| /* |
| * Memory region management for Tiny Code Generator for QEMU |
| * |
| * Copyright (c) 2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qapi/error.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| #include "tcg-internal.h" |
| |
| |
| struct tcg_region_tree { |
| QemuMutex lock; |
| GTree *tree; |
| /* padding to avoid false sharing is computed at run-time */ |
| }; |
| |
| /* |
| * We divide code_gen_buffer into equally-sized "regions" that TCG threads |
| * dynamically allocate from as demand dictates. Given appropriate region |
| * sizing, this minimizes flushes even when some TCG threads generate a lot |
| * more code than others. |
| */ |
| struct tcg_region_state { |
| QemuMutex lock; |
| |
| /* fields set at init time */ |
| void *start_aligned; |
| void *after_prologue; |
| size_t n; |
| size_t size; /* size of one region */ |
| size_t stride; /* .size + guard size */ |
| size_t total_size; /* size of entire buffer, >= n * stride */ |
| |
| /* fields protected by the lock */ |
| size_t current; /* current region index */ |
| size_t agg_size_full; /* aggregate size of full regions */ |
| }; |
| |
| static struct tcg_region_state region; |
| |
| /* |
| * This is an array of struct tcg_region_tree's, with padding. |
| * We use void * to simplify the computation of region_trees[i]; each |
| * struct is found every tree_size bytes. |
| */ |
| static void *region_trees; |
| static size_t tree_size; |
| |
| bool in_code_gen_buffer(const void *p) |
| { |
| /* |
| * Much like it is valid to have a pointer to the byte past the |
| * end of an array (so long as you don't dereference it), allow |
| * a pointer to the byte past the end of the code gen buffer. |
| */ |
| return (size_t)(p - region.start_aligned) <= region.total_size; |
| } |
| |
| #ifdef CONFIG_DEBUG_TCG |
| const void *tcg_splitwx_to_rx(void *rw) |
| { |
| /* Pass NULL pointers unchanged. */ |
| if (rw) { |
| g_assert(in_code_gen_buffer(rw)); |
| rw += tcg_splitwx_diff; |
| } |
| return rw; |
| } |
| |
| void *tcg_splitwx_to_rw(const void *rx) |
| { |
| /* Pass NULL pointers unchanged. */ |
| if (rx) { |
| rx -= tcg_splitwx_diff; |
| /* Assert that we end with a pointer in the rw region. */ |
| g_assert(in_code_gen_buffer(rx)); |
| } |
| return (void *)rx; |
| } |
| #endif /* CONFIG_DEBUG_TCG */ |
| |
| /* compare a pointer @ptr and a tb_tc @s */ |
| static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) |
| { |
| if (ptr >= s->ptr + s->size) { |
| return 1; |
| } else if (ptr < s->ptr) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) |
| { |
| const struct tb_tc *a = ap; |
| const struct tb_tc *b = bp; |
| |
| /* |
| * When both sizes are set, we know this isn't a lookup. |
| * This is the most likely case: every TB must be inserted; lookups |
| * are a lot less frequent. |
| */ |
| if (likely(a->size && b->size)) { |
| if (a->ptr > b->ptr) { |
| return 1; |
| } else if (a->ptr < b->ptr) { |
| return -1; |
| } |
| /* a->ptr == b->ptr should happen only on deletions */ |
| g_assert(a->size == b->size); |
| return 0; |
| } |
| /* |
| * All lookups have either .size field set to 0. |
| * From the glib sources we see that @ap is always the lookup key. However |
| * the docs provide no guarantee, so we just mark this case as likely. |
| */ |
| if (likely(a->size == 0)) { |
| return ptr_cmp_tb_tc(a->ptr, b); |
| } |
| return ptr_cmp_tb_tc(b->ptr, a); |
| } |
| |
| static void tcg_region_trees_init(void) |
| { |
| size_t i; |
| |
| tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); |
| region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); |
| for (i = 0; i < region.n; i++) { |
| struct tcg_region_tree *rt = region_trees + i * tree_size; |
| |
| qemu_mutex_init(&rt->lock); |
| rt->tree = g_tree_new(tb_tc_cmp); |
| } |
| } |
| |
| static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p) |
| { |
| size_t region_idx; |
| |
| /* |
| * Like tcg_splitwx_to_rw, with no assert. The pc may come from |
