs for current mode. */ |
| uint32_t regs[16]; |
| |
| /* 32/64 switch only happens when taking and returning from |
| * exceptions so the overlap semantics are taken care of then |
| * instead of having a complicated union. |
| */ |
| /* Regs for A64 mode. */ |
| uint64_t xregs[32]; |
| uint64_t pc; |
| /* PSTATE isn't an architectural register for ARMv8. However, it is |
| * convenient for us to assemble the underlying state into a 32 bit format |
| * identical to the architectural format used for the SPSR. (This is also |
| * what the Linux kernel's 'pstate' field in signal handlers and KVM's |
| * 'pstate' register are.) Of the PSTATE bits: |
| * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same |
| * semantics as for AArch32, as described in the comments on each field) |
| * nRW (also known as M[4]) is kept, inverted, in env->aarch64 |
| * DAIF (exception masks) are kept in env->daif |
| * all other bits are stored in their correct places in env->pstate |
| */ |
| uint32_t pstate; |
| uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ |
| |
| /* Frequently accessed CPSR bits are stored separately for efficiency. |
| This contains all the other bits. Use cpsr_{read,write} to access |
| the whole CPSR. */ |
| uint32_t uncached_cpsr; |
| uint32_t spsr; |
| |
| /* Banked registers. */ |
| uint64_t banked_spsr[8]; |
| uint32_t banked_r13[8]; |
| uint32_t banked_r14[8]; |
| |
| /* These hold r8-r12. */ |
| uint32_t usr_regs[5]; |
| uint32_t fiq_regs[5]; |
| |
| /* cpsr flag cache for faster execution */ |
| uint32_t CF; /* 0 or 1 */ |
| uint32_t VF; /* V is the bit 31. All other bits are undefined */ |
| uint32_t NF; /* N is bit 31. All other bits are undefined. */ |
| uint32_t ZF; /* Z set if zero. */ |
| uint32_t QF; /* 0 or 1 */ |
| uint32_t GE; /* cpsr[19:16] */ |
| uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ |
| uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ |
| uint64_t daif; /* exception masks, in the bits they are in PSTATE */ |
| |
| uint64_t elr_el[4]; /* AArch64 exception link regs */ |
| uint64_t sp_el[4]; /* AArch64 banked stack pointers */ |
| |
| /* System control coprocessor (cp15) */ |
| struct { |
| uint32_t c0_cpuid; |
| union { /* Cache size selection */ |
| struct { |
| uint64_t _unused_csselr0; |
| uint64_t csselr_ns; |
| uint64_t _unused_csselr1; |
| uint64_t csselr_s; |
| }; |
| uint64_t csselr_el[4]; |
| }; |
| union { /* System control register. */ |
| struct { |
| uint64_t _unused_sctlr; |
| uint64_t sctlr_ns; |
| uint64_t hsctlr; |
| uint64_t sctlr_s; |
| }; |
| uint64_t sctlr_el[4]; |
| }; |
| uint64_t cpacr_el1; /* Architectural feature access control register */ |
| uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ |
| uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ |
| uint64_t sder; /* Secure debug enable register. */ |
| uint32_t nsacr; /* Non-secure access control register. */ |
| union { /* MMU translation table base 0. */ |
| struct { |
| uint64_t _unused_ttbr0_0; |
| uint64_t ttbr0_ns; |
| uint64_t _unused_ttbr0_1; |
| uint64_t ttbr0_s; |
| }; |
| uint64_t ttbr0_el[4]; |
| }; |
| union { /* MMU translation table base 1. */ |
| struct { |
| uint64_t _unused_ttbr1_0; |
| uint64_t ttbr1_ns; |
| uint64_t _unused_ttbr1_1; |
| uint64_t ttbr1_s; |
| }; |
| uint64_t ttbr1_el[4]; |
| }; |
| uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ |
| /* MMU translation table base control. */ |
| TCR tcr_el[4]; |
| TCR vtcr_el2; /* Virtualization Translation Control. */ |
| uint32_t c2_data; /* MPU data cacheable bits. */ |
| uint32_t c2_insn; /* MPU instruction cacheable bits. */ |
| union { /* MMU domain access control register |
| * MPU write buffer control. |
| */ |
| struct { |
| uint64_t dacr_ns; |
| uint64_t dacr_s; |
| }; |
| struct { |
| uint64_t dacr32_el2; |
| }; |
| }; |
| uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ |
| uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ |
| uint64_t hcr_el2; /* Hypervisor configuration register */ |
| uint64_t scr_el3; /* Secure configuration register. */ |
| union { /* Fault status registers. */ |
| struct { |
| uint64_t ifsr_ns; |
| uint64_t ifsr_s; |
| }; |
| struct { |
| uint64_t ifsr32_el2; |
| }; |
| }; |
| union { |
| struct { |
| uint64_t _unused_dfsr; |
| uint64_t dfsr_ns; |
| uint64_t hsr; |
| uint64_t dfsr_s; |
| }; |
| uint64_t esr_el[4]; |
| }; |
| uint32_t c6_region[8]; /* MPU base/size registers. */ |
| union { /* Fault address registers. */ |
| struct { |
| uint64_t _unused_far0; |
| #ifdef HOST_WORDS_BIGENDIAN |
| uint32_t ifar_ns; |
| uint32_t dfar_ns; |
| uint32_t ifar_s; |
| uint32_t dfar_s; |
| #else |
| uint32_t dfar_ns; |
| uint32_t ifar_ns; |
| uint32_t dfar_s; |
| uint32_t ifar_s; |
| #endif |
| uint64_t _unused_far3; |
| }; |
| uint64_t far_el[4]; |
| }; |
| uint64_t hpfar_el2; |
| union { /* Translation result. */ |
| struct { |
| uint64_t _unused_par_0; |
| uint64_t par_ns; |
| uint64_t _unused_par_1; |
| uint64_t par_s; |
| }; |
| uint64_t par_el[4]; |
| }; |
| |
| uint32_t c6_rgnr; |
| |
| uint32_t c9_insn; /* Cache lockdown registers. */ |
| uint32_t c9_data; |
| uint64_t c9_pmcr; /* performance monitor control register */ |
| uint64_t c9_pmcnten; /* perf monitor counter enables */ |
| uint32_t c9_pmovsr; /* perf monitor overflow status */ |
| uint32_t c9_pmxevtyper; /* perf monitor event type */ |
| uint32_t c9_pmuserenr; /* perf monitor user enable */ |
| uint32_t c9_pminten; /* perf monitor interrupt enables */ |
| union { /* Memory attribute redirection */ |
| struct { |
| #ifdef HOST_WORDS_BIGENDIAN |
| uint64_t _unused_mair_0; |
| uint32_t mair1_ns; |
| uint32_t mair0_ns; |
| uint64_t _unused_mair_1; |
| uint32_t mair1_s; |
| uint32_t mair0_s; |
| #else |
| uint64_t _unused_mair_0; |
| uint32_t mair0_ns; |
| uint32_t mair1_ns; |
| uint64_t _unused_mair_1; |
| uint32_t mair0_s; |
| uint32_t mair1_s; |
| #endif |
| }; |
| uint64_t mair_el[4]; |
| }; |
| union { /* vector base address register */ |
| struct { |
| uint64_t _unused_vbar; |
| uint64_t vbar_ns; |
| uint64_t hvbar; |
| uint64_t vbar_s; |
| }; |
| uint64_t vbar_el[4]; |
| }; |
| uint32_t mvbar; /* (monitor) vector base address register */ |
| struct { /* FCSE PID. */ |
| uint32_t fcseidr_ns; |
| uint32_t fcseidr_s; |
| }; |
| union { /* Context ID. */ |
| struct { |
| uint64_t _unused_contextidr_0; |
| uint64_t contextidr_ns; |
| uint64_t _unused_contextidr_1; |
| uint64_t contextidr_s; |
| }; |
| uint64_t contextidr_el[4]; |
| }; |
| union { /* User RW Thread register. */ |
| struct { |
| uint64_t tpidrurw_ns; |
| uint64_t tpidrprw_ns; |
| uint64_t htpidr; |
| uint64_t _tpidr_el3; |
| }; |
| uint64_t tpidr_el[4]; |
| }; |
| /* The secure banks of these registers don't map anywhere */ |
| uint64_t tpidrurw_s; |
| uint64_t tpidrprw_s; |
| uint64_t tpidruro_s; |
| |
| union { /* User RO Thread register. */ |
| uint64_t tpidruro_ns; |
| uint64_t tpidrro_el[1]; |
| }; |
| uint64_t c14_cntfrq; /* Counter Frequency register */ |
| uint64_t c14_cntkctl; /* Timer Control register */ |
| uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ |
| uint64_t cntvoff_el2; /* Counter Virtual Offset register */ |
| ARMGenericTimer c14_timer[NUM_GTIMERS]; |
| uint32_t c15_cpar; /* XScale Coprocessor Access Register */ |
| uint32_t c15_ticonfig; /* TI925T configuration byte. */ |
| uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ |
| uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ |
| uint32_t c15_threadid; /* TI debugger thread-ID. */ |
| uint32_t c15_config_base_address; /* SCU base address. */ |
| uint32_t c15_diagnostic; /* diagnostic register */ |
| uint32_t c15_power_diagnostic; |
| uint32_t c15_power_control; /* power control */ |
| uint64_t dbgbvr[16]; /* breakpoint value registers */ |
| uint64_t dbgbcr[16]; /* breakpoint control registers */ |
| uint64_t dbgwvr[16]; /* watchpoint value registers */ |
| uint64_t dbgwcr[16]; /* watchpoint control registers */ |
| uint64_t mdscr_el1; |
| uint64_t oslsr_el1; /* OS Lock Status */ |
| uint64_t mdcr_el2; |
| /* If the counter is enabled, this stores the last time the counter |
| * was reset. Otherwise it stores the counter value |
| */ |
| uint64_t c15_ccnt; |
| uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ |
| uint64_t vpidr_el2; /* Virtualization Processor ID Register */ |
| uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ |
| } cp15; |
| |
| struct { |
| uint32_t other_sp; |
