| #ifndef TARGET_ARM_TRANSLATE_H |
| #define TARGET_ARM_TRANSLATE_H |
| |
| #include "cpu.h" |
| #include "tcg/tcg-op.h" |
| #include "tcg/tcg-op-gvec.h" |
| #include "exec/exec-all.h" |
| #include "exec/translator.h" |
| #include "exec/helper-gen.h" |
| #include "internals.h" |
| #include "cpu-features.h" |
| |
| /* internal defines */ |
| |
| /* |
| * Save pc_save across a branch, so that we may restore the value from |
| * before the branch at the point the label is emitted. |
| */ |
| typedef struct DisasLabel { |
| TCGLabel *label; |
| target_ulong pc_save; |
| } DisasLabel; |
| |
| typedef struct DisasContext { |
| DisasContextBase base; |
| const ARMISARegisters *isar; |
| |
| /* The address of the current instruction being translated. */ |
| target_ulong pc_curr; |
| /* |
| * For CF_PCREL, the full value of cpu_pc is not known |
| * (although the page offset is known). For convenience, the |
| * translation loop uses the full virtual address that triggered |
| * the translation, from base.pc_start through pc_curr. |
| * For efficiency, we do not update cpu_pc for every instruction. |
| * Instead, pc_save has the value of pc_curr at the time of the |
| * last update to cpu_pc, which allows us to compute the addend |
| * needed to bring cpu_pc current: pc_curr - pc_save. |
| * If cpu_pc now contains the destination of an indirect branch, |
| * pc_save contains -1 to indicate that relative updates are no |
| * longer possible. |
| */ |
| target_ulong pc_save; |
| target_ulong page_start; |
| uint32_t insn; |
| /* Nonzero if this instruction has been conditionally skipped. */ |
| int condjmp; |
| /* The label that will be jumped to when the instruction is skipped. */ |
| DisasLabel condlabel; |
| /* Thumb-2 conditional execution bits. */ |
| int condexec_mask; |
| int condexec_cond; |
| /* M-profile ECI/ICI exception-continuable instruction state */ |
| int eci; |
| /* |
| * trans_ functions for insns which are continuable should set this true |
| * after decode (ie after any UNDEF checks) |
| */ |
| bool eci_handled; |
| int sctlr_b; |
| MemOp be_data; |
| #if !defined(CONFIG_USER_ONLY) |
| int user; |
| #endif |
| ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */ |
| uint8_t tbii; /* TBI1|TBI0 for insns */ |
| uint8_t tbid; /* TBI1|TBI0 for data */ |
| uint8_t tcma; /* TCMA1|TCMA0 for MTE */ |
| bool ns; /* Use non-secure CPREG bank on access */ |
| int fp_excp_el; /* FP exception EL or 0 if enabled */ |
| int sve_excp_el; /* SVE exception EL or 0 if enabled */ |
| int sme_excp_el; /* SME exception EL or 0 if enabled */ |
| int vl; /* current vector length in bytes */ |
| int svl; /* current streaming vector length in bytes */ |
| bool vfp_enabled; /* FP enabled via FPSCR.EN */ |
| int vec_len; |
| int vec_stride; |
| bool v7m_handler_mode; |
| bool v8m_secure; /* true if v8M and we're in Secure mode */ |
| bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */ |
| bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */ |
| bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */ |
| bool v7m_lspact; /* FPCCR.LSPACT set */ |
| /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI |
| * so that top level loop can generate correct syndrome information. |
| */ |
| uint32_t svc_imm; |
| int current_el; |
| GHashTable *cp_regs; |
| uint64_t features; /* CPU features bits */ |
| bool aarch64; |
| bool thumb; |
| bool lse2; |
| /* Because unallocated encodings generate different exception syndrome |
| * information from traps due to FP being disabled, we can't do a single |
| * "is fp access disabled" check at a high level in the decode tree. |
| * To help in catching bugs where the access check was forgotten in some |
| * code path, we set this flag when the access check is done, and assert |
| * that it is set at the point where we actually touch the FP regs. |
| */ |
| bool fp_access_checked; |
| bool sve_access_checked; |
| /* ARMv8 single-step state (this is distinct from the QEMU gdbstub |
| * single-step support). |
| */ |
| bool ss_active; |
| bool pstate_ss; |