| * a signal handler over which the caller has no control. |
| */ |
| if (!in_code_gen_buffer(p)) { |
| p -= tcg_splitwx_diff; |
| if (!in_code_gen_buffer(p)) { |
| return NULL; |
| } |
| } |
| |
| if (p < region.start_aligned) { |
| region_idx = 0; |
| } else { |
| ptrdiff_t offset = p - region.start_aligned; |
| |
| if (offset > region.stride * (region.n - 1)) { |
| region_idx = region.n - 1; |
| } else { |
| region_idx = offset / region.stride; |
| } |
| } |
| return region_trees + region_idx * tree_size; |
| } |
| |
| void tcg_tb_insert(TranslationBlock *tb) |
| { |
| struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); |
| |
| g_assert(rt != NULL); |
| qemu_mutex_lock(&rt->lock); |
| g_tree_insert(rt->tree, &tb->tc, tb); |
| qemu_mutex_unlock(&rt->lock); |
| } |
| |
| void tcg_tb_remove(TranslationBlock *tb) |
| { |
| struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); |
| |
| g_assert(rt != NULL); |
| qemu_mutex_lock(&rt->lock); |
| g_tree_remove(rt->tree, &tb->tc); |
| qemu_mutex_unlock(&rt->lock); |
| } |
| |
| /* |
| * Find the TB 'tb' such that |
| * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size |
| * Return NULL if not found. |
| */ |
| TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) |
| { |
| struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); |
| TranslationBlock *tb; |
| struct tb_tc s = { .ptr = (void *)tc_ptr }; |
| |
| if (rt == NULL) { |
| return NULL; |
| } |
| |
| qemu_mutex_lock(&rt->lock); |
| tb = g_tree_lookup(rt->tree, &s); |
| qemu_mutex_unlock(&rt->lock); |
| return tb; |
| } |
| |
| static void tcg_region_tree_lock_all(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < region.n; i++) { |
| struct tcg_region_tree *rt = region_trees + i * tree_size; |
| |
| qemu_mutex_lock(&rt->lock); |
| } |
| } |
| |
| static void tcg_region_tree_unlock_all(void) |
| { |
| size_t i; |
| |
| for (i = 0; i < region.n; i++) { |
| struct tcg_region_tree *rt = region_trees + i * tree_size; |
| |
| qemu_mutex_unlock(&rt->lock); |
| } |
| } |
| |
| void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) |
| { |
| size_t i; |
| |
| tcg_region_tree_lock_all(); |
| for (i = 0; i < region.n; i++) { |
| struct tcg_region_tree *rt = region_trees + i * tree_size; |
| |
| g_tree_foreach(rt->tree, func, user_data); |
| } |
| tcg_region_tree_unlock_all(); |
| } |
| |
| size_t tcg_nb_tbs(void) |
| { |
| size_t nb_tbs = 0; |
| size_t i; |
| |
| tcg_region_tree_lock_all(); |
| for (i = 0; i < region.n; i++) { |
| struct tcg_region_tree *rt = region_trees + i * tree_size; |
| |
| nb_tbs += g_tree_nnodes(rt->tree); |
| } |
| tcg_region_tree_unlock_all(); |
| return nb_tbs; |
| } |
| |
| static gboolean tcg_region_tree_traverse(gpointer k, gpointer v, gpointer data) |
| { |
| TranslationBlock *tb = v; |
| |
| tb_destroy(tb); |
| return FALSE; |
| } |
| |
| static void tcg_region_tree_reset_all(void) |
| { |
| size_t i; |
| |
| tcg_region_tree_lock_all(); |
| for (i = 0; i < region.n; i++) { |
| struct tcg_region_tree *rt = region_trees + i * tree_size; |
| |
| g_tree_foreach(rt->tree, tcg_region_tree_traverse, NULL); |
| /* Increment the refcount first so that destroy acts as a reset */ |
| g_tree_ref(rt->tree); |
| g_tree_destroy(rt->tree); |
| } |
| tcg_region_tree_unlock_all(); |
| } |
| |
| static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) |
| { |
| void *start, *end; |
| |
| start = region.start_aligned + curr_region * region.stride; |
| end = start + region.size; |
| |
| if (curr_region == 0) { |
| start = region.after_prologue; |
| } |
| /* The final region may have a few extra pages due to earlier rounding. */ |
| if (curr_region == region.n - 1) { |
| end = region.start_aligned + region.total_size; |
| } |
| |
| *pstart = start; |
| *pend = end; |
| } |
| |
| static void tcg_region_assign(TCGContext *s, size_t curr_region) |
| { |
| void *start, *end; |
| |
| tcg_region_bounds(curr_region, &start, &end); |
| |
| s->code_gen_buffer = start; |