| uint32_t vecbase; |
| uint32_t basepri; |
| uint32_t control; |
| int current_sp; |
| int exception; |
| } v7m; |
| |
| /* Information associated with an exception about to be taken: |
| * code which raises an exception must set cs->exception_index and |
| * the relevant parts of this structure; the cpu_do_interrupt function |
| * will then set the guest-visible registers as part of the exception |
| * entry process. |
| */ |
| struct { |
| uint32_t syndrome; /* AArch64 format syndrome register */ |
| uint32_t fsr; /* AArch32 format fault status register info */ |
| uint64_t vaddress; /* virtual addr associated with exception, if any */ |
| uint32_t target_el; /* EL the exception should be targeted for */ |
| /* If we implement EL2 we will also need to store information |
| * about the intermediate physical address for stage 2 faults. |
| */ |
| } exception; |
| |
| /* Thumb-2 EE state. */ |
| uint32_t teecr; |
| uint32_t teehbr; |
| |
| /* VFP coprocessor state. */ |
| struct { |
| /* VFP/Neon register state. Note that the mapping between S, D and Q |
| * views of the register bank differs between AArch64 and AArch32: |
| * In AArch32: |
| * Qn = regs[2n+1]:regs[2n] |
| * Dn = regs[n] |
| * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n |
| * (and regs[32] to regs[63] are inaccessible) |
| * In AArch64: |
| * Qn = regs[2n+1]:regs[2n] |
| * Dn = regs[2n] |
| * Sn = regs[2n] bits 31..0 |
| * This corresponds to the architecturally defined mapping between |
| * the two execution states, and means we do not need to explicitly |
| * map these registers when changing states. |
| */ |
| float64 regs[64]; |
| |
| uint32_t xregs[16]; |
| /* We store these fpcsr fields separately for convenience. */ |
| int vec_len; |
| int vec_stride; |
| |
| /* scratch space when Tn are not sufficient. */ |
| uint32_t scratch[8]; |
| |
| /* fp_status is the "normal" fp status. standard_fp_status retains |
| * values corresponding to the ARM "Standard FPSCR Value", ie |
| * default-NaN, flush-to-zero, round-to-nearest and is used by |
| * any operations (generally Neon) which the architecture defines |
| * as controlled by the standard FPSCR value rather than the FPSCR. |
| * |
| * To avoid having to transfer exception bits around, we simply |
| * say that the FPSCR cumulative exception flags are the logical |
| * OR of the flags in the two fp statuses. This relies on the |
| * only thing which needs to read the exception flags being |
| * an explicit FPSCR read. |
| */ |
| float_status fp_status; |
| float_status standard_fp_status; |
| } vfp; |
| uint64_t exclusive_addr; |
| uint64_t exclusive_val; |
| uint64_t exclusive_high; |
| #if defined(CONFIG_USER_ONLY) |
| uint64_t exclusive_test; |
| uint32_t exclusive_info; |
| #endif |
| |
| /* iwMMXt coprocessor state. */ |
| struct { |
| uint64_t regs[16]; |
| uint64_t val; |
| |
| uint32_t cregs[16]; |
| } iwmmxt; |
| |
| /* For mixed endian mode. */ |
| bool bswap_code; |
| |
| #if defined(CONFIG_USER_ONLY) |
| /* For usermode syscall translation. */ |
| int eabi; |
| #endif |
| |
| struct CPUBreakpoint *cpu_breakpoint[16]; |
| struct CPUWatchpoint *cpu_watchpoint[16]; |
| |
| CPU_COMMON |
| |
| /* These fields after the common ones so they are preserved on reset. */ |
| |
| /* Internal CPU feature flags. */ |
| uint64_t features; |
| |
| /* PMSAv7 MPU */ |
| struct { |
| uint32_t *drbar; |
| uint32_t *drsr; |
| uint32_t *dracr; |
| } pmsav7; |
| |
| void *nvic; |
| const struct arm_boot_info *boot_info; |
| } CPUARMState; |
| |
| #include "cpu-qom.h" |
| |
| ARMCPU *cpu_arm_init(const char *cpu_model); |
| int cpu_arm_exec(CPUState *cpu); |
| target_ulong do_arm_semihosting(CPUARMState *env); |
| void aarch64_sync_32_to_64(CPUARMState *env); |
| void aarch64_sync_64_to_32(CPUARMState *env); |
| |
| static inline bool is_a64(CPUARMState *env) |
| { |
| return env->aarch64; |
| } |
| |
| /* you can call this signal handler from your SIGBUS and SIGSEGV |
| signal handlers to inform the virtual CPU of exceptions. non zero |
| is returned if the signal was handled by the virtual CPU. */ |
| int cpu_arm_signal_handler(int host_signum, void *pinfo, |
| void *puc); |
| |
| /** |
| * pmccntr_sync |
| * @env: CPUARMState |
| * |
| * Synchronises the counter in the PMCCNTR. This must always be called twice, |
| * once before any action that might affect the timer and again afterwards. |
| * The function is used to swap the state of the register if required. |
| * This only happens when not in user mode (!CONFIG_USER_ONLY) |
| */ |
| void pmccntr_sync(CPUARMState *env); |
| |
| /* SCTLR bit meanings. Several bits have been reused in newer |
| * versions of the architecture; in that case we define constants |
| * for both old and new bit meanings. Code which tests against those |
| * bits should probably check or otherwise arrange that the CPU |
| * is the architectural version it expects. |
| */ |
| #define SCTLR_M (1U << 0) |
| #define SCTLR_A (1U << 1) |
| #define SCTLR_C (1U << 2) |
| #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ |
| #define SCTLR_SA (1U << 3) |
| #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ |
| #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ |
| #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ |
| #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ |
| #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ |
| #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ |
| #define SCTLR_ITD (1U << 7) /* v8 onward */ |
| #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ |
| #define SCTLR_SED (1U << 8) /* v8 onward */ |
| #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ |
| #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ |
| #define SCTLR_F (1U << 10) /* up to v6 */ |
| #define SCTLR_SW (1U << 10) /* v7 onward */ |
| #define SCTLR_Z (1U << 11) |
| #define SCTLR_I (1U << 12) |
| #define SCTLR_V (1U << 13) |
| #define SCTLR_RR (1U << 14) /* up to v7 */ |
| #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ |
| #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ |
| #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ |
| #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ |
| #define SCTLR_nTWI (1U << 16) /* v8 onward */ |
| #define SCTLR_HA (1U << 17) |
| #define SCTLR_BR (1U << 17) /* PMSA only */ |
| #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ |
| #define SCTLR_nTWE (1U << 18) /* v8 onward */ |
| #define SCTLR_WXN (1U << 19) |
| #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ |
| #define SCTLR_UWXN (1U << 20) /* v7 onward */ |
| #define SCTLR_FI (1U << 21) |
| #define SCTLR_U (1U << 22) |
| #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ |
| #define SCTLR_VE (1U << 24) /* up to v7 */ |
| #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ |
| #define SCTLR_EE (1U << 25) |
| #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ |
| #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ |
| #define SCTLR_NMFI (1U << 27) |
| #define SCTLR_TRE (1U << 28) |
| #define SCTLR_AFE (1U << 29) |
| #define SCTLR_TE (1U << 30) |
| |
| #define CPTR_TCPAC (1U << 31) |
| #define CPTR_TTA (1U << 20) |
| #define CPTR_TFP (1U << 10) |
| |
| #define CPSR_M (0x1fU) |
| #define CPSR_T (1U << 5) |
| #define CPSR_F (1U << 6) |
| #define CPSR_I (1U << 7) |
| #define CPSR_A (1U << 8) |
| #define CPSR_E (1U << 9) |
| #define CPSR_IT_2_7 (0xfc00U) |
| #define CPSR_GE (0xfU << 16) |
| #define CPSR_IL (1U << 20) |
| /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in |
| * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use |
| * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, |
| * where it is live state but not accessible to the AArch32 code. |
| */ |
| #define CPSR_RESERVED (0x7U << 21) |
| #define CPSR_J (1U << 24) |
| #define CPSR_IT_0_1 (3U << 25) |
| #define CPSR_Q (1U << 27) |
| #define CPSR_V (1U << 28) |
| #define CPSR_C (1U << 29) |
| #define CPSR_Z (1U << 30) |
| #define CPSR_N (1U << 31) |
| #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) |
| #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) |
| |
| #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) |
| #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ |
| | CPSR_NZCV) |
| /* Bits writable in user mode. */ |
| #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) |
| /* Execution state bits. MRS read as zero, MSR writes ignored. */ |
