| /* |
| * Common CPU TLB handling |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/main-loop.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/memory.h" |
| #include "exec/address-spaces.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/cputlb.h" |
| #include "exec/memory-internal.h" |
| #include "exec/ram_addr.h" |
| #include "tcg/tcg.h" |
| #include "qemu/error-report.h" |
| #include "exec/log.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/atomic.h" |
| #include "qemu/atomic128.h" |
| |
| /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ |
| /* #define DEBUG_TLB */ |
| /* #define DEBUG_TLB_LOG */ |
| |
| #ifdef DEBUG_TLB |
| # define DEBUG_TLB_GATE 1 |
| # ifdef DEBUG_TLB_LOG |
| # define DEBUG_TLB_LOG_GATE 1 |
| # else |
| # define DEBUG_TLB_LOG_GATE 0 |
| # endif |
| #else |
| # define DEBUG_TLB_GATE 0 |
| # define DEBUG_TLB_LOG_GATE 0 |
| #endif |
| |
| #define tlb_debug(fmt, ...) do { \ |
| if (DEBUG_TLB_LOG_GATE) { \ |
| qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ |
| ## __VA_ARGS__); \ |
| } else if (DEBUG_TLB_GATE) { \ |
| fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| #define assert_cpu_is_self(cpu) do { \ |
| if (DEBUG_TLB_GATE) { \ |
| g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ |
| } \ |
| } while (0) |
| |
| /* run_on_cpu_data.target_ptr should always be big enough for a |
| * target_ulong even on 32 bit builds */ |
| QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); |
| |
| /* We currently can't handle more than 16 bits in the MMUIDX bitmask. |
| */ |
| QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); |
| #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) |
| |
| static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx) |
| { |
| return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS); |
| } |
| |
| static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, |
| size_t max_entries) |
| { |
| desc->window_begin_ns = ns; |
| desc->window_max_entries = max_entries; |
| } |
| |
| static void tlb_dyn_init(CPUArchState *env) |
| { |
| int i; |
| |
| for (i = 0; i < NB_MMU_MODES; i++) { |
| CPUTLBDesc *desc = &env_tlb(env)->d[i]; |
| size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; |
| |
| tlb_window_reset(desc, get_clock_realtime(), 0); |
| desc->n_used_entries = 0; |
| env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; |
| env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries); |
| env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries); |
| } |
| } |
| |
| /** |
| * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary |
| * @env: CPU that owns the TLB |
| * @mmu_idx: MMU index of the TLB |
| * |
| * Called with tlb_lock_held. |
| * |
| * We have two main constraints when resizing a TLB: (1) we only resize it |
| * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing |
| * the array or unnecessarily flushing it), which means we do not control how |
| * frequently the resizing can occur; (2) we don't have access to the guest's |
| * future scheduling decisions, and therefore have to decide the magnitude of |
| * the resize based on past observations. |
| * |
| * In general, a memory-hungry process can benefit greatly from an appropriately |
| * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that |
| * we just have to make the TLB as large as possible; while an oversized TLB |
| * results in minimal TLB miss rates, it also takes longer to be flushed |
| * (flushes can be _very_ frequent), and the reduced locality can also hurt |
| * performance. |
| * |
| * To achieve near-optimal performance for all kinds of workloads, we: |
| * |
| * 1. Aggressively increase the size of the TLB when the use rate of the |
| * TLB being flushed is high, since it is likely that in the near future this |
| * memory-hungry process will execute again, and its memory hungriness will |
| * probably be similar. |
| * |
| * 2. Slowly reduce the size of the TLB as the use rate declines over a |
| * reasonably large time window. The rationale is that if in such a time window |
| * we have not observed a high TLB use rate, it is likely that we won't observe |
| * it in the near future. In that case, once a time window expires we downsize |
| * the TLB to match the maximum use rate observed in the window. |
| * |
| * 3. Try to keep the maximum use rate in a time window in the 30-70% range, |
| * since in that range performance is likely near-optimal. Recall that the TLB |
| * is direct mapped, so we want the use rate to be low (or at least not too |
| * high), since otherwise we are likely to have a significant amount of |
| * conflict misses. |
| */ |
| static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx) |
| { |
| CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; |
| size_t old_size = tlb_n_entries(env, mmu_idx); |
| size_t rate; |
| size_t new_size = old_size; |
| int64_t now = get_clock_realtime(); |
| int64_t window_len_ms = 100; |
| int64_t window_len_ns = window_len_ms * 1000 * 1000; |
| bool window_expired = now > desc->window_begin_ns + window_len_ns; |
| |
| if (desc->n_used_entries > desc->window_max_entries) { |
| desc->window_max_entries = desc->n_used_entries; |
| } |
| rate = desc->window_max_entries * 100 / old_size; |
| |