| s->code_gen_ptr = start; |
| s->code_gen_buffer_size = end - start; |
| s->code_gen_highwater = end - TCG_HIGHWATER; |
| } |
| |
| static bool tcg_region_alloc__locked(TCGContext *s) |
| { |
| if (region.current == region.n) { |
| return true; |
| } |
| tcg_region_assign(s, region.current); |
| region.current++; |
| return false; |
| } |
| |
| /* |
| * Request a new region once the one in use has filled up. |
| * Returns true on error. |
| */ |
| bool tcg_region_alloc(TCGContext *s) |
| { |
| bool err; |
| /* read the region size now; alloc__locked will overwrite it on success */ |
| size_t size_full = s->code_gen_buffer_size; |
| |
| qemu_mutex_lock(®ion.lock); |
| err = tcg_region_alloc__locked(s); |
| if (!err) { |
| region.agg_size_full += size_full - TCG_HIGHWATER; |
| } |
| qemu_mutex_unlock(®ion.lock); |
| return err; |
| } |
| |
| /* |
| * Perform a context's first region allocation. |
| * This function does _not_ increment region.agg_size_full. |
| */ |
| static void tcg_region_initial_alloc__locked(TCGContext *s) |
| { |
| bool err = tcg_region_alloc__locked(s); |
| g_assert(!err); |
| } |
| |
| void tcg_region_initial_alloc(TCGContext *s) |
| { |
| qemu_mutex_lock(®ion.lock); |
| tcg_region_initial_alloc__locked(s); |
| qemu_mutex_unlock(®ion.lock); |
| } |
| |
| /* Call from a safe-work context */ |
| void tcg_region_reset_all(void) |
| { |
| unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs); |
| unsigned int i; |
| |
| qemu_mutex_lock(®ion.lock); |
| region.current = 0; |
| region.agg_size_full = 0; |
| |
| for (i = 0; i < n_ctxs; i++) { |
| TCGContext *s = qatomic_read(&tcg_ctxs[i]); |
| tcg_region_initial_alloc__locked(s); |
| } |
| qemu_mutex_unlock(®ion.lock); |
| |
| tcg_region_tree_reset_all(); |
| } |
| |
| static size_t tcg_n_regions(size_t tb_size, unsigned max_cpus) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return 1; |
| #else |
| size_t n_regions; |
| |
| /* |
| * It is likely that some vCPUs will translate more code than others, |
| * so we first try to set more regions than max_cpus, with those regions |
| * being of reasonable size. If that's not possible we make do by evenly |
| * dividing the code_gen_buffer among the vCPUs. |
| */ |
| /* Use a single region if all we have is one vCPU thread */ |
| if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { |
| return 1; |
| } |
| |
| /* |
| * Try to have more regions than max_cpus, with each region being >= 2 MB. |
| * If we can't, then just allocate one region per vCPU thread. |
| */ |
| n_regions = tb_size / (2 * MiB); |
| if (n_regions <= max_cpus) { |
| return max_cpus; |
| } |
| return MIN(n_regions, max_cpus * 8); |
| #endif |
| } |
| |
| /* |
| * Minimum size of the code gen buffer. This number is randomly chosen, |
| * but not so small that we can't have a fair number of TB's live. |
| * |
| * Maximum size, MAX_CODE_GEN_BUFFER_SIZE, is defined in tcg-target.h. |
| * Unless otherwise indicated, this is constrained by the range of |
| * direct branches on the host cpu, as used by the TCG implementation |
| * of goto_tb. |
| */ |
| #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) |
| |
| #if TCG_TARGET_REG_BITS == 32 |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * For user mode on smaller 32 bit systems we may run into trouble |
| * allocating big chunks of data in the right place. On these systems |
| * we utilise a static code generation buffer directly in the binary. |
| */ |
| #define USE_STATIC_CODE_GEN_BUFFER |
| #endif |
| #else /* TCG_TARGET_REG_BITS == 64 */ |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * As user-mode emulation typically means running multiple instances |
| * of the translator don't go too nuts with our default code gen |
| * buffer lest we make things too hard for the OS. |
| */ |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) |
| #else |
| /* |
| * We expect most system emulation to run one or two guests per host. |