| #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) |
| /* Mask of bits which may be set by exception return copying them from SPSR */ |
| #define CPSR_ERET_MASK (~CPSR_RESERVED) |
| |
| #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ |
| #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ |
| #define TTBCR_PD0 (1U << 4) |
| #define TTBCR_PD1 (1U << 5) |
| #define TTBCR_EPD0 (1U << 7) |
| #define TTBCR_IRGN0 (3U << 8) |
| #define TTBCR_ORGN0 (3U << 10) |
| #define TTBCR_SH0 (3U << 12) |
| #define TTBCR_T1SZ (3U << 16) |
| #define TTBCR_A1 (1U << 22) |
| #define TTBCR_EPD1 (1U << 23) |
| #define TTBCR_IRGN1 (3U << 24) |
| #define TTBCR_ORGN1 (3U << 26) |
| #define TTBCR_SH1 (1U << 28) |
| #define TTBCR_EAE (1U << 31) |
| |
| /* Bit definitions for ARMv8 SPSR (PSTATE) format. |
| * Only these are valid when in AArch64 mode; in |
| * AArch32 mode SPSRs are basically CPSR-format. |
| */ |
| #define PSTATE_SP (1U) |
| #define PSTATE_M (0xFU) |
| #define PSTATE_nRW (1U << 4) |
| #define PSTATE_F (1U << 6) |
| #define PSTATE_I (1U << 7) |
| #define PSTATE_A (1U << 8) |
| #define PSTATE_D (1U << 9) |
| #define PSTATE_IL (1U << 20) |
| #define PSTATE_SS (1U << 21) |
| #define PSTATE_V (1U << 28) |
| #define PSTATE_C (1U << 29) |
| #define PSTATE_Z (1U << 30) |
| #define PSTATE_N (1U << 31) |
| #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) |
| #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) |
| #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) |
| /* Mode values for AArch64 */ |
| #define PSTATE_MODE_EL3h 13 |
| #define PSTATE_MODE_EL3t 12 |
| #define PSTATE_MODE_EL2h 9 |
| #define PSTATE_MODE_EL2t 8 |
| #define PSTATE_MODE_EL1h 5 |
| #define PSTATE_MODE_EL1t 4 |
| #define PSTATE_MODE_EL0t 0 |
| |
| /* Map EL and handler into a PSTATE_MODE. */ |
| static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) |
| { |
| return (el << 2) | handler; |
| } |
| |
| /* Return the current PSTATE value. For the moment we don't support 32<->64 bit |
| * interprocessing, so we don't attempt to sync with the cpsr state used by |
| * the 32 bit decoder. |
| */ |
| static inline uint32_t pstate_read(CPUARMState *env) |
| { |
| int ZF; |
| |
| ZF = (env->ZF == 0); |
| return (env->NF & 0x80000000) | (ZF << 30) |
| | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) |
| | env->pstate | env->daif; |
| } |
| |
| static inline void pstate_write(CPUARMState *env, uint32_t val) |
| { |
| env->ZF = (~val) & PSTATE_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| env->daif = val & PSTATE_DAIF; |
| env->pstate = val & ~CACHED_PSTATE_BITS; |
| } |
| |
| /* Return the current CPSR value. */ |
| uint32_t cpsr_read(CPUARMState *env); |
| /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */ |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask); |
| |
| /* Return the current xPSR value. */ |
| static inline uint32_t xpsr_read(CPUARMState *env) |
| { |
| int ZF; |
| ZF = (env->ZF == 0); |
| return (env->NF & 0x80000000) | (ZF << 30) |
| | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) |
| | ((env->condexec_bits & 0xfc) << 8) |
| | env->v7m.exception; |
| } |
| |
| /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ |
| static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) |
| { |
| if (mask & CPSR_NZCV) { |
| env->ZF = (~val) & CPSR_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| } |
| if (mask & CPSR_Q) |
| env->QF = ((val & CPSR_Q) != 0); |
| if (mask & (1 << 24)) |
| env->thumb = ((val & (1 << 24)) != 0); |
| if (mask & CPSR_IT_0_1) { |
| env->condexec_bits &= ~3; |
| env->condexec_bits |= (val >> 25) & 3; |
| } |
| if (mask & CPSR_IT_2_7) { |
| env->condexec_bits &= 3; |
| env->condexec_bits |= (val >> 8) & 0xfc; |
| } |
| if (mask & 0x1ff) { |
| env->v7m.exception = val & 0x1ff; |
| } |
| } |
| |
| #define HCR_VM (1ULL << 0) |
| #define HCR_SWIO (1ULL << 1) |
| #define HCR_PTW (1ULL << 2) |
| #define HCR_FMO (1ULL << 3) |
| #define HCR_IMO (1ULL << 4) |
| #define HCR_AMO (1ULL << 5) |
| #define HCR_VF (1ULL << 6) |
| #define HCR_VI (1ULL << 7) |
| #define HCR_VSE (1ULL << 8) |
| #define HCR_FB (1ULL << 9) |
| #define HCR_BSU_MASK (3ULL << 10) |
| #define HCR_DC (1ULL << 12) |
| #define HCR_TWI (1ULL << 13) |
| #define HCR_TWE (1ULL << 14) |
| #define HCR_TID0 (1ULL << 15) |
| #define HCR_TID1 (1ULL << 16) |
| #define HCR_TID2 (1ULL << 17) |
| #define HCR_TID3 (1ULL << 18) |
| #define HCR_TSC (1ULL << 19) |
| #define HCR_TIDCP (1ULL << 20) |
| #define HCR_TACR (1ULL << 21) |
| #define HCR_TSW (1ULL << 22) |
| #define HCR_TPC (1ULL << 23) |
| #define HCR_TPU (1ULL << 24) |
| #define HCR_TTLB (1ULL << 25) |
| #define HCR_TVM (1ULL << 26) |
| #define HCR_TGE (1ULL << 27) |
| #define HCR_TDZ (1ULL << 28) |
| #define HCR_HCD (1ULL << 29) |
| #define HCR_TRVM (1ULL << 30) |
| #define HCR_RW (1ULL << 31) |
| #define HCR_CD (1ULL << 32) |
| #define HCR_ID (1ULL << 33) |
| #define HCR_MASK ((1ULL << 34) - 1) |
| |
| #define SCR_NS (1U << 0) |
| #define SCR_IRQ (1U << 1) |
| #define SCR_FIQ (1U << 2) |
| #define SCR_EA (1U << 3) |
| #define SCR_FW (1U << 4) |
| #define SCR_AW (1U << 5) |
| #define SCR_NET (1U << 6) |
| #define SCR_SMD (1U << 7) |
| #define SCR_HCE (1U << 8) |
| #define SCR_SIF (1U << 9) |
| #define SCR_RW (1U << 10) |
| #define SCR_ST (1U << 11) |
| #define SCR_TWI (1U << 12) |
| #define SCR_TWE (1U << 13) |
| #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) |
| #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) |
| |
| /* Return the current FPSCR value. */ |
| uint32_t vfp_get_fpscr(CPUARMState *env); |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val); |
| |
| /* For A64 the FPSCR is split into two logically distinct registers, |
| * FPCR and FPSR. However since they still use non-overlapping bits |
| * we store the underlying state in fpscr and just mask on read/write. |
| */ |
| #define FPSR_MASK 0xf800009f |
| #define FPCR_MASK 0x07f79f00 |
| static inline uint32_t vfp_get_fpsr(CPUARMState *env) |
| { |
| return vfp_get_fpscr(env) & FPSR_MASK; |
| } |
| |
| static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) |
| { |
| uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); |
| vfp_set_fpscr(env, new_fpscr); |
| } |
| |
| static inline uint32_t vfp_get_fpcr(CPUARMState *env) |
| { |
| return vfp_get_fpscr(env) & FPCR_MASK; |
| } |
| |
| static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) |
| { |
| uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); |
| vfp_set_fpscr(env, new_fpscr); |
| } |
| |
| enum arm_cpu_mode { |
| ARM_CPU_MODE_USR = 0x10, |
| ARM_CPU_MODE_FIQ = 0x11, |
| ARM_CPU_MODE_IRQ = 0x12, |
| ARM_CPU_MODE_SVC = 0x13, |
| ARM_CPU_MODE_MON = 0x16, |
| ARM_CPU_MODE_ABT = 0x17, |
| ARM_CPU_MODE_HYP = 0x1a, |
| ARM_CPU_MODE_UND = 0x1b, |
| ARM_CPU_MODE_SYS = 0x1f |
| }; |
| |
| /* VFP system registers. */ |
| #define ARM_VFP_FPSID 0 |
| #define ARM_VFP_FPSCR 1 |
| #define ARM_VFP_MVFR2 5 |
| #define ARM_VFP_MVFR1 6 |
| #define ARM_VFP_MVFR0 7 |
| #define ARM_VFP_FPEXC 8 |
| #define ARM_VFP_FPINST 9 |
| #define ARM_VFP_FPINST2 10 |
| |
| /* iwMMXt coprocessor control registers. */ |
| #define ARM_IWMMXT_wCID 0 |
| #define ARM_IWMMXT_wCon 1 |
| #define ARM_IWMMXT_wCSSF 2 |
| #define ARM_IWMMXT_wCASF 3 |
| #define ARM_IWMMXT_wCGR0 8 |
| #define ARM_IWMMXT_wCGR1 9 |
| #define ARM_IWMMXT_wCGR2 10 |
| #define ARM_IWMMXT_wCGR3 11 |
| |
| /* If adding a feature bit which corresponds to a Linux ELF |
| * HWCAP bit, remember to update the feature-bit-to-hwcap |
| * mapping in linux-user/elfload.c:get_elf_hwcap(). |
| */ |
| enum arm_features { |
| ARM_FEATURE_VFP, |
| ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ |
| ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ |
| ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ |
| ARM_FEATURE_V6, |
| ARM_FEATURE_V6K, |
| ARM_FEATURE_V7, |
| ARM_FEATURE_THUMB2, |
| ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */ |
| ARM_FEATURE_VFP3, |
| ARM_FEATURE_VFP_FP16, |
| ARM_FEATURE_NEON, |
| ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ |
| ARM_FEATURE_M, /* Microcontroller profile. */ |
| ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ |
| ARM_FEATURE_THUMB2EE, |
| ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ |
| ARM_FEATURE_V4T, |
| ARM_FEATURE_V5, |
| ARM_FEATURE_STRONGARM, |
| ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ |
| ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ |
| ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ |
| ARM_FEATURE_GENERIC_TIMER, |
| ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ |
| ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ |
| ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ |
| ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ |
| ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ |
| ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ |
| ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ |
| ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ |
| ARM_FEATURE_V8, |
| ARM_FEATURE_AARCH64, /* supports 64 bit mode */ |
| ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ |
| ARM_FEATURE_CBAR, /* has cp15 CBAR */ |
| ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ |
| ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ |
| ARM_FEATURE_EL2, /* has EL2 Virtualization support */ |
| ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ |
| ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ |
| ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ |
| ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ |
| ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ |
| }; |
| |
| static inline int arm_feature(CPUARMState *env, int feature) |
| { |
| return (env->features & (1ULL << feature)) != 0; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* Return true if exception levels below EL3 are in secure state, |
| * or would be following an exception return to that level. |
| * Unlike arm_is_secure() (which is always a question about the |
| * _current_ state of the CPU) this doesn't care about the current |
| * EL or mode. |
| */ |
| static inline bool arm_is_secure_below_el3(CPUARMState *env) |
| { |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| return !(env->cp15.scr_el3 & SCR_NS); |
| } else { |
| /* If EL2 is not supported then the secure state is implementation |
| * defined, in which case QEMU defaults to non-secure. |
| */ |
| return false; |
| } |
| } |
| |
| /* Return true if the processor is in secure state */ |
| static inline bool arm_is_secure(CPUARMState *env) |
| { |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { |
| /* CPU currently in AArch64 state and EL3 */ |
| return true; |
| } else if (!is_a64(env) && |
| (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { |
| /* CPU currently in AArch32 state and monitor mode */ |
| return true; |
| } |
| } |
| return arm_is_secure_below_el3(env); |
| } |
| |
| #else |
| static inline bool arm_is_secure_below_el3(CPUARMState *env) |
| { |
| return false; |
| } |
| |
| static inline bool arm_is_secure(CPUARMState *env) |
| { |
| return false; |
| } |
| #endif |
| |
| /* Return true if the specified exception level is running in AArch64 state. */ |
| static inline bool arm_el_is_aa64(CPUARMState *env, int el) |
| { |
| /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, |
| * and if we're not in EL0 then the state of EL0 isn't well defined.) |
| */ |
| assert(el >= 1 && el <= 3); |
| bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); |
| |
| /* The highest exception level is always at the maximum supported |
| * register width, and then lower levels have a register width controlled |
| * by bits in the SCR or HCR registers. |
| */ |
| if (el == 3) { |
| return aa64; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); |
| } |
| |
| if (el == 2) { |
| return aa64; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { |
| aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); |
| } |
| |
| return aa64; |
| } |
| |
| /* Function for determing whether guest cp register reads and writes should |
| * access the secure or non-secure bank of a cp register. When EL3 is |
| * operating in AArch32 state, the NS-bit determines whether the secure |
| * instance of a cp register should be used. When EL3 is AArch64 (or if |
| * it doesn't exist at all) then there is no register banking, and all |
| * accesses are to the non-secure version. |
| */ |
| static inline bool access_secure_reg(CPUARMState *env) |
| { |
| bool ret = (arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_el_is_aa64(env, 3) && |
| !(env->cp15.scr_el3 & SCR_NS)); |
| |
| return ret; |
| } |
| |
| /* Macros for accessing a specified CP register bank */ |
| #define A32_BANKED_REG_GET(_env, _regname, _secure) \ |
| ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) |
| |
| #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ |
| do { \ |
| if (_secure) { \ |
| (_env)->cp15._regname##_s = (_val); \ |
| } else { \ |
| (_env)->cp15._regname##_ns = (_val); \ |
| } \ |
| } while (0) |
| |
| /* Macros for automatically accessing a specific CP register bank depending on |
| * the current secure state of the system. These macros are not intended for |
| * supporting instruction translation reads/writes as these are dependent |
| * solely on the SCR.NS bit and not the mode. |
| */ |
| #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ |
| A32_BANKED_REG_GET((_env), _regname, \ |
| (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) |
| |
| #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ |
| A32_BANKED_REG_SET((_env), _regname, \ |
| (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ |
| (_val)) |
| |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| uint32_t cur_el, bool secure); |
| |
| /* Interface between CPU and Interrupt controller. */ |
| void armv7m_nvic_set_pending(void *opaque, int irq); |
| int armv7m_nvic_acknowledge_irq(void *opaque); |
| void armv7m_nvic_complete_irq(void *opaque, int irq); |
| |
| /* Interface for defining coprocessor registers. |
| * Registers are defined in tables of arm_cp_reginfo structs |
| * which are passed to define_arm_cp_regs(). |
| */ |
| |
| /* When looking up a coprocessor register we look for it |
| * via an integer which encodes all of: |
| * coprocessor number |
| * Crn, Crm, opc1, opc2 fields |
| * 32 or 64 bit register (ie is it accessed via MRC/MCR |
| * or via MRRC/MCRR?) |
| * non-secure/secure bank (AArch32 only) |
| * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. |
| * (In this case crn and opc2 should be zero.) |
| * For AArch64, there is no 32/64 bit size distinction; |
| * instead all registers have a 2 bit op0, 3 bit op1 and op2, |
| * and 4 bit CRn and CRm. The encoding patterns are chosen |
| * to be easy to convert to and from the KVM encodings, and also |
| * so that the hashtable can contain both AArch32 and AArch64 |
| * registers (to allow for interprocessing where we might run |
| * 32 bit code on a 64 bit core). |
| */ |
| /* This bit is private to our hashtable cpreg; in KVM register |
| * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 |
| * in the upper bits of the 64 bit ID. |
| */ |
| #define CP_REG_AA64_SHIFT 28 |
| #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) |
| |
| /* To enable banking of coprocessor registers depending on ns-bit we |
| * add a bit to distinguish between secure and non-secure cpregs in the |
| * hashtable. |
| */ |
| #define CP_REG_NS_SHIFT 29 |
| #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) |
| |
| #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ |
| ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ |
| ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) |
| |
| #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ |
| (CP_REG_AA64_MASK | \ |
| ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ |
| ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ |
| ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ |
| ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ |
| ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ |
| ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) |
| |
| /* Convert a full 64 bit KVM register ID to the truncated 32 bit |
| * version used as a key for the coprocessor register hashtable |
| */ |
| static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) |
| { |
| uint32_t cpregid = kvmid; |
| if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { |
| cpregid |= CP_REG_AA64_MASK; |
| } else { |
| if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { |
| cpregid |= (1 << 15); |
| } |
| |
| /* KVM is always non-secure so add the NS flag on AArch32 register |
| * entries. |
| */ |
| cpregid |= 1 << CP_REG_NS_SHIFT; |
| } |
| return cpregid; |
| } |
| |
| /* Convert a truncated 32 bit hashtable key into the full |