| if (rate > 70) { |
| new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); |
| } else if (rate < 30 && window_expired) { |
| size_t ceil = pow2ceil(desc->window_max_entries); |
| size_t expected_rate = desc->window_max_entries * 100 / ceil; |
| |
| /* |
| * Avoid undersizing when the max number of entries seen is just below |
| * a pow2. For instance, if max_entries == 1025, the expected use rate |
| * would be 1025/2048==50%. However, if max_entries == 1023, we'd get |
| * 1023/1024==99.9% use rate, so we'd likely end up doubling the size |
| * later. Thus, make sure that the expected use rate remains below 70%. |
| * (and since we double the size, that means the lowest rate we'd |
| * expect to get is 35%, which is still in the 30-70% range where |
| * we consider that the size is appropriate.) |
| */ |
| if (expected_rate > 70) { |
| ceil *= 2; |
| } |
| new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); |
| } |
| |
| if (new_size == old_size) { |
| if (window_expired) { |
| tlb_window_reset(desc, now, desc->n_used_entries); |
| } |
| return; |
| } |
| |
| g_free(env_tlb(env)->f[mmu_idx].table); |
| g_free(env_tlb(env)->d[mmu_idx].iotlb); |
| |
| tlb_window_reset(desc, now, 0); |
| /* desc->n_used_entries is cleared by the caller */ |
| env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; |
| env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size); |
| env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size); |
| /* |
| * If the allocations fail, try smaller sizes. We just freed some |
| * memory, so going back to half of new_size has a good chance of working. |
| * Increased memory pressure elsewhere in the system might cause the |
| * allocations to fail though, so we progressively reduce the allocation |
| * size, aborting if we cannot even allocate the smallest TLB we support. |
| */ |
| while (env_tlb(env)->f[mmu_idx].table == NULL || |
| env_tlb(env)->d[mmu_idx].iotlb == NULL) { |
| if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { |
| error_report("%s: %s", __func__, strerror(errno)); |
| abort(); |
| } |
| new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); |
| env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; |
| |
| g_free(env_tlb(env)->f[mmu_idx].table); |
| g_free(env_tlb(env)->d[mmu_idx].iotlb); |
| env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size); |
| env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size); |
| } |
| } |
| |
| static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx) |
| { |
| tlb_mmu_resize_locked(env, mmu_idx); |
| memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx)); |
| env_tlb(env)->d[mmu_idx].n_used_entries = 0; |
| } |
| |
| static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) |
| { |
| env_tlb(env)->d[mmu_idx].n_used_entries++; |
| } |
| |
| static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) |
| { |
| env_tlb(env)->d[mmu_idx].n_used_entries--; |
| } |
| |
| void tlb_init(CPUState *cpu) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| |
| qemu_spin_init(&env_tlb(env)->c.lock); |
| |
| /* Ensure that cpu_reset performs a full flush. */ |
| env_tlb(env)->c.dirty = ALL_MMUIDX_BITS; |
| |
| tlb_dyn_init(env); |
| } |
| |
| /* flush_all_helper: run fn across all cpus |
| * |
| * If the wait flag is set then the src cpu's helper will be queued as |
| * "safe" work and the loop exited creating a synchronisation point |
| * where all queued work will be finished before execution starts |
| * again. |
| */ |
| static void flush_all_helper(CPUState *src, run_on_cpu_func fn, |
| run_on_cpu_data d) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (cpu != src) { |
| async_run_on_cpu(cpu, fn, d); |
| } |
| } |
| } |
| |
| void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) |
| { |
| CPUState *cpu; |
| size_t full = 0, part = 0, elide = 0; |
| |
| CPU_FOREACH(cpu) { |
| CPUArchState *env = cpu->env_ptr; |
| |
| full += atomic_read(&env_tlb(env)->c.full_flush_count); |
| part += atomic_read(&env_tlb(env)->c.part_flush_count); |
| elide += atomic_read(&env_tlb(env)->c.elide_flush_count); |
| } |
| *pfull = full; |
| *ppart = part; |
| *pelide = elide; |
| } |
| |
| static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx) |
| { |
| tlb_table_flush_by_mmuidx(env, mmu_idx); |
| env_tlb(env)->d[mmu_idx].large_page_addr = -1; |
| env_tlb(env)->d[mmu_idx].large_page_mask = -1; |
| env_tlb(env)->d[mmu_idx].vindex = 0; |
| memset(env_tlb(env)->d[mmu_idx].vtable, -1, |
| sizeof(env_tlb(env)->d[0].vtable)); |
| } |
| |
| static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| uint16_t asked = data.host_int; |
| uint16_t all_dirty, work, to_clean; |
| |
| assert_cpu_is_self(cpu); |
| |
| tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); |
| |
| qemu_spin_lock(&env_tlb(env)->c.lock); |
| |
| all_dirty = env_tlb(env)->c.dirty; |
| to_clean = asked & all_dirty; |
| all_dirty &= ~to_clean; |
| env_tlb(env)->c.dirty = all_dirty; |
| |
| for (work = to_clean; work != 0; work &= work - 1) { |
| int mmu_idx = ctz32(work); |
| tlb_flush_one_mmuidx_locked(env, mmu_idx); |
| } |
| |
| qemu_spin_unlock(&env_tlb(env)->c.lock); |
| |
| cpu_tb_jmp_cache_clear(cpu); |
| |
| if (to_clean == ALL_MMUIDX_BITS) { |