| * Users running large scale system emulation may want to tweak their |
| * runtime setup via the tb-size control on the command line. |
| */ |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) |
| #endif |
| #endif |
| |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE \ |
| (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ |
| ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) |
| |
| #ifdef __mips__ |
| /* |
| * In order to use J and JAL within the code_gen_buffer, we require |
| * that the buffer not cross a 256MB boundary. |
| */ |
| static inline bool cross_256mb(void *addr, size_t size) |
| { |
| return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; |
| } |
| |
| /* |
| * We weren't able to allocate a buffer without crossing that boundary, |
| * so make do with the larger portion of the buffer that doesn't cross. |
| * Returns the new base and size of the buffer in *obuf and *osize. |
| */ |
| static inline void split_cross_256mb(void **obuf, size_t *osize, |
| void *buf1, size_t size1) |
| { |
| void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); |
| size_t size2 = buf1 + size1 - buf2; |
| |
| size1 = buf2 - buf1; |
| if (size1 < size2) { |
| size1 = size2; |
| buf1 = buf2; |
| } |
| |
| *obuf = buf1; |
| *osize = size1; |
| } |
| #endif |
| |
| #ifdef USE_STATIC_CODE_GEN_BUFFER |
| static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] |
| __attribute__((aligned(CODE_GEN_ALIGN))); |
| |
| static int alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp) |
| { |
| void *buf, *end; |
| size_t size; |
| |
| if (splitwx > 0) { |
| error_setg(errp, "jit split-wx not supported"); |
| return -1; |
| } |
| |
| /* page-align the beginning and end of the buffer */ |
| buf = static_code_gen_buffer; |
| end = static_code_gen_buffer + sizeof(static_code_gen_buffer); |
| buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); |
| end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); |
| |
| size = end - buf; |
| |
| /* Honor a command-line option limiting the size of the buffer. */ |
| if (size > tb_size) { |
| size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size); |
| } |
| |
| #ifdef __mips__ |
| if (cross_256mb(buf, size)) { |
| split_cross_256mb(&buf, &size, buf, size); |
| } |
| #endif |
| |
| region.start_aligned = buf; |
| region.total_size = size; |
| |
| return PROT_READ | PROT_WRITE; |
| } |
| #elif defined(_WIN32) |
| static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) |
| { |
| void *buf; |
| |
| if (splitwx > 0) { |
| error_setg(errp, "jit split-wx not supported"); |
| return -1; |
| } |
| |
| buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, |
| PAGE_EXECUTE_READWRITE); |
| if (buf == NULL) { |
| error_setg_win32(errp, GetLastError(), |
| "allocate %zu bytes for jit buffer", size); |
| return false; |
| } |
| |
| region.start_aligned = buf; |
| region.total_size = size; |
| |
| return PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } |
| #else |
| static int alloc_code_gen_buffer_anon(size_t size, int prot, |
| int flags, Error **errp) |
| { |
| void *buf; |
| |
| buf = mmap(NULL, size, prot, flags, -1, 0); |
| if (buf == MAP_FAILED) { |
| error_setg_errno(errp, errno, |
| "allocate %zu bytes for jit buffer", size); |
| return -1; |
| } |
| |
| #ifdef __mips__ |
| if (cross_256mb(buf, size)) { |
| /* |
| * Try again, with the original still mapped, to avoid re-acquiring |
| * the same 256mb crossing. |
| */ |
| size_t size2; |
| void *buf2 = mmap(NULL, size, prot, flags, -1, 0); |
| switch ((int)(buf2 != MAP_FAILED)) { |
| case 1: |
| if (!cross_256mb(buf2, size)) { |
| /* Success! Use the new buffer. */ |
| munmap(buf, size); |
| break; |
| } |
| /* Failure. Work with what we had. */ |
| munmap(buf2, size); |
| /* fallthru */ |
| default: |
| /* Split the original buffer. Free the smaller half. */ |
| split_cross_256mb(&buf2, &size2, buf, size); |
| if (buf == buf2) { |
| munmap(buf + size2, size - size2); |