| /* True if the insn just emitted was a load-exclusive instruction |
| * (necessary for syndrome information for single step exceptions), |
| * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*. |
| */ |
| bool is_ldex; |
| /* True if AccType_UNPRIV should be used for LDTR et al */ |
| bool unpriv; |
| /* True if v8.3-PAuth is active. */ |
| bool pauth_active; |
| /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */ |
| bool ata[2]; |
| /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */ |
| bool mte_active[2]; |
| /* True with v8.5-BTI and SCTLR_ELx.BT* set. */ |
| bool bt; |
| /* True if any CP15 access is trapped by HSTR_EL2 */ |
| bool hstr_active; |
| /* True if memory operations require alignment */ |
| bool align_mem; |
| /* True if PSTATE.IL is set */ |
| bool pstate_il; |
| /* True if PSTATE.SM is set. */ |
| bool pstate_sm; |
| /* True if PSTATE.ZA is set. */ |
| bool pstate_za; |
| /* True if non-streaming insns should raise an SME Streaming exception. */ |
| bool sme_trap_nonstreaming; |
| /* True if the current instruction is non-streaming. */ |
| bool is_nonstreaming; |
| /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */ |
| bool mve_no_pred; |
| /* True if fine-grained traps are active */ |
| bool fgt_active; |
| /* True if fine-grained trap on SVC is enabled */ |
| bool fgt_svc; |
| /* True if a trap on ERET is enabled (FGT or NV) */ |
| bool trap_eret; |
| /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */ |
| bool naa; |
| /* True if FEAT_NV HCR_EL2.NV is enabled */ |
| bool nv; |
| /* True if NV enabled and HCR_EL2.NV1 is set */ |
| bool nv1; |
| /* True if NV enabled and HCR_EL2.NV2 is set */ |
| bool nv2; |
| /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */ |
| bool nv2_mem_e20; |
| /* True if NV2 enabled and NV2 RAM accesses are big-endian */ |
| bool nv2_mem_be; |
| /* |
| * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI. |
| * < 0, set by the current instruction. |
| */ |
| int8_t btype; |
| /* A copy of cpu->dcz_blocksize. */ |
| uint8_t dcz_blocksize; |
| /* A copy of cpu->gm_blocksize. */ |
| uint8_t gm_blocksize; |
| /* True if this page is guarded. */ |
| bool guarded_page; |
| /* True if the current insn_start has been updated. */ |
| bool insn_start_updated; |
| /* Bottom two bits of XScale c15_cpar coprocessor access control reg */ |
| int c15_cpar; |
| /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */ |
| uint32_t nv2_redirect_offset; |
| } DisasContext; |
| |
| typedef struct DisasCompare { |
| TCGCond cond; |
| TCGv_i32 value; |
| } DisasCompare; |
| |
| /* Share the TCG temporaries common between 32 and 64 bit modes. */ |
| extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF; |
| extern TCGv_i64 cpu_exclusive_addr; |
| extern TCGv_i64 cpu_exclusive_val; |
| |
| /* |
| * Constant expanders for the decoders. |
| */ |
| |
| static inline int negate(DisasContext *s, int x) |
| { |
| return -x; |
| } |
| |
| static inline int plus_1(DisasContext *s, int x) |
| { |
| return x + 1; |
| } |
| |
| static inline int plus_2(DisasContext *s, int x) |
| { |
| return x + 2; |
| } |
| |
| static inline int plus_12(DisasContext *s, int x) |
| { |
| return x + 12; |
| } |
| |
| static inline int times_2(DisasContext *s, int x) |
| { |
| return x * 2; |
| } |
| |
| static inline int times_4(DisasContext *s, int x) |
| { |
| return x * 4; |
| } |
| |
| static inline int times_8(DisasContext *s, int x) |
| { |
| return x * 8; |
| } |
| |
| static inline int times_2_plus_1(DisasContext *s, int x) |
| { |
| return x * 2 + 1; |
| } |
| |
| static inline int rsub_64(DisasContext *s, int x) |
| { |
| return 64 - x; |
| } |
| |
| static inline int rsub_32(DisasContext *s, int x) |
| { |
| return 32 - x; |
| } |
| |
| static inline int rsub_16(DisasContext *s, int x) |
| { |
| return 16 - x; |
| } |
| |
| static inline int rsub_8(DisasContext *s, int x) |
| { |
| return 8 - x; |
| } |
| |
| static inline int shl_12(DisasContext *s, int x) |
| { |
| return x << 12; |
| } |
| |
| static inline int xor_2(DisasContext *s, int x) |
| { |
| return x ^ 2; |
| } |
| |