| atomic_set(&env_tlb(env)->c.full_flush_count, |
| env_tlb(env)->c.full_flush_count + 1); |
| } else { |
| atomic_set(&env_tlb(env)->c.part_flush_count, |
| env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); |
| if (to_clean != asked) { |
| atomic_set(&env_tlb(env)->c.elide_flush_count, |
| env_tlb(env)->c.elide_flush_count + |
| ctpop16(asked & ~to_clean)); |
| } |
| } |
| } |
| |
| void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) |
| { |
| tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); |
| |
| if (cpu->created && !qemu_cpu_is_self(cpu)) { |
| async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, |
| RUN_ON_CPU_HOST_INT(idxmap)); |
| } else { |
| tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); |
| } |
| } |
| |
| void tlb_flush(CPUState *cpu) |
| { |
| tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); |
| } |
| |
| void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) |
| { |
| const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; |
| |
| tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); |
| |
| flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); |
| fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); |
| } |
| |
| void tlb_flush_all_cpus(CPUState *src_cpu) |
| { |
| tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); |
| } |
| |
| void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) |
| { |
| const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; |
| |
| tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); |
| |
| flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); |
| async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); |
| } |
| |
| void tlb_flush_all_cpus_synced(CPUState *src_cpu) |
| { |
| tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); |
| } |
| |
| static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, |
| target_ulong page) |
| { |
| return tlb_hit_page(tlb_entry->addr_read, page) || |
| tlb_hit_page(tlb_addr_write(tlb_entry), page) || |
| tlb_hit_page(tlb_entry->addr_code, page); |
| } |
| |
| /** |
| * tlb_entry_is_empty - return true if the entry is not in use |
| * @te: pointer to CPUTLBEntry |
| */ |
| static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) |
| { |
| return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; |
| } |
| |
| /* Called with tlb_c.lock held */ |
| static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, |
| target_ulong page) |
| { |
| if (tlb_hit_page_anyprot(tlb_entry, page)) { |
| memset(tlb_entry, -1, sizeof(*tlb_entry)); |
| return true; |
| } |
| return false; |
| } |
| |
| /* Called with tlb_c.lock held */ |
| static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, |
| target_ulong page) |
| { |
| CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; |
| int k; |
| |
| assert_cpu_is_self(env_cpu(env)); |
| for (k = 0; k < CPU_VTLB_SIZE; k++) { |
| if (tlb_flush_entry_locked(&d->vtable[k], page)) { |
| tlb_n_used_entries_dec(env, mmu_idx); |
| } |
| } |
| } |
| |
| static void tlb_flush_page_locked(CPUArchState *env, int midx, |
| target_ulong page) |
| { |
| target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; |
| target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; |
| |
| /* Check if we need to flush due to large pages. */ |
| if ((page & lp_mask) == lp_addr) { |
| tlb_debug("forcing full flush midx %d (" |
| TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", |
| midx, lp_addr, lp_mask); |
| tlb_flush_one_mmuidx_locked(env, midx); |
| } else { |
| if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { |
| tlb_n_used_entries_dec(env, midx); |
| } |
| tlb_flush_vtlb_page_locked(env, midx, page); |
| } |
| } |
| |
| /* As we are going to hijack the bottom bits of the page address for a |
| * mmuidx bit mask we need to fail to build if we can't do that |
| */ |
| QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); |
| |
| static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, |
| run_on_cpu_data data) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; |
| target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; |
| unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; |
| int mmu_idx; |
| |
| assert_cpu_is_self(cpu); |
| |
| tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n", |
| addr, mmu_idx_bitmap); |
| |
| qemu_spin_lock(&env_tlb(env)->c.lock); |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| if (test_bit(mmu_idx, &mmu_idx_bitmap)) { |
| tlb_flush_page_locked(env, mmu_idx, addr); |
| } |
| } |
| qemu_spin_unlock(&env_tlb(env)->c.lock); |
| |
| tb_flush_jmp_cache(cpu, addr); |
| } |
| |
| void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) |
| { |
| target_ulong addr_and_mmu_idx; |
| |
| tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); |
| |
| /* This should already be page aligned */ |
| addr_and_mmu_idx = addr & TARGET_PAGE_MASK; |
| addr_and_mmu_idx |= idxmap; |
| |
| if (!qemu_cpu_is_self(cpu)) { |
| async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work, |
| RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); |
| } else { |
| tlb_flush_page_by_mmuidx_async_work( |
| cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); |
| } |
| } |
| |
| void tlb_flush_page(CPUState *cpu, target_ulong addr) |