| * 64 bit KVM register ID. |
| */ |
| static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) |
| { |
| uint64_t kvmid; |
| |
| if (cpregid & CP_REG_AA64_MASK) { |
| kvmid = cpregid & ~CP_REG_AA64_MASK; |
| kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; |
| } else { |
| kvmid = cpregid & ~(1 << 15); |
| if (cpregid & (1 << 15)) { |
| kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; |
| } else { |
| kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; |
| } |
| } |
| return kvmid; |
| } |
| |
| /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a |
| * special-behaviour cp reg and bits [15..8] indicate what behaviour |
| * it has. Otherwise it is a simple cp reg, where CONST indicates that |
| * TCG can assume the value to be constant (ie load at translate time) |
| * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END |
| * indicates that the TB should not be ended after a write to this register |
| * (the default is that the TB ends after cp writes). OVERRIDE permits |
| * a register definition to override a previous definition for the |
| * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the |
| * old must have the OVERRIDE bit set. |
| * ALIAS indicates that this register is an alias view of some underlying |
| * state which is also visible via another register, and that the other |
| * register is handling migration and reset; registers marked ALIAS will not be |
| * migrated but may have their state set by syncing of register state from KVM. |
| * NO_RAW indicates that this register has no underlying state and does not |
| * support raw access for state saving/loading; it will not be used for either |
| * migration or KVM state synchronization. (Typically this is for "registers" |
| * which are actually used as instructions for cache maintenance and so on.) |
| * IO indicates that this register does I/O and therefore its accesses |
| * need to be surrounded by gen_io_start()/gen_io_end(). In particular, |
| * registers which implement clocks or timers require this. |
| */ |
| #define ARM_CP_SPECIAL 1 |
| #define ARM_CP_CONST 2 |
| #define ARM_CP_64BIT 4 |
| #define ARM_CP_SUPPRESS_TB_END 8 |
| #define ARM_CP_OVERRIDE 16 |
| #define ARM_CP_ALIAS 32 |
| #define ARM_CP_IO 64 |
| #define ARM_CP_NO_RAW 128 |
| #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) |
| #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) |
| #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) |
| #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) |
| #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) |
| #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA |
| /* Used only as a terminator for ARMCPRegInfo lists */ |
| #define ARM_CP_SENTINEL 0xffff |
| /* Mask of only the flag bits in a type field */ |
| #define ARM_CP_FLAG_MASK 0xff |
| |
| /* Valid values for ARMCPRegInfo state field, indicating which of |
| * the AArch32 and AArch64 execution states this register is visible in. |
| * If the reginfo doesn't explicitly specify then it is AArch32 only. |
| * If the reginfo is declared to be visible in both states then a second |
| * reginfo is synthesised for the AArch32 view of the AArch64 register, |
| * such that the AArch32 view is the lower 32 bits of the AArch64 one. |
| * Note that we rely on the values of these enums as we iterate through |
| * the various states in some places. |
| */ |
| enum { |
| ARM_CP_STATE_AA32 = 0, |
| ARM_CP_STATE_AA64 = 1, |
| ARM_CP_STATE_BOTH = 2, |
| }; |
| |
| /* ARM CP register secure state flags. These flags identify security state |
| * attributes for a given CP register entry. |
| * The existence of both or neither secure and non-secure flags indicates that |
| * the register has both a secure and non-secure hash entry. A single one of |
| * these flags causes the register to only be hashed for the specified |
| * security state. |
| * Although definitions may have any combination of the S/NS bits, each |
| * registered entry will only have one to identify whether the entry is secure |
| * or non-secure. |
| */ |
| enum { |
| ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ |
| ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ |
| }; |
| |
| /* Return true if cptype is a valid type field. This is used to try to |
| * catch errors where the sentinel has been accidentally left off the end |
| * of a list of registers. |
| */ |
| static inline bool cptype_valid(int cptype) |
| { |
| return ((cptype & ~ARM_CP_FLAG_MASK) == 0) |
| || ((cptype & ARM_CP_SPECIAL) && |
| ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); |
| } |
| |
| /* Access rights: |
| * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM |
| * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and |
| * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 |
| * (ie any of the privileged modes in Secure state, or Monitor mode). |
| * If a register is accessible in one privilege level it's always accessible |
| * in higher privilege levels too. Since "Secure PL1" also follows this rule |
| * (ie anything visible in PL2 is visible in S-PL1, some things are only |
| * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the |
| * terminology a little and call this PL3. |
| * In AArch64 things are somewhat simpler as the PLx bits line up exactly |
| * with the ELx exception levels. |
| * |
| * If access permissions for a register are more complex than can be |
| * described with these bits, then use a laxer set of restrictions, and |
| * do the more restrictive/complex check inside a helper function. |
| */ |
| #define PL3_R 0x80 |
| #define PL3_W 0x40 |
| #define PL2_R (0x20 | PL3_R) |
| #define PL2_W (0x10 | PL3_W) |
| #define PL1_R (0x08 | PL2_R) |
| #define PL1_W (0x04 | PL2_W) |
| #define PL0_R (0x02 | PL1_R) |
| #define PL0_W (0x01 | PL1_W) |
| |
| #define PL3_RW (PL3_R | PL3_W) |
| #define PL2_RW (PL2_R | PL2_W) |
| #define PL1_RW (PL1_R | PL1_W) |
| #define PL0_RW (PL0_R | PL0_W) |
| |
| /* Return the current Exception Level (as per ARMv8; note that this differs |
| * from the ARMv7 Privilege Level). |
| */ |
| static inline int arm_current_el(CPUARMState *env) |
| { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return !((env->v7m.exception == 0) && (env->v7m.control & 1)); |
| } |
| |
| if (is_a64(env)) { |
| return extract32(env->pstate, 2, 2); |
| } |
| |
| switch (env->uncached_cpsr & 0x1f) { |
| case ARM_CPU_MODE_USR: |
| return 0; |
| case ARM_CPU_MODE_HYP: |
| return 2; |
| case ARM_CPU_MODE_MON: |
| return 3; |
| default: |
| if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { |
| /* If EL3 is 32-bit then all secure privileged modes run in |
| * EL3 |
| */ |
| return 3; |
| } |
| |
| return 1; |
| } |
| } |
| |
| typedef struct ARMCPRegInfo ARMCPRegInfo; |
| |
| typedef enum CPAccessResult { |
| /* Access is permitted */ |
| CP_ACCESS_OK = 0, |
| /* Access fails due to a configurable trap or enable which would |
| * result in a categorized exception syndrome giving information about |
| * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, |
| * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or |
| * PL1 if in EL0, otherwise to the current EL). |
| */ |
| CP_ACCESS_TRAP = 1, |
| /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). |
| * Note that this is not a catch-all case -- the set of cases which may |
| * result in this failure is specifically defined by the architecture. |
| */ |
| CP_ACCESS_TRAP_UNCATEGORIZED = 2, |
| /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ |
| CP_ACCESS_TRAP_EL2 = 3, |
| CP_ACCESS_TRAP_EL3 = 4, |
| /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ |
| CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, |
| CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, |
| } CPAccessResult; |
| |
| /* Access functions for coprocessor registers. These cannot fail and |
| * may not raise exceptions. |
| */ |
| typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); |
| typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, |
| uint64_t value); |
| /* Access permission check functions for coprocessor registers. */ |
| typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque); |
| /* Hook function for register reset */ |
| typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); |
| |
| #define CP_ANY 0xff |
| |
| /* Definition of an ARM coprocessor register */ |
| struct ARMCPRegInfo { |