| static inline int neon_3same_fp_size(DisasContext *s, int x) |
| { |
| /* Convert 0==fp32, 1==fp16 into a MO_* value */ |
| return MO_32 - x; |
| } |
| |
| static inline int arm_dc_feature(DisasContext *dc, int feature) |
| { |
| return (dc->features & (1ULL << feature)) != 0; |
| } |
| |
| static inline int get_mem_index(DisasContext *s) |
| { |
| return arm_to_core_mmu_idx(s->mmu_idx); |
| } |
| |
| static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) |
| { |
| /* We don't need to save all of the syndrome so we mask and shift |
| * out unneeded bits to help the sleb128 encoder do a better job. |
| */ |
| syn &= ARM_INSN_START_WORD2_MASK; |
| syn >>= ARM_INSN_START_WORD2_SHIFT; |
| |
| /* Check for multiple updates. */ |
| assert(!s->insn_start_updated); |
| s->insn_start_updated = true; |
| tcg_set_insn_start_param(s->base.insn_start, 2, syn); |
| } |
| |
| static inline int curr_insn_len(DisasContext *s) |
| { |
| return s->base.pc_next - s->pc_curr; |
| } |
| |
| /* is_jmp field values */ |
| #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ |
| /* CPU state was modified dynamically; exit to main loop for interrupts. */ |
| #define DISAS_UPDATE_EXIT DISAS_TARGET_1 |
| /* These instructions trap after executing, so the A32/T32 decoder must |
| * defer them until after the conditional execution state has been updated. |
| * WFI also needs special handling when single-stepping. |
| */ |
| #define DISAS_WFI DISAS_TARGET_2 |
| #define DISAS_SWI DISAS_TARGET_3 |
| /* WFE */ |
| #define DISAS_WFE DISAS_TARGET_4 |
| #define DISAS_HVC DISAS_TARGET_5 |
| #define DISAS_SMC DISAS_TARGET_6 |
| #define DISAS_YIELD DISAS_TARGET_7 |
| /* M profile branch which might be an exception return (and so needs |
| * custom end-of-TB code) |
| */ |
| #define DISAS_BX_EXCRET DISAS_TARGET_8 |
| /* |
| * For instructions which want an immediate exit to the main loop, as opposed |
| * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this |
| * doesn't write the PC on exiting the translation loop so you need to ensure |
| * something (gen_a64_update_pc or runtime helper) has done so before we reach |
| * return from cpu_tb_exec. |
| */ |
| #define DISAS_EXIT DISAS_TARGET_9 |
| /* CPU state was modified dynamically; no need to exit, but do not chain. */ |
| #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10 |
| |
| #ifdef TARGET_AARCH64 |
| void a64_translate_init(void); |
| void gen_a64_update_pc(DisasContext *s, target_long diff); |
| extern const TranslatorOps aarch64_translator_ops; |
| #else |
| static inline void a64_translate_init(void) |
| { |
| } |
| |
| static inline void gen_a64_update_pc(DisasContext *s, target_long diff) |
| { |
| } |
| #endif |
| |
| void arm_test_cc(DisasCompare *cmp, int cc); |
| void arm_jump_cc(DisasCompare *cmp, TCGLabel *label); |
| void arm_gen_test_cc(int cc, TCGLabel *label); |
| MemOp pow2_align(unsigned i); |
| void unallocated_encoding(DisasContext *s); |
| void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, |
| uint32_t syn, uint32_t target_el); |
| void gen_exception_insn(DisasContext *s, target_long pc_diff, |
| int excp, uint32_t syn); |
| |
| /* Return state of Alternate Half-precision flag, caller frees result */ |
| static inline TCGv_i32 get_ahp_flag(void) |
| { |
| TCGv_i32 ret = tcg_temp_new_i32(); |
| |
| tcg_gen_ld_i32(ret, tcg_env, |
| offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR])); |
| tcg_gen_extract_i32(ret, ret, 26, 1); |
| |
| return ret; |
| } |
| |
| /* Set bits within PSTATE. */ |
| static inline void set_pstate_bits(uint32_t bits) |
| { |
| TCGv_i32 p = tcg_temp_new_i32(); |
| |
| tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); |
| |
| tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); |
| tcg_gen_ori_i32(p, p, bits); |
| tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); |
| } |
| |
| /* Clear bits within PSTATE. */ |
| static inline void clear_pstate_bits(uint32_t bits) |
| { |
| TCGv_i32 p = tcg_temp_new_i32(); |
| |
| tcg_debug_assert(!(bits & CACHED_PSTATE_BITS)); |
| |
| tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate)); |