| { |
| tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); |
| } |
| |
| void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, |
| uint16_t idxmap) |
| { |
| const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; |
| target_ulong addr_and_mmu_idx; |
| |
| tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); |
| |
| /* This should already be page aligned */ |
| addr_and_mmu_idx = addr & TARGET_PAGE_MASK; |
| addr_and_mmu_idx |= idxmap; |
| |
| flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); |
| fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); |
| } |
| |
| void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) |
| { |
| tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); |
| } |
| |
| void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, |
| target_ulong addr, |
| uint16_t idxmap) |
| { |
| const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; |
| target_ulong addr_and_mmu_idx; |
| |
| tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); |
| |
| /* This should already be page aligned */ |
| addr_and_mmu_idx = addr & TARGET_PAGE_MASK; |
| addr_and_mmu_idx |= idxmap; |
| |
| flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); |
| async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); |
| } |
| |
| void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) |
| { |
| tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); |
| } |
| |
| /* update the TLBs so that writes to code in the virtual page 'addr' |
| can be detected */ |
| void tlb_protect_code(ram_addr_t ram_addr) |
| { |
| cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, |
| DIRTY_MEMORY_CODE); |
| } |
| |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer |
| tested for self modifying code */ |
| void tlb_unprotect_code(ram_addr_t ram_addr) |
| { |
| cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); |
| } |
| |
| |
| /* |
| * Dirty write flag handling |
| * |
| * When the TCG code writes to a location it looks up the address in |
| * the TLB and uses that data to compute the final address. If any of |
| * the lower bits of the address are set then the slow path is forced. |
| * There are a number of reasons to do this but for normal RAM the |
| * most usual is detecting writes to code regions which may invalidate |
| * generated code. |
| * |
| * Other vCPUs might be reading their TLBs during guest execution, so we update |
| * te->addr_write with atomic_set. We don't need to worry about this for |
| * oversized guests as MTTCG is disabled for them. |
| * |
| * Called with tlb_c.lock held. |
| */ |
| static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, |
| uintptr_t start, uintptr_t length) |
| { |
| uintptr_t addr = tlb_entry->addr_write; |
| |
| if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { |
| addr &= TARGET_PAGE_MASK; |
| addr += tlb_entry->addend; |
| if ((addr - start) < length) { |
| #if TCG_OVERSIZED_GUEST |
| tlb_entry->addr_write |= TLB_NOTDIRTY; |
| #else |
| atomic_set(&tlb_entry->addr_write, |
| tlb_entry->addr_write | TLB_NOTDIRTY); |
| #endif |
| } |
| } |
| } |
| |
| /* |
| * Called with tlb_c.lock held. |
| * Called only from the vCPU context, i.e. the TLB's owner thread. |
| */ |
| static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) |
| { |
| *d = *s; |
| } |
| |
| /* This is a cross vCPU call (i.e. another vCPU resetting the flags of |
| * the target vCPU). |
| * We must take tlb_c.lock to avoid racing with another vCPU update. The only |
| * thing actually updated is the target TLB entry ->addr_write flags. |
| */ |
| void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) |
| { |
| CPUArchState *env; |
| |
| int mmu_idx; |
| |
| env = cpu->env_ptr; |
| qemu_spin_lock(&env_tlb(env)->c.lock); |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| unsigned int i; |
| unsigned int n = tlb_n_entries(env, mmu_idx); |
| |
| for (i = 0; i < n; i++) { |
| tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], |
| start1, length); |
| } |
| |
| for (i = 0; i < CPU_VTLB_SIZE; i++) { |
| tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], |
| start1, length); |
| } |
| } |
| qemu_spin_unlock(&env_tlb(env)->c.lock); |
| } |
| |
| /* Called with tlb_c.lock held */ |
| static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, |
| target_ulong vaddr) |
| { |
| if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { |
| tlb_entry->addr_write = vaddr; |
| } |
| } |
| |
| /* update the TLB corresponding to virtual page vaddr |
| so that it is no longer dirty */ |
| void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| int mmu_idx; |
| |
| assert_cpu_is_self(cpu); |
| |
| vaddr &= TARGET_PAGE_MASK; |
| qemu_spin_lock(&env_tlb(env)->c.lock); |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); |
| } |
| |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| int k; |
| for (k = 0; k < CPU_VTLB_SIZE; k++) { |
| tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); |
| } |
| } |
| qemu_spin_unlock(&env_tlb(env)->c.lock); |
| } |
| |
| /* Our TLB does not support large pages, so remember the area covered by |
| large pages and trigger a full TLB flush if these are invalidated. */ |
| static void tlb_add_large_page(CPUArchState *env, int mmu_idx, |