| } else { |
| munmap(buf, size - size2); |
| } |
| size = size2; |
| break; |
| } |
| buf = buf2; |
| } |
| #endif |
| |
| region.start_aligned = buf; |
| region.total_size = size; |
| return prot; |
| } |
| |
| #ifndef CONFIG_TCG_INTERPRETER |
| #ifdef CONFIG_POSIX |
| #include "qemu/memfd.h" |
| |
| static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp) |
| { |
| void *buf_rw = NULL, *buf_rx = MAP_FAILED; |
| int fd = -1; |
| |
| #ifdef __mips__ |
| /* Find space for the RX mapping, vs the 256MiB regions. */ |
| if (alloc_code_gen_buffer_anon(size, PROT_NONE, |
| MAP_PRIVATE | MAP_ANONYMOUS | |
| MAP_NORESERVE, errp) < 0) { |
| return false; |
| } |
| /* The size of the mapping may have been adjusted. */ |
| buf_rx = region.start_aligned; |
| size = region.total_size; |
| #endif |
| |
| buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp); |
| if (buf_rw == NULL) { |
| goto fail; |
| } |
| |
| #ifdef __mips__ |
| void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC, |
| MAP_SHARED | MAP_FIXED, fd, 0); |
| if (tmp != buf_rx) { |
| goto fail_rx; |
| } |
| #else |
| buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); |
| if (buf_rx == MAP_FAILED) { |
| goto fail_rx; |
| } |
| #endif |
| |
| close(fd); |
| region.start_aligned = buf_rw; |
| region.total_size = size; |
| tcg_splitwx_diff = buf_rx - buf_rw; |
| |
| return PROT_READ | PROT_WRITE; |
| |
| fail_rx: |
| error_setg_errno(errp, errno, "failed to map shared memory for execute"); |
| fail: |
| if (buf_rx != MAP_FAILED) { |
| munmap(buf_rx, size); |
| } |
| if (buf_rw) { |
| munmap(buf_rw, size); |
| } |
| if (fd >= 0) { |
| close(fd); |
| } |
| return -1; |
| } |
| #endif /* CONFIG_POSIX */ |
| |
| #ifdef CONFIG_DARWIN |
| #include <mach/mach.h> |
| |
| extern kern_return_t mach_vm_remap(vm_map_t target_task, |
| mach_vm_address_t *target_address, |
| mach_vm_size_t size, |
| mach_vm_offset_t mask, |
| int flags, |
| vm_map_t src_task, |
| mach_vm_address_t src_address, |
| boolean_t copy, |
| vm_prot_t *cur_protection, |
| vm_prot_t *max_protection, |
| vm_inherit_t inheritance); |
| |
| static int alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp) |
| { |
| kern_return_t ret; |
| mach_vm_address_t buf_rw, buf_rx; |
| vm_prot_t cur_prot, max_prot; |
| |
| /* Map the read-write portion via normal anon memory. */ |
| if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, errp)) { |
| return -1; |
| } |
| |
| buf_rw = (mach_vm_address_t)region.start_aligned; |
| buf_rx = 0; |
| ret = mach_vm_remap(mach_task_self(), |
| &buf_rx, |
| size, |
| 0, |
| VM_FLAGS_ANYWHERE, |
| mach_task_self(), |
| buf_rw, |
| false, |
| &cur_prot, |
| &max_prot, |
| VM_INHERIT_NONE); |
| if (ret != KERN_SUCCESS) { |
| /* TODO: Convert "ret" to a human readable error message. */ |
| error_setg(errp, "vm_remap for jit splitwx failed"); |
| munmap((void *)buf_rw, size); |
| return -1; |
| } |
| |
| if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) { |
| error_setg_errno(errp, errno, "mprotect for jit splitwx"); |
| munmap((void *)buf_rx, size); |
| munmap((void *)buf_rw, size); |
| return -1; |
| } |
| |
| tcg_splitwx_diff = buf_rx - buf_rw; |
| return PROT_READ | PROT_WRITE; |
| } |
| #endif /* CONFIG_DARWIN */ |
| #endif /* CONFIG_TCG_INTERPRETER */ |
| |
| static int alloc_code_gen_buffer_splitwx(size_t size, Error **errp) |
| { |
| #ifndef CONFIG_TCG_INTERPRETER |
| # ifdef CONFIG_DARWIN |
| return alloc_code_gen_buffer_splitwx_vmremap(size, errp); |
| # endif |
| # ifdef CONFIG_POSIX |
| return alloc_code_gen_buffer_splitwx_memfd(size, errp); |
| # endif |
| #endif |
| error_setg(errp, "jit split-wx not supported"); |
| return -1; |
| } |
| |
| static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) |
| { |
| ERRP_GUARD(); |
| int prot, flags; |
| |
| if (splitwx) { |
| prot = alloc_code_gen_buffer_splitwx(size, errp); |
| if (prot >= 0) { |
| return prot; |
| } |
| /* |
| * If splitwx force-on (1), fail; |