| tcg_gen_andi_i32(p, p, ~bits); |
| tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate)); |
| } |
| |
| /* If the singlestep state is Active-not-pending, advance to Active-pending. */ |
| static inline void gen_ss_advance(DisasContext *s) |
| { |
| if (s->ss_active) { |
| s->pstate_ss = 0; |
| clear_pstate_bits(PSTATE_SS); |
| } |
| } |
| |
| /* Generate an architectural singlestep exception */ |
| static inline void gen_swstep_exception(DisasContext *s, int isv, int ex) |
| { |
| /* Fill in the same_el field of the syndrome in the helper. */ |
| uint32_t syn = syn_swstep(false, isv, ex); |
| gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn)); |
| } |
| |
| /* |
| * Given a VFP floating point constant encoded into an 8 bit immediate in an |
| * instruction, expand it to the actual constant value of the specified |
| * size, as per the VFPExpandImm() pseudocode in the Arm ARM. |
| */ |
| uint64_t vfp_expand_imm(int size, uint8_t imm8); |
| |
| static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s) |
| { |
| tcg_gen_andi_i32(d, s, INT16_MAX); |
| } |
| |
| static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s) |
| { |
| tcg_gen_andi_i32(d, s, INT32_MAX); |
| } |
| |
| static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s) |
| { |
| tcg_gen_andi_i64(d, s, INT64_MAX); |
| } |
| |
| static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s) |
| { |
| tcg_gen_xori_i32(d, s, 1u << 15); |
| } |
| |
| static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s) |
| { |
| tcg_gen_xori_i32(d, s, 1u << 31); |
| } |
| |
| static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s) |
| { |
| tcg_gen_xori_i64(d, s, 1ull << 63); |
| } |
| |
| /* Vector operations shared between ARM and AArch64. */ |
| void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); |
| void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); |
| void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b); |
| void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); |
| void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b); |
| |
| void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc, |
| TCGv_i64 a, TCGv_i64 b, MemOp esz); |
| void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); |
| void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc, |
| TCGv_i64 a, TCGv_i64 b, MemOp esz); |
| void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); |
| void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc, |
| TCGv_i64 a, TCGv_i64 b, MemOp esz); |
| void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); |
| void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc, |
| TCGv_i64 a, TCGv_i64 b, MemOp esz); |
| void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b); |
| void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh); |
| void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh); |
| void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh); |
| void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh); |
| |
| void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, |
| int64_t shift, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, |
| uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz); |
| |
| /* |
| * Forward to the isar_feature_* tests given a DisasContext pointer. |
| */ |
| #define dc_isar_feature(name, ctx) \ |
| ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); }) |
| |
| /* Note that the gvec expanders operate on offsets + sizes. */ |
| typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); |
| typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, |
| uint32_t, uint32_t); |
| typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, |
| uint32_t, uint32_t, uint32_t); |
| typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t, |
| uint32_t, uint32_t, uint32_t); |
| |
| /* Function prototype for gen_ functions for calling Neon helpers */ |
| typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32); |
| typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); |
| typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); |
| typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); |
| typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32, |
| TCGv_i32, TCGv_i32); |
| typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); |
| typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); |
| typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); |
| typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); |
| typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); |
| typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32); |
| typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr); |
| typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); |
| typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); |
| typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64); |
| typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); |
| typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); |
| typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); |
| typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp); |
| typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift); |
| typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32); |
| typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift); |
| typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); |
| |
| /** |
| * arm_tbflags_from_tb: |
| * @tb: the TranslationBlock |
| * |
| * Extract the flag values from @tb. |
| */ |
| static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb) |
| { |
| return (CPUARMTBFlags){ tb->flags, tb->cs_base }; |
| } |
| |
| /* |
| * Enum for argument to fpstatus_ptr(). |
| */ |
| typedef enum ARMFPStatusFlavour { |
| FPST_FPCR, |
| FPST_FPCR_F16, |
| FPST_STD, |
| FPST_STD_F16, |
| } ARMFPStatusFlavour; |
| |
| /** |
| * fpstatus_ptr: return TCGv_ptr to the specified fp_status field |
| * |
| * We have multiple softfloat float_status fields in the Arm CPU state struct |
| * (see the comment in cpu.h for details). Return a TCGv_ptr which has |
| * been set up to point to the requested field in the CPU state struct. |
| * The options are: |
| * |
| * FPST_FPCR |
| * for non-FP16 operations controlled by the FPCR |
| * FPST_FPCR_F16 |
| * for operations controlled by the FPCR where FPCR.FZ16 is to be used |
| * FPST_STD |
| * for A32/T32 Neon operations using the "standard FPSCR value" |
| * FPST_STD_F16 |
| * as FPST_STD, but where FPCR.FZ16 is to be used |
| */ |
| static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour) |
| { |
| TCGv_ptr statusptr = tcg_temp_new_ptr(); |
| int offset; |
| |
| switch (flavour) { |
| case FPST_FPCR: |
| offset = offsetof(CPUARMState, vfp.fp_status); |
| break; |
| case FPST_FPCR_F16: |
| offset = offsetof(CPUARMState, vfp.fp_status_f16); |
| break; |
| case FPST_STD: |
| offset = offsetof(CPUARMState, vfp.standard_fp_status); |
| break; |
| case FPST_STD_F16: |
| offset = offsetof(CPUARMState, vfp.standard_fp_status_f16); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| tcg_gen_addi_ptr(statusptr, tcg_env, offset); |
| return statusptr; |
| } |
| |
| /** |
| * finalize_memop_atom: |
| * @s: DisasContext |
| * @opc: size+sign+align of the memory operation |
| * @atom: atomicity of the memory operation |
| * |
| * Build the complete MemOp for a memory operation, including alignment, |
| * endianness, and atomicity. |
| * |
| * If (op & MO_AMASK) then the operation already contains the required |
| * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally |
| * unaligned operation, e.g. for AccType_NORMAL. |
| * |
| * In the latter case, there are configuration bits that require alignment, |
| * and this is applied here. Note that there is no way to indicate that |
| * no alignment should ever be enforced; this must be handled manually. |
| */ |
| static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom) |
| { |
| if (s->align_mem && !(opc & MO_AMASK)) { |
| opc |= MO_ALIGN; |
| } |
| return opc | atom | s->be_data; |
| } |
| |
| /** |
| * finalize_memop: |
| * @s: DisasContext |
| * @opc: size+sign+align of the memory operation |