| target_ulong vaddr, target_ulong size) |
| { |
| target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; |
| target_ulong lp_mask = ~(size - 1); |
| |
| if (lp_addr == (target_ulong)-1) { |
| /* No previous large page. */ |
| lp_addr = vaddr; |
| } else { |
| /* Extend the existing region to include the new page. |
| This is a compromise between unnecessary flushes and |
| the cost of maintaining a full variable size TLB. */ |
| lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; |
| while (((lp_addr ^ vaddr) & lp_mask) != 0) { |
| lp_mask <<= 1; |
| } |
| } |
| env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; |
| env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; |
| } |
| |
| /* Add a new TLB entry. At most one entry for a given virtual address |
| * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the |
| * supplied size is only used by tlb_flush_page. |
| * |
| * Called from TCG-generated code, which is under an RCU read-side |
| * critical section. |
| */ |
| void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, |
| hwaddr paddr, MemTxAttrs attrs, int prot, |
| int mmu_idx, target_ulong size) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| CPUTLB *tlb = env_tlb(env); |
| CPUTLBDesc *desc = &tlb->d[mmu_idx]; |
| MemoryRegionSection *section; |
| unsigned int index; |
| target_ulong address; |
| target_ulong code_address; |
| uintptr_t addend; |
| CPUTLBEntry *te, tn; |
| hwaddr iotlb, xlat, sz, paddr_page; |
| target_ulong vaddr_page; |
| int asidx = cpu_asidx_from_attrs(cpu, attrs); |
| |
| assert_cpu_is_self(cpu); |
| |
| if (size <= TARGET_PAGE_SIZE) { |
| sz = TARGET_PAGE_SIZE; |
| } else { |
| tlb_add_large_page(env, mmu_idx, vaddr, size); |
| sz = size; |
| } |
| vaddr_page = vaddr & TARGET_PAGE_MASK; |
| paddr_page = paddr & TARGET_PAGE_MASK; |
| |
| section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, |
| &xlat, &sz, attrs, &prot); |
| assert(sz >= TARGET_PAGE_SIZE); |
| |
| tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx |
| " prot=%x idx=%d\n", |
| vaddr, paddr, prot, mmu_idx); |
| |
| address = vaddr_page; |
| if (size < TARGET_PAGE_SIZE) { |
| /* |
| * Slow-path the TLB entries; we will repeat the MMU check and TLB |
| * fill on every access. |
| */ |
| address |= TLB_RECHECK; |
| } |
| if (!memory_region_is_ram(section->mr) && |
| !memory_region_is_romd(section->mr)) { |
| /* IO memory case */ |
| address |= TLB_MMIO; |
| addend = 0; |
| } else { |
| /* TLB_MMIO for rom/romd handled below */ |
| addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; |
| } |
| |
| code_address = address; |
| iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page, |
| paddr_page, xlat, prot, &address); |
| |
| index = tlb_index(env, mmu_idx, vaddr_page); |
| te = tlb_entry(env, mmu_idx, vaddr_page); |
| |
| /* |
| * Hold the TLB lock for the rest of the function. We could acquire/release |
| * the lock several times in the function, but it is faster to amortize the |
| * acquisition cost by acquiring it just once. Note that this leads to |
| * a longer critical section, but this is not a concern since the TLB lock |
| * is unlikely to be contended. |
| */ |
| qemu_spin_lock(&tlb->c.lock); |
| |
| /* Note that the tlb is no longer clean. */ |
| tlb->c.dirty |= 1 << mmu_idx; |
| |
| /* Make sure there's no cached translation for the new page. */ |
| tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); |
| |
| /* |
| * Only evict the old entry to the victim tlb if it's for a |
| * different page; otherwise just overwrite the stale data. |
| */ |
| if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { |
| unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; |
| CPUTLBEntry *tv = &desc->vtable[vidx]; |
| |
| /* Evict the old entry into the victim tlb. */ |
| copy_tlb_helper_locked(tv, te); |
| desc->viotlb[vidx] = desc->iotlb[index]; |
| tlb_n_used_entries_dec(env, mmu_idx); |
| } |
| |
| /* refill the tlb */ |
| /* |
| * At this point iotlb contains a physical section number in the lower |
| * TARGET_PAGE_BITS, and either |
| * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM) |
| * + the offset within section->mr of the page base (otherwise) |
| * We subtract the vaddr_page (which is page aligned and thus won't |
| * disturb the low bits) to give an offset which can be added to the |
| * (non-page-aligned) vaddr of the eventual memory access to get |
| * the MemoryRegion offset for the access. Note that the vaddr we |
| * subtract here is that of the page base, and not the same as the |
| * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). |
| */ |
| desc->iotlb[index].addr = iotlb - vaddr_page; |
| desc->iotlb[index].attrs = attrs; |
| |
| /* Now calculate the new entry */ |
| tn.addend = addend - vaddr_page; |
| if (prot & PAGE_READ) { |
| tn.addr_read = address; |
| } else { |
| tn.addr_read = -1; |
| } |
| |
| if (prot & PAGE_EXEC) { |
| tn.addr_code = code_address; |
| } else { |
| tn.addr_code = -1; |
| } |
| |
| tn.addr_write = -1; |
| if (prot & PAGE_WRITE) { |
| if ((memory_region_is_ram(section->mr) && section->readonly) |
| || memory_region_is_romd(section->mr)) { |
| /* Write access calls the I/O callback. */ |
| tn.addr_write = address | TLB_MMIO; |
| } else if (memory_region_is_ram(section->mr) |