| /* Name of register (useful mainly for debugging, need not be unique) */ |
| const char *name; |
| /* Location of register: coprocessor number and (crn,crm,opc1,opc2) |
| * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a |
| * 'wildcard' field -- any value of that field in the MRC/MCR insn |
| * will be decoded to this register. The register read and write |
| * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 |
| * used by the program, so it is possible to register a wildcard and |
| * then behave differently on read/write if necessary. |
| * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 |
| * must both be zero. |
| * For AArch64-visible registers, opc0 is also used. |
| * Since there are no "coprocessors" in AArch64, cp is purely used as a |
| * way to distinguish (for KVM's benefit) guest-visible system registers |
| * from demuxed ones provided to preserve the "no side effects on |
| * KVM register read/write from QEMU" semantics. cp==0x13 is guest |
| * visible (to match KVM's encoding); cp==0 will be converted to |
| * cp==0x13 when the ARMCPRegInfo is registered, for convenience. |
| */ |
| uint8_t cp; |
| uint8_t crn; |
| uint8_t crm; |
| uint8_t opc0; |
| uint8_t opc1; |
| uint8_t opc2; |
| /* Execution state in which this register is visible: ARM_CP_STATE_* */ |
| int state; |
| /* Register type: ARM_CP_* bits/values */ |
| int type; |
| /* Access rights: PL*_[RW] */ |
| int access; |
| /* Security state: ARM_CP_SECSTATE_* bits/values */ |
| int secure; |
| /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when |
| * this register was defined: can be used to hand data through to the |
| * register read/write functions, since they are passed the ARMCPRegInfo*. |
| */ |
| void *opaque; |
| /* Value of this register, if it is ARM_CP_CONST. Otherwise, if |
| * fieldoffset is non-zero, the reset value of the register. |
| */ |
| uint64_t resetvalue; |
| /* Offset of the field in CPUARMState for this register. |
| * |
| * This is not needed if either: |
| * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs |
| * 2. both readfn and writefn are specified |
| */ |
| ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ |
| |
| /* Offsets of the secure and non-secure fields in CPUARMState for the |
| * register if it is banked. These fields are only used during the static |
| * registration of a register. During hashing the bank associated |
| * with a given security state is copied to fieldoffset which is used from |
| * there on out. |
| * |
| * It is expected that register definitions use either fieldoffset or |
| * bank_fieldoffsets in the definition but not both. It is also expected |
| * that both bank offsets are set when defining a banked register. This |
| * use indicates that a register is banked. |
| */ |
| ptrdiff_t bank_fieldoffsets[2]; |
| |
| /* Function for making any access checks for this register in addition to |
| * those specified by the 'access' permissions bits. If NULL, no extra |
| * checks required. The access check is performed at runtime, not at |
| * translate time. |
| */ |
| CPAccessFn *accessfn; |
| /* Function for handling reads of this register. If NULL, then reads |
| * will be done by loading from the offset into CPUARMState specified |
| * by fieldoffset. |
| */ |
| CPReadFn *readfn; |
| /* Function for handling writes of this register. If NULL, then writes |
| * will be done by writing to the offset into CPUARMState specified |
| * by fieldoffset. |
| */ |
| CPWriteFn *writefn; |
| /* Function for doing a "raw" read; used when we need to copy |
| * coprocessor state to the kernel for KVM or out for |
| * migration. This only needs to be provided if there is also a |
| * readfn and it has side effects (for instance clear-on-read bits). |
| */ |
| CPReadFn *raw_readfn; |
| /* Function for doing a "raw" write; used when we need to copy KVM |
| * kernel coprocessor state into userspace, or for inbound |
| * migration. This only needs to be provided if there is also a |
| * writefn and it masks out "unwritable" bits or has write-one-to-clear |
| * or similar behaviour. |
| */ |
| CPWriteFn *raw_writefn; |
| /* Function for resetting the register. If NULL, then reset will be done |
| * by writing resetvalue to the field specified in fieldoffset. If |
| * fieldoffset is 0 then no reset will be done. |
| */ |
| CPResetFn *resetfn; |
| }; |
| |
| /* Macros which are lvalues for the field in CPUARMState for the |
| * ARMCPRegInfo *ri. |
| */ |
| #define CPREG_FIELD32(env, ri) \ |
| (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) |
| #define CPREG_FIELD64(env, ri) \ |
| (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) |
| |
| #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } |
| |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *regs, void *opaque); |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *regs, void *opaque); |
| static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) |
| { |
| define_arm_cp_regs_with_opaque(cpu, regs, 0); |
| } |
| static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) |
| { |
| define_one_arm_cp_reg_with_opaque(cpu, regs, 0); |
| } |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); |
| |
| /* CPWriteFn that can be used to implement writes-ignored behaviour */ |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value); |
| /* CPReadFn that can be used for read-as-zero behaviour */ |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); |
| |
| /* CPResetFn that does nothing, for use if no reset is required even |
| * if fieldoffset is non zero. |
| */ |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); |
| |
| /* Return true if this reginfo struct's field in the cpu state struct |
| * is 64 bits wide. |
| */ |
| static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) |
| { |
| return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); |
| } |
| |
| static inline bool cp_access_ok(int current_el, |
| const ARMCPRegInfo *ri, int isread) |
| { |
| return (ri->access >> ((current_el * 2) + isread)) & 1; |
| } |
| |
| /* Raw read of a coprocessor register (as needed for migration, etc) */ |
| uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); |
| |
| /** |
| * write_list_to_cpustate |
| * @cpu: ARMCPU |
| * |
| * For each register listed in the ARMCPU cpreg_indexes list, write |
| * its value from the cpreg_values list into the ARMCPUState structure. |
| * This updates TCG's working data structures from KVM data or |
| * from incoming migration state. |
| * |
| * Returns: true if all register values were updated correctly, |
| * false if some register was unknown or could not be written. |
| * Note that we do not stop early on failure -- we will attempt |
| * writing all registers in the list. |
| */ |
| bool write_list_to_cpustate(ARMCPU *cpu); |
| |
| /** |
| * write_cpustate_to_list: |
| * @cpu: ARMCPU |
| * |
| * For each register listed in the ARMCPU cpreg_indexes list, write |
| * its value from the ARMCPUState structure into the cpreg_values list. |
| * This is used to copy info from TCG's working data structures into |
| * KVM or for outbound migration. |
| * |
| * Returns: true if all register values were read correctly, |
| * false if some register was unknown or could not be read. |
| * Note that we do not stop early on failure -- we will attempt |
| * reading all registers in the list. |
| */ |
| bool write_cpustate_to_list(ARMCPU *cpu); |
| |
| /* Does the core conform to the "MicroController" profile. e.g. Cortex-M3. |
| Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are |
| conventional cores (ie. Application or Realtime profile). */ |
| |
| #define IS_M(env) arm_feature(env, ARM_FEATURE_M) |
| |
| #define ARM_CPUID_TI915T 0x54029152 |
| #define ARM_CPUID_TI925T 0x54029252 |
| |
| #if defined(CONFIG_USER_ONLY) |
| #define TARGET_PAGE_BITS 12 |
| #else |
| /* The ARM MMU allows 1k pages. */ |
| /* ??? Linux doesn't actually use these, and they're deprecated in recent |
| architecture revisions. Maybe a configure option to disable them. */ |
| #define TARGET_PAGE_BITS 10 |
| #endif |
| |
| #if defined(TARGET_AARCH64) |
| # define TARGET_PHYS_ADDR_SPACE_BITS 48 |
| # define TARGET_VIRT_ADDR_SPACE_BITS 64 |
| #else |
| # define TARGET_PHYS_ADDR_SPACE_BITS 40 |
| # define TARGET_VIRT_ADDR_SPACE_BITS 32 |
| #endif |
| |
| static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, |
| unsigned int target_el) |