| * |
| * Like finalize_memop_atom, but with default atomicity. |
| */ |
| static inline MemOp finalize_memop(DisasContext *s, MemOp opc) |
| { |
| MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN; |
| return finalize_memop_atom(s, opc, atom); |
| } |
| |
| /** |
| * finalize_memop_pair: |
| * @s: DisasContext |
| * @opc: size+sign+align of the memory operation |
| * |
| * Like finalize_memop_atom, but with atomicity for a pair. |
| * C.f. Pseudocode for Mem[], operand ispair. |
| */ |
| static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc) |
| { |
| MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR; |
| return finalize_memop_atom(s, opc, atom); |
| } |
| |
| /** |
| * finalize_memop_asimd: |
| * @s: DisasContext |
| * @opc: size+sign+align of the memory operation |
| * |
| * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD. |
| */ |
| static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc) |
| { |
| /* |
| * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16, |
| * if IsAligned(8), the first case provides separate atomicity for |
| * the pair of 64-bit accesses. If !IsAligned(8), the middle cases |
| * do not apply, and we're left with the final case of no atomicity. |
| * Thus MO_ATOM_IFALIGN_PAIR. |
| * |
| * For other sizes, normal LSE2 rules apply. |
| */ |
| if ((opc & MO_SIZE) == MO_128) { |
| return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR); |
| } |
| return finalize_memop(s, opc); |
| } |
| |
| /** |
| * asimd_imm_const: Expand an encoded SIMD constant value |
| * |
| * Expand a SIMD constant value. This is essentially the pseudocode |
| * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for |
| * VMVN and VBIC (when cmode < 14 && op == 1). |
| * |
| * The combination cmode == 15 op == 1 is a reserved encoding for AArch32; |
| * callers must catch this; we return the 64-bit constant value defined |
| * for AArch64. |
| * |
| * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but |
| * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A; |
| * we produce an immediate constant value of 0 in these cases. |
| */ |
| uint64_t asimd_imm_const(uint32_t imm, int cmode, int op); |
| |
| /* |
| * gen_disas_label: |
| * Create a label and cache a copy of pc_save. |
| */ |
| static inline DisasLabel gen_disas_label(DisasContext *s) |
| { |
| return (DisasLabel){ |
| .label = gen_new_label(), |
| .pc_save = s->pc_save, |
| }; |
| } |
| |
| /* |
| * set_disas_label: |
| * Emit a label and restore the cached copy of pc_save. |
| */ |
| static inline void set_disas_label(DisasContext *s, DisasLabel l) |
| { |
| gen_set_label(l.label); |
| s->pc_save = l.pc_save; |
| } |
| |
| static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key) |
| { |
| TCGv_ptr ret = tcg_temp_new_ptr(); |
| gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key)); |
| return ret; |
| } |
| |
| /* |
| * Set and reset rounding mode around another operation. |
| */ |
| static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst) |
| { |
| TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode)); |
| TCGv_i32 old = tcg_temp_new_i32(); |
| |
| gen_helper_set_rmode(old, new, fpst); |
| return old; |
| } |
| |
| static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst) |
| { |
| gen_helper_set_rmode(old, old, fpst); |
| } |
| |
| /* |
| * Helpers for implementing sets of trans_* functions. |
| * Defer the implementation of NAME to FUNC, with optional extra arguments. |
| */ |
| #define TRANS(NAME, FUNC, ...) \ |
| static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ |
| { return FUNC(s, __VA_ARGS__); } |
| #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \ |
| static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ |
| { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); } |
| |
| #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \ |
| static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \ |
| { \ |
| s->is_nonstreaming = true; \ |
| return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \ |
| } |
| |
| #endif /* TARGET_ARM_TRANSLATE_H */ |