| && cpu_physical_memory_is_clean( |
| memory_region_get_ram_addr(section->mr) + xlat)) { |
| tn.addr_write = address | TLB_NOTDIRTY; |
| } else { |
| tn.addr_write = address; |
| } |
| if (prot & PAGE_WRITE_INV) { |
| tn.addr_write |= TLB_INVALID_MASK; |
| } |
| } |
| |
| copy_tlb_helper_locked(te, &tn); |
| tlb_n_used_entries_inc(env, mmu_idx); |
| qemu_spin_unlock(&tlb->c.lock); |
| } |
| |
| /* Add a new TLB entry, but without specifying the memory |
| * transaction attributes to be used. |
| */ |
| void tlb_set_page(CPUState *cpu, target_ulong vaddr, |
| hwaddr paddr, int prot, |
| int mmu_idx, target_ulong size) |
| { |
| tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, |
| prot, mmu_idx, size); |
| } |
| |
| static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) |
| { |
| ram_addr_t ram_addr; |
| |
| ram_addr = qemu_ram_addr_from_host(ptr); |
| if (ram_addr == RAM_ADDR_INVALID) { |
| error_report("Bad ram pointer %p", ptr); |
| abort(); |
| } |
| return ram_addr; |
| } |
| |
| /* |
| * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the |
| * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must |
| * be discarded and looked up again (e.g. via tlb_entry()). |
| */ |
| static void tlb_fill(CPUState *cpu, target_ulong addr, int size, |
| MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| bool ok; |
| |
| /* |
| * This is not a probe, so only valid return is success; failure |
| * should result in exception + longjmp to the cpu loop. |
| */ |
| ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr); |
| assert(ok); |
| } |
| |
| static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, |
| int mmu_idx, target_ulong addr, uintptr_t retaddr, |
| MMUAccessType access_type, int size) |
| { |
| CPUState *cpu = env_cpu(env); |
| hwaddr mr_offset; |
| MemoryRegionSection *section; |
| MemoryRegion *mr; |
| uint64_t val; |
| bool locked = false; |
| MemTxResult r; |
| |
| section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); |
| mr = section->mr; |
| mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; |
| cpu->mem_io_pc = retaddr; |
| if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { |
| cpu_io_recompile(cpu, retaddr); |
| } |
| |
| cpu->mem_io_vaddr = addr; |
| cpu->mem_io_access_type = access_type; |
| |
| if (mr->global_locking && !qemu_mutex_iothread_locked()) { |
| qemu_mutex_lock_iothread(); |
| locked = true; |
| } |
| r = memory_region_dispatch_read(mr, mr_offset, |
| &val, size, iotlbentry->attrs); |
| if (r != MEMTX_OK) { |
| hwaddr physaddr = mr_offset + |
| section->offset_within_address_space - |
| section->offset_within_region; |
| |
| cpu_transaction_failed(cpu, physaddr, addr, size, access_type, |
| mmu_idx, iotlbentry->attrs, r, retaddr); |
| } |
| if (locked) { |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| return val; |
| } |
| |
| static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, |
| int mmu_idx, uint64_t val, target_ulong addr, |
| uintptr_t retaddr, int size) |
| { |
| CPUState *cpu = env_cpu(env); |
| hwaddr mr_offset; |
| MemoryRegionSection *section; |
| MemoryRegion *mr; |
| bool locked = false; |
| MemTxResult r; |
| |
| section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); |
| mr = section->mr; |
| mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; |
| if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { |
| cpu_io_recompile(cpu, retaddr); |
| } |
| cpu->mem_io_vaddr = addr; |
| cpu->mem_io_pc = retaddr; |
| |
| if (mr->global_locking && !qemu_mutex_iothread_locked()) { |
| qemu_mutex_lock_iothread(); |
| locked = true; |
| } |
| r = memory_region_dispatch_write(mr, mr_offset, |
| val, size, iotlbentry->attrs); |
| if (r != MEMTX_OK) { |
| hwaddr physaddr = mr_offset + |
| section->offset_within_address_space - |
| section->offset_within_region; |
| |
| cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE, |
| mmu_idx, iotlbentry->attrs, r, retaddr); |
| } |
| if (locked) { |
| qemu_mutex_unlock_iothread(); |
| } |
| } |
| |
| static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) |
| { |
| #if TCG_OVERSIZED_GUEST |
| return *(target_ulong *)((uintptr_t)entry + ofs); |
| #else |
| /* ofs might correspond to .addr_write, so use atomic_read */ |
| return atomic_read((target_ulong *)((uintptr_t)entry + ofs)); |
| #endif |
| } |
| |
| /* Return true if ADDR is present in the victim tlb, and has been copied |
| back to the main tlb. */ |
| static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, |
| size_t elt_ofs, target_ulong page) |
| { |
| size_t vidx; |
| |
| assert_cpu_is_self(env_cpu(env)); |
| for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { |
| CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; |
| target_ulong cmp; |
| |
| /* elt_ofs might correspond to .addr_write, so use atomic_read */ |
| #if TCG_OVERSIZED_GUEST |
| cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); |
| #else |
| cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); |
| #endif |
| |
| if (cmp == page) { |
| /* Found entry in victim tlb, swap tlb and iotlb. */ |
| CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; |
| |
| qemu_spin_lock(&env_tlb(env)->c.lock); |
| copy_tlb_helper_locked(&tmptlb, tlb); |