| { |
| CPUARMState *env = cs->env_ptr; |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| bool pstate_unmasked; |
| int8_t unmasked = 0; |
| |
| /* Don't take exceptions if they target a lower EL. |
| * This check should catch any exceptions that would not be taken but left |
| * pending. |
| */ |
| if (cur_el > target_el) { |
| return false; |
| } |
| |
| switch (excp_idx) { |
| case EXCP_FIQ: |
| pstate_unmasked = !(env->daif & PSTATE_F); |
| break; |
| |
| case EXCP_IRQ: |
| pstate_unmasked = !(env->daif & PSTATE_I); |
| break; |
| |
| case EXCP_VFIQ: |
| if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { |
| /* VFIQs are only taken when hypervized and non-secure. */ |
| return false; |
| } |
| return !(env->daif & PSTATE_F); |
| case EXCP_VIRQ: |
| if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { |
| /* VIRQs are only taken when hypervized and non-secure. */ |
| return false; |
| } |
| return !(env->daif & PSTATE_I); |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* Use the target EL, current execution state and SCR/HCR settings to |
| * determine whether the corresponding CPSR bit is used to mask the |
| * interrupt. |
| */ |
| if ((target_el > cur_el) && (target_el != 1)) { |
| /* Exceptions targeting a higher EL may not be maskable */ |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| /* 64-bit masking rules are simple: exceptions to EL3 |
| * can't be masked, and exceptions to EL2 can only be |
| * masked from Secure state. The HCR and SCR settings |
| * don't affect the masking logic, only the interrupt routing. |
| */ |
| if (target_el == 3 || !secure) { |
| unmasked = 1; |
| } |
| } else { |
| /* The old 32-bit-only environment has a more complicated |
| * masking setup. HCR and SCR bits not only affect interrupt |
| * routing but also change the behaviour of masking. |
| */ |
| bool hcr, scr; |
| |
| switch (excp_idx) { |
| case EXCP_FIQ: |
| /* If FIQs are routed to EL3 or EL2 then there are cases where |
| * we override the CPSR.F in determining if the exception is |
| * masked or not. If neither of these are set then we fall back |
| * to the CPSR.F setting otherwise we further assess the state |
| * below. |
| */ |
| hcr = (env->cp15.hcr_el2 & HCR_FMO); |
| scr = (env->cp15.scr_el3 & SCR_FIQ); |
| |
| /* When EL3 is 32-bit, the SCR.FW bit controls whether the |
| * CPSR.F bit masks FIQ interrupts when taken in non-secure |
| * state. If SCR.FW is set then FIQs can be masked by CPSR.F |
| * when non-secure but only when FIQs are only routed to EL3. |
| */ |
| scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); |
| break; |
| case EXCP_IRQ: |
| /* When EL3 execution state is 32-bit, if HCR.IMO is set then |
| * we may override the CPSR.I masking when in non-secure state. |
| * The SCR.IRQ setting has already been taken into consideration |
| * when setting the target EL, so it does not have a further |
| * affect here. |
| */ |
| hcr = (env->cp15.hcr_el2 & HCR_IMO); |
| scr = false; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if ((scr || hcr) && !secure) { |
| unmasked = 1; |
| } |
| } |
| } |
| |
| /* The PSTATE bits only mask the interrupt if we have not overriden the |
| * ability above. |
| */ |
| return unmasked || pstate_unmasked; |
| } |
| |
| #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model)) |
| |
| #define cpu_exec cpu_arm_exec |
| #define cpu_signal_handler cpu_arm_signal_handler |
| #define cpu_list arm_cpu_list |
| |
| /* ARM has the following "translation regimes" (as the ARM ARM calls them): |
| * |
| * If EL3 is 64-bit: |
| * + NonSecure EL1 & 0 stage 1 |
| * + NonSecure EL1 & 0 stage 2 |
| * + NonSecure EL2 |
| * + Secure EL1 & EL0 |
| * + Secure EL3 |
| * If EL3 is 32-bit: |
| * + NonSecure PL1 & 0 stage 1 |
| * + NonSecure PL1 & 0 stage 2 |
| * + NonSecure PL2 |
| * + Secure PL0 & PL1 |
| * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) |
| * |
| * For QEMU, an mmu_idx is not quite the same as a translation regime because: |
| * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they |
| * may differ in access permissions even if the VA->PA map is the same |
| * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 |
| * translation, which means that we have one mmu_idx that deals with two |
| * concatenated translation regimes [this sort of combined s1+2 TLB is |
| * architecturally permitted] |
| * 3. we don't need to allocate an mmu_idx to translations that we won't be |
| * handling via the TLB. The only way to do a stage 1 translation without |
| * the immediate stage 2 translation is via the ATS or AT system insns, |
| * which can be slow-pathed and always do a page table walk. |
| * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" |
| * translation regimes, because they map reasonably well to each other |
| * and they can't both be active at the same time. |
| * This gives us the following list of mmu_idx values: |
| * |
| * NS EL0 (aka NS PL0) stage 1+2 |
| * NS EL1 (aka NS PL1) stage 1+2 |
| * NS EL2 (aka NS PL2) |
| * S EL3 (aka S PL1) |
| * S EL0 (aka S PL0) |
| * S EL1 (not used if EL3 is 32 bit) |
| * NS EL0+1 stage 2 |
| * |
| * (The last of these is an mmu_idx because we want to be able to use the TLB |
| * for the accesses done as part of a stage 1 page table walk, rather than |
| * having to walk the stage 2 page table over and over.) |
| * |
| * Our enumeration includes at the end some entries which are not "true" |
| * mmu_idx values in that they don't have corresponding TLBs and are only |
| * valid for doing slow path page table walks. |
| * |
| * The constant names here are patterned after the general style of the names |
| * of the AT/ATS operations. |
| * The values used are carefully arranged to make mmu_idx => EL lookup easy. |
| */ |
| typedef enum ARMMMUIdx { |
| ARMMMUIdx_S12NSE0 = 0, |
| ARMMMUIdx_S12NSE1 = 1, |
| ARMMMUIdx_S1E2 = 2, |
| ARMMMUIdx_S1E3 = 3, |
| ARMMMUIdx_S1SE0 = 4, |
| ARMMMUIdx_S1SE1 = 5, |
| ARMMMUIdx_S2NS = 6, |
| /* Indexes below here don't have TLBs and are used only for AT system |
| * instructions or for the first stage of an S12 page table walk. |
| */ |
| ARMMMUIdx_S1NSE0 = 7, |
| ARMMMUIdx_S1NSE1 = 8, |
| } ARMMMUIdx; |
| |
| #define MMU_USER_IDX 0 |
| |
| /* Return the exception level we're running at if this is our mmu_idx */ |
| static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) |
| { |
| assert(mmu_idx < ARMMMUIdx_S2NS); |
| return mmu_idx & 3; |
| } |
| |
| /* Determine the current mmu_idx to use for normal loads/stores */ |
| static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && arm_is_secure_below_el3(env)) { |
| return ARMMMUIdx_S1SE0 + el; |
| } |
| return el; |
| } |
| |
| /* Indexes used when registering address spaces with cpu_address_space_init */ |
| typedef enum ARMASIdx { |
| ARMASIdx_NS = 0, |
| ARMASIdx_S = 1, |
| } ARMASIdx; |
| |
| /* Return the Exception Level targeted by debug exceptions; |
| * currently always EL1 since we don't implement EL2 or EL3. |
| */ |
| static inline int arm_debug_target_el(CPUARMState *env) |
| { |
| bool secure = arm_is_secure(env); |
| bool route_to_el2 = false; |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { |
| route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || |
| env->cp15.mdcr_el2 & (1 << 8); |
| } |
| |
| if (route_to_el2) { |
| return 2; |
| } else if (arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_el_is_aa64(env, 3) && secure) { |
| return 3; |
| } else { |
| return 1; |
| } |
| } |
| |
| static inline bool aa64_generate_debug_exceptions(CPUARMState *env) |
| { |
| if (arm_current_el(env) == arm_debug_target_el(env)) { |
| if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) |
| || (env->daif & PSTATE_D)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static inline bool aa32_generate_debug_exceptions(CPUARMState *env) |
| { |
| if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) { |
| return aa64_generate_debug_exceptions(env); |
| } |
| return arm_current_el(env) != 2; |
| } |
| |
| /* Return true if debugging exceptions are currently enabled. |
| * This corresponds to what in ARM ARM pseudocode would be |
| * if UsingAArch32() then |
| * return AArch32.GenerateDebugExceptions() |
| * else |
| * return AArch64.GenerateDebugExceptions() |
| * We choose to push the if() down into this function for clarity, |
| * since the pseudocode has it at all callsites except for the one in |