| * if splitwx default-on (-1), fall through to splitwx off. |
| */ |
| if (splitwx > 0) { |
| return -1; |
| } |
| error_free_or_abort(errp); |
| } |
| |
| /* |
| * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect |
| * rejects a permission change from RWX -> NONE when reserving the |
| * guard pages later. We can go the other way with the same number |
| * of syscalls, so always begin with PROT_NONE. |
| */ |
| prot = PROT_NONE; |
| flags = MAP_PRIVATE | MAP_ANONYMOUS; |
| #ifdef CONFIG_DARWIN |
| /* Applicable to both iOS and macOS (Apple Silicon). */ |
| if (!splitwx) { |
| flags |= MAP_JIT; |
| } |
| #endif |
| |
| return alloc_code_gen_buffer_anon(size, prot, flags, errp); |
| } |
| #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ |
| |
| /* |
| * Initializes region partitioning. |
| * |
| * Called at init time from the parent thread (i.e. the one calling |
| * tcg_context_init), after the target's TCG globals have been set. |
| * |
| * Region partitioning works by splitting code_gen_buffer into separate regions, |
| * and then assigning regions to TCG threads so that the threads can translate |
| * code in parallel without synchronization. |
| * |
| * In softmmu the number of TCG threads is bounded by max_cpus, so we use at |
| * least max_cpus regions in MTTCG. In !MTTCG we use a single region. |
| * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) |
| * must have been parsed before calling this function, since it calls |
| * qemu_tcg_mttcg_enabled(). |
| * |
| * In user-mode we use a single region. Having multiple regions in user-mode |
| * is not supported, because the number of vCPU threads (recall that each thread |
| * spawned by the guest corresponds to a vCPU thread) is only bounded by the |
| * OS, and usually this number is huge (tens of thousands is not uncommon). |
| * Thus, given this large bound on the number of vCPU threads and the fact |
| * that code_gen_buffer is allocated at compile-time, we cannot guarantee |
| * that the availability of at least one region per vCPU thread. |
| * |
| * However, this user-mode limitation is unlikely to be a significant problem |
| * in practice. Multi-threaded guests share most if not all of their translated |
| * code, which makes parallel code generation less appealing than in softmmu. |
| */ |
| void tcg_region_init(size_t tb_size, int splitwx, unsigned max_cpus) |
| { |
| const size_t page_size = qemu_real_host_page_size; |
| size_t region_size; |
| int have_prot, need_prot; |
| |
| /* Size the buffer. */ |
| if (tb_size == 0) { |
| size_t phys_mem = qemu_get_host_physmem(); |
| if (phys_mem == 0) { |
| tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; |
| } else { |
| tb_size = QEMU_ALIGN_DOWN(phys_mem / 8, page_size); |
| tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, tb_size); |
| } |
| } |
| if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { |
| tb_size = MIN_CODE_GEN_BUFFER_SIZE; |
| } |
| if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { |
| tb_size = MAX_CODE_GEN_BUFFER_SIZE; |
| } |
| |
| have_prot = alloc_code_gen_buffer(tb_size, splitwx, &error_fatal); |
| assert(have_prot >= 0); |
| |
| /* Request large pages for the buffer and the splitwx. */ |
| qemu_madvise(region.start_aligned, region.total_size, QEMU_MADV_HUGEPAGE); |
| if (tcg_splitwx_diff) { |
| qemu_madvise(region.start_aligned + tcg_splitwx_diff, |
| region.total_size, QEMU_MADV_HUGEPAGE); |
| } |
| |
| /* |
| * Make region_size a multiple of page_size, using aligned as the start. |
| * As a result of this we might end up with a few extra pages at the end of |
| * the buffer; we will assign those to the last region. |
| */ |
| region.n = tcg_n_regions(tb_size, max_cpus); |
| region_size = tb_size / region.n; |
| region_size = QEMU_ALIGN_DOWN(region_size, page_size); |
| |
| /* A region must have at least 2 pages; one code, one guard */ |
| g_assert(region_size >= 2 * page_size); |
| region.stride = region_size; |
| |