| copy_tlb_helper_locked(tlb, vtlb); |
| copy_tlb_helper_locked(vtlb, &tmptlb); |
| qemu_spin_unlock(&env_tlb(env)->c.lock); |
| |
| CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index]; |
| CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx]; |
| tmpio = *io; *io = *vio; *vio = tmpio; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* Macro to call the above, with local variables from the use context. */ |
| #define VICTIM_TLB_HIT(TY, ADDR) \ |
| victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ |
| (ADDR) & TARGET_PAGE_MASK) |
| |
| /* NOTE: this function can trigger an exception */ |
| /* NOTE2: the returned address is not exactly the physical address: it |
| * is actually a ram_addr_t (in system mode; the user mode emulation |
| * version of this function returns a guest virtual address). |
| */ |
| tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) |
| { |
| uintptr_t mmu_idx = cpu_mmu_index(env, true); |
| uintptr_t index = tlb_index(env, mmu_idx, addr); |
| CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); |
| void *p; |
| |
| if (unlikely(!tlb_hit(entry->addr_code, addr))) { |
| if (!VICTIM_TLB_HIT(addr_code, addr)) { |
| tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); |
| index = tlb_index(env, mmu_idx, addr); |
| entry = tlb_entry(env, mmu_idx, addr); |
| } |
| assert(tlb_hit(entry->addr_code, addr)); |
| } |
| |
| if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) { |
| /* |
| * Return -1 if we can't translate and execute from an entire |
| * page of RAM here, which will cause us to execute by loading |
| * and translating one insn at a time, without caching: |
| * - TLB_RECHECK: means the MMU protection covers a smaller range |
| * than a target page, so we must redo the MMU check every insn |
| * - TLB_MMIO: region is not backed by RAM |
| */ |
| return -1; |
| } |
| |
| p = (void *)((uintptr_t)addr + entry->addend); |
| return qemu_ram_addr_from_host_nofail(p); |
| } |
| |
| /* Probe for whether the specified guest write access is permitted. |
| * If it is not permitted then an exception will be taken in the same |
| * way as if this were a real write access (and we will not return). |
| * Otherwise the function will return, and there will be a valid |
| * entry in the TLB for this access. |
| */ |
| void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx, |
| uintptr_t retaddr) |
| { |
| uintptr_t index = tlb_index(env, mmu_idx, addr); |
| CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); |
| |
| if (!tlb_hit(tlb_addr_write(entry), addr)) { |
| /* TLB entry is for a different page */ |
| if (!VICTIM_TLB_HIT(addr_write, addr)) { |
| tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| } |
| } |
| } |
| |
| void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, |
| MMUAccessType access_type, int mmu_idx) |
| { |
| CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); |
| uintptr_t tlb_addr, page; |
| size_t elt_ofs; |
| |
| switch (access_type) { |
| case MMU_DATA_LOAD: |
| elt_ofs = offsetof(CPUTLBEntry, addr_read); |
| break; |
| case MMU_DATA_STORE: |
| elt_ofs = offsetof(CPUTLBEntry, addr_write); |
| break; |
| case MMU_INST_FETCH: |
| elt_ofs = offsetof(CPUTLBEntry, addr_code); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| page = addr & TARGET_PAGE_MASK; |
| tlb_addr = tlb_read_ofs(entry, elt_ofs); |
| |
| if (!tlb_hit_page(tlb_addr, page)) { |
| uintptr_t index = tlb_index(env, mmu_idx, addr); |
| |
| if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) { |
| CPUState *cs = env_cpu(env); |
| CPUClass *cc = CPU_GET_CLASS(cs); |
| |
| if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) { |
| /* Non-faulting page table read failed. */ |
| return NULL; |
| } |
| |
| /* TLB resize via tlb_fill may have moved the entry. */ |
| entry = tlb_entry(env, mmu_idx, addr); |
| } |
| tlb_addr = tlb_read_ofs(entry, elt_ofs); |
| } |
| |
| if (tlb_addr & ~TARGET_PAGE_MASK) { |
| /* IO access */ |
| return NULL; |
| } |
| |
| return (void *)((uintptr_t)addr + entry->addend); |
| } |
| |
| /* Probe for a read-modify-write atomic operation. Do not allow unaligned |
| * operations, or io operations to proceed. Return the host address. */ |
| static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr, |
| NotDirtyInfo *ndi) |
| { |
| size_t mmu_idx = get_mmuidx(oi); |
| uintptr_t index = tlb_index(env, mmu_idx, addr); |
| CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); |
| target_ulong tlb_addr = tlb_addr_write(tlbe); |
| TCGMemOp mop = get_memop(oi); |
| int a_bits = get_alignment_bits(mop); |
| int s_bits = mop & MO_SIZE; |
| void *hostaddr; |
| |
| /* Adjust the given return address. */ |
| retaddr -= GETPC_ADJ; |
| |
| /* Enforce guest required alignment. */ |
| if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { |
| /* ??? Maybe indicate atomic op to cpu_unaligned_access */ |
| cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| } |
| |
| /* Enforce qemu required alignment. */ |
| if (unlikely(addr & ((1 << s_bits) - 1))) { |
| /* We get here if guest alignment was not requested, |
| or was not enforced by cpu_unaligned_access above. |
| We might widen the access and emulate, but for now |
| mark an exception and exit the cpu loop. */ |
| goto stop_the_world; |
| } |