| * CheckSoftwareStep(), where it is elided because both branches would |
| * always return the same value. |
| * |
| * Parts of the pseudocode relating to EL2 and EL3 are omitted because we |
| * don't yet implement those exception levels or their associated trap bits. |
| */ |
| static inline bool arm_generate_debug_exceptions(CPUARMState *env) |
| { |
| if (env->aarch64) { |
| return aa64_generate_debug_exceptions(env); |
| } else { |
| return aa32_generate_debug_exceptions(env); |
| } |
| } |
| |
| /* Is single-stepping active? (Note that the "is EL_D AArch64?" check |
| * implicitly means this always returns false in pre-v8 CPUs.) |
| */ |
| static inline bool arm_singlestep_active(CPUARMState *env) |
| { |
| return extract32(env->cp15.mdscr_el1, 0, 1) |
| && arm_el_is_aa64(env, arm_debug_target_el(env)) |
| && arm_generate_debug_exceptions(env); |
| } |
| |
| #include "exec/cpu-all.h" |
| |
| /* Bit usage in the TB flags field: bit 31 indicates whether we are |
| * in 32 or 64 bit mode. The meaning of the other bits depends on that. |
| * We put flags which are shared between 32 and 64 bit mode at the top |
| * of the word, and flags which apply to only one mode at the bottom. |
| */ |
| #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 |
| #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) |
| #define ARM_TBFLAG_MMUIDX_SHIFT 28 |
| #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) |
| #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 |
| #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) |
| #define ARM_TBFLAG_PSTATE_SS_SHIFT 26 |
| #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) |
| /* Target EL if we take a floating-point-disabled exception */ |
| #define ARM_TBFLAG_FPEXC_EL_SHIFT 24 |
| #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) |
| |
| /* Bit usage when in AArch32 state: */ |
| #define ARM_TBFLAG_THUMB_SHIFT 0 |
| #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) |
| #define ARM_TBFLAG_VECLEN_SHIFT 1 |
| #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) |
| #define ARM_TBFLAG_VECSTRIDE_SHIFT 4 |
| #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) |
| #define ARM_TBFLAG_VFPEN_SHIFT 7 |
| #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) |
| #define ARM_TBFLAG_CONDEXEC_SHIFT 8 |
| #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) |
| #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16 |
| #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT) |
| /* We store the bottom two bits of the CPAR as TB flags and handle |
| * checks on the other bits at runtime |
| */ |
| #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 |
| #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) |
| /* Indicates whether cp register reads and writes by guest code should access |
| * the secure or nonsecure bank of banked registers; note that this is not |
| * the same thing as the current security state of the processor! |
| */ |
| #define ARM_TBFLAG_NS_SHIFT 19 |
| #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) |
| |
| /* Bit usage when in AArch64 state: currently we have no A64 specific bits */ |
| |
| /* some convenience accessor macros */ |
| #define ARM_TBFLAG_AARCH64_STATE(F) \ |
| (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) |
| #define ARM_TBFLAG_MMUIDX(F) \ |
| (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) |
| #define ARM_TBFLAG_SS_ACTIVE(F) \ |
| (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) |
| #define ARM_TBFLAG_PSTATE_SS(F) \ |
| (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) |
| #define ARM_TBFLAG_FPEXC_EL(F) \ |
| (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) |
| #define ARM_TBFLAG_THUMB(F) \ |
| (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) |
| #define ARM_TBFLAG_VECLEN(F) \ |
| (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) |
| #define ARM_TBFLAG_VECSTRIDE(F) \ |
| (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) |
| #define ARM_TBFLAG_VFPEN(F) \ |
| (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) |
| #define ARM_TBFLAG_CONDEXEC(F) \ |
| (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) |
| #define ARM_TBFLAG_BSWAP_CODE(F) \ |
| (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT) |
| #define ARM_TBFLAG_XSCALE_CPAR(F) \ |
| (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) |
| #define ARM_TBFLAG_NS(F) \ |
| (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) |
| |
| /* Return the exception level to which FP-disabled exceptions should |
| * be taken, or 0 if FP is enabled. |
| */ |
| static inline int fp_exception_el(CPUARMState *env) |
| { |
| int fpen; |
| int cur_el = arm_current_el(env); |
| |
| /* CPACR and the CPTR registers don't exist before v6, so FP is |
| * always accessible |
| */ |
| if (!arm_feature(env, ARM_FEATURE_V6)) { |
| return 0; |
| } |
| |
| /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: |
| * 0, 2 : trap EL0 and EL1/PL1 accesses |
| * 1 : trap only EL0 accesses |
| * 3 : trap no accesses |
| */ |
| fpen = extract32(env->cp15.cpacr_el1, 20, 2); |
| switch (fpen) { |
| case 0: |
| case 2: |
| if (cur_el == 0 || cur_el == 1) { |
| /* Trap to PL1, which might be EL1 or EL3 */ |
| if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { |
| return 3; |
| } |
| return 1; |
| } |
| if (cur_el == 3 && !is_a64(env)) { |
| /* Secure PL1 running at EL3 */ |
| return 3; |
| } |
| break; |
| case 1: |
| if (cur_el == 0) { |
| return 1; |
| } |
| break; |
| case 3: |
| break; |
| } |
| |
| /* For the CPTR registers we don't need to guard with an ARM_FEATURE |
| * check because zero bits in the registers mean "don't trap". |
| */ |
| |
| /* CPTR_EL2 : present in v7VE or v8 */ |
| if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) |
| && !arm_is_secure_below_el3(env)) { |
| /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ |
| return 2; |
| } |
| |
| /* CPTR_EL3 : present in v8 */ |
| if (extract32(env->cp15.cptr_el[3], 10, 1)) { |
| /* Trap all FP ops to EL3 */ |
| return 3; |
| } |
| |
| return 0; |
| } |
| |
| static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, |
| target_ulong *cs_base, int *flags) |
| { |
| if (is_a64(env)) { |
| *pc = env->pc; |
| *flags = ARM_TBFLAG_AARCH64_STATE_MASK; |
| } else { |
| *pc = env->regs[15]; |
| *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) |
| | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) |
| | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) |
| | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) |
| | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT); |
| if (!(access_secure_reg(env))) { |
| *flags |= ARM_TBFLAG_NS_MASK; |
| } |
| if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) |
| || arm_el_is_aa64(env, 1)) { |
| *flags |= ARM_TBFLAG_VFPEN_MASK; |
| } |
| *flags |= (extract32(env->cp15.c15_cpar, 0, 2) |
| << ARM_TBFLAG_XSCALE_CPAR_SHIFT); |
| } |
| |
| *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT); |
| /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine |
| * states defined in the ARM ARM for software singlestep: |
| * SS_ACTIVE PSTATE.SS State |
| * 0 x Inactive (the TB flag for SS is always 0) |
| * 1 0 Active-pending |
| * 1 1 Active-not-pending |
| */ |
| if (arm_singlestep_active(env)) { |
| *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; |
| if (is_a64(env)) { |
| if (env->pstate & PSTATE_SS) { |
| *flags |= ARM_TBFLAG_PSTATE_SS_MASK; |
| } |
| } else { |
| if (env->uncached_cpsr & PSTATE_SS) { |
| *flags |= ARM_TBFLAG_PSTATE_SS_MASK; |
| } |
| } |
| } |
| *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; |
| |
| *cs_base = 0; |
| } |
| |
| #include "exec/exec-all.h" |
| |
| enum { |
| QEMU_PSCI_CONDUIT_DISABLED = 0, |
| QEMU_PSCI_CONDUIT_SMC = 1, |
| QEMU_PSCI_CONDUIT_HVC = 2, |
| }; |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Return the address space index to use for a memory access */ |
| static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) |
| { |
| return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; |
| } |
| |
| /* Return the AddressSpace to use for a memory access |
| * (which depends on whether the access is S or NS, and whether |
| * the board gave us a separate AddressSpace for S accesses). |
| */ |
| static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) |
| { |
| return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); |
| } |
| #endif |
| |
| #endif |