| /* Reserve space for guard pages. */ |
| region.size = region_size - page_size; |
| region.total_size -= page_size; |
| |
| /* |
| * The first region will be smaller than the others, via the prologue, |
| * which has yet to be allocated. For now, the first region begins at |
| * the page boundary. |
| */ |
| region.after_prologue = region.start_aligned; |
| |
| /* init the region struct */ |
| qemu_mutex_init(®ion.lock); |
| |
| /* |
| * Set guard pages in the rw buffer, as that's the one into which |
| * buffer overruns could occur. Do not set guard pages in the rx |
| * buffer -- let that one use hugepages throughout. |
| * Work with the page protections set up with the initial mapping. |
| */ |
| need_prot = PAGE_READ | PAGE_WRITE; |
| #ifndef CONFIG_TCG_INTERPRETER |
| if (tcg_splitwx_diff == 0) { |
| need_prot |= PAGE_EXEC; |
| } |
| #endif |
| for (size_t i = 0, n = region.n; i < n; i++) { |
| void *start, *end; |
| |
| tcg_region_bounds(i, &start, &end); |
| if (have_prot != need_prot) { |
| int rc; |
| |
| if (need_prot == (PAGE_READ | PAGE_WRITE | PAGE_EXEC)) { |
| rc = qemu_mprotect_rwx(start, end - start); |
| } else if (need_prot == (PAGE_READ | PAGE_WRITE)) { |
| rc = qemu_mprotect_rw(start, end - start); |
| } else { |
| g_assert_not_reached(); |
| } |
| if (rc) { |
| error_setg_errno(&error_fatal, errno, |
| "mprotect of jit buffer"); |
| } |
| } |
| if (have_prot != 0) { |
| /* Guard pages are nice for bug detection but are not essential. */ |
| (void)qemu_mprotect_none(end, page_size); |
| } |
| } |
| |
| tcg_region_trees_init(); |
| |
| /* |
| * Leave the initial context initialized to the first region. |
| * This will be the context into which we generate the prologue. |
| * It is also the only context for CONFIG_USER_ONLY. |
| */ |
| tcg_region_initial_alloc__locked(&tcg_init_ctx); |
| } |
| |
| void tcg_region_prologue_set(TCGContext *s) |
| { |
| /* Deduct the prologue from the first region. */ |
| g_assert(region.start_aligned == s->code_gen_buffer); |
| region.after_prologue = s->code_ptr; |
| |
| /* Recompute boundaries of the first region. */ |
| tcg_region_assign(s, 0); |
| |
| /* Register the balance of the buffer with gdb. */ |
| tcg_register_jit(tcg_splitwx_to_rx(region.after_prologue), |
| region.start_aligned + region.total_size - |
| region.after_prologue); |
| } |
| |
| /* |
| * Returns the size (in bytes) of all translated code (i.e. from all regions) |
| * currently in the cache. |
| * See also: tcg_code_capacity() |
| * Do not confuse with tcg_current_code_size(); that one applies to a single |
| * TCG context. |
| */ |
| size_t tcg_code_size(void) |
| { |
| unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs); |
| unsigned int i; |
| size_t total; |
| |
| qemu_mutex_lock(®ion.lock); |
| total = region.agg_size_full; |
| for (i = 0; i < n_ctxs; i++) { |
| const TCGContext *s = qatomic_read(&tcg_ctxs[i]); |
| size_t size; |
| |
| size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer; |
| g_assert(size <= s->code_gen_buffer_size); |
| total += size; |
| } |
| qemu_mutex_unlock(®ion.lock); |
| return total; |
| } |
| |
| /* |
| * Returns the code capacity (in bytes) of the entire cache, i.e. including all |
| * regions. |
| * See also: tcg_code_size() |
| */ |
| size_t tcg_code_capacity(void) |
| { |
| size_t guard_size, capacity; |
| |
| /* no need for synchronization; these variables are set at init time */ |
| guard_size = region.stride - region.size; |
| capacity = region.total_size; |
| capacity -= (region.n - 1) * guard_size; |
| capacity -= region.n * TCG_HIGHWATER; |
| |
| return capacity; |
| } |
| |
| size_t tcg_tb_phys_invalidate_count(void) |
| { |
| unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs); |
| unsigned int i; |
| size_t total = 0; |
| |
| for (i = 0; i < n_ctxs; i++) { |
| const TCGContext *s = qatomic_read(&tcg_ctxs[i]); |
| |
| total += qatomic_read(&s->tb_phys_invalidate_count); |
| } |
| return total; |
| } |