| |
| /* Check TLB entry and enforce page permissions. */ |
| if (!tlb_hit(tlb_addr, addr)) { |
| if (!VICTIM_TLB_HIT(addr_write, addr)) { |
| tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| index = tlb_index(env, mmu_idx, addr); |
| tlbe = tlb_entry(env, mmu_idx, addr); |
| } |
| tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; |
| } |
| |
| /* Notice an IO access or a needs-MMU-lookup access */ |
| if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) { |
| /* There's really nothing that can be done to |
| support this apart from stop-the-world. */ |
| goto stop_the_world; |
| } |
| |
| /* Let the guest notice RMW on a write-only page. */ |
| if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { |
| tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD, |
| mmu_idx, retaddr); |
| /* Since we don't support reads and writes to different addresses, |
| and we do have the proper page loaded for write, this shouldn't |
| ever return. But just in case, handle via stop-the-world. */ |
| goto stop_the_world; |
| } |
| |
| hostaddr = (void *)((uintptr_t)addr + tlbe->addend); |
| |
| ndi->active = false; |
| if (unlikely(tlb_addr & TLB_NOTDIRTY)) { |
| ndi->active = true; |
| memory_notdirty_write_prepare(ndi, env_cpu(env), addr, |
| qemu_ram_addr_from_host_nofail(hostaddr), |
| 1 << s_bits); |
| } |
| |
| return hostaddr; |
| |
| stop_the_world: |
| cpu_loop_exit_atomic(env_cpu(env), retaddr); |
| } |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define NEED_BE_BSWAP 0 |
| #define NEED_LE_BSWAP 1 |
| #else |
| #define NEED_BE_BSWAP 1 |
| #define NEED_LE_BSWAP 0 |
| #endif |
| |
| /* |
| * Byte Swap Helper |
| * |
| * This should all dead code away depending on the build host and |
| * access type. |
| */ |
| |
| static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian) |
| { |
| if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) { |
| switch (size) { |
| case 1: return val; |
| case 2: return bswap16(val); |
| case 4: return bswap32(val); |
| case 8: return bswap64(val); |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| return val; |
| } |
| } |
| |
| /* |
| * Load Helpers |
| * |
| * We support two different access types. SOFTMMU_CODE_ACCESS is |
| * specifically for reading instructions from system memory. It is |
| * called by the translation loop and in some helpers where the code |
| * is disassembled. It shouldn't be called directly by guest code. |
| */ |
| |
| typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr); |
| |
| static inline uint64_t __attribute__((always_inline)) |
| load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, |
| uintptr_t retaddr, size_t size, bool big_endian, bool code_read, |
| FullLoadHelper *full_load) |
| { |
| uintptr_t mmu_idx = get_mmuidx(oi); |
| uintptr_t index = tlb_index(env, mmu_idx, addr); |
| CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); |
| target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; |
| const size_t tlb_off = code_read ? |
| offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); |
| const MMUAccessType access_type = |
| code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; |
| unsigned a_bits = get_alignment_bits(get_memop(oi)); |
| void *haddr; |
| uint64_t res; |
| |
| /* Handle CPU specific unaligned behaviour */ |
| if (addr & ((1 << a_bits) - 1)) { |
| cpu_unaligned_access(env_cpu(env), addr, access_type, |
| mmu_idx, retaddr); |
| } |
| |
| /* If the TLB entry is for a different page, reload and try again. */ |
| if (!tlb_hit(tlb_addr, addr)) { |
| if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, |
| addr & TARGET_PAGE_MASK)) { |
| tlb_fill(env_cpu(env), addr, size, |
| access_type, mmu_idx, retaddr); |
| index = tlb_index(env, mmu_idx, addr); |
| entry = tlb_entry(env, mmu_idx, addr); |
| } |
| tlb_addr = code_read ? entry->addr_code : entry->addr_read; |
| } |
| |
| /* Handle an IO access. */ |
| if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| if ((addr & (size - 1)) != 0) { |
| goto do_unaligned_access; |
| } |
| |
| if (tlb_addr & TLB_RECHECK) { |
| /* |
| * This is a TLB_RECHECK access, where the MMU protection |
| * covers a smaller range than a target page, and we must |
| * repeat the MMU check here. This tlb_fill() call might |
| * longjump out if this access should cause a guest exception. |
| */ |
| tlb_fill(env_cpu(env), addr, size, |
| access_type, mmu_idx, retaddr); |
| index = tlb_index(env, mmu_idx, addr); |
| entry = tlb_entry(env, mmu_idx, addr); |
| |
| tlb_addr = code_read ? entry->addr_code : entry->addr_read; |
| tlb_addr &= ~TLB_RECHECK; |
| if (!(tlb_addr & ~TARGET_PAGE_MASK)) { |
| /* RAM access */ |
| goto do_aligned_access; |
| } |
| } |
| |
| res = io_readx(env, &env_tlb(env)->d[mmu_idx].iotlb[index], |
| mmu_idx, addr, retaddr, access_type, size); |
| return handle_bswap(res, size, big_endian); |
| } |
| |
| /* Handle slow unaligned access (it spans two pages or IO). */ |
| if (size > 1 |
| && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 |
| >= TARGET_PAGE_SIZE)) { |
| target_ulong addr1, addr2; |
| uint64_t r1, r2; |
| unsigned shift; |
| do_unaligned_access: |
| addr1 = addr & ~((target_ulong)size - 1); |
| addr2 = addr1 + size; |
| r1 = full_load(env, addr1, oi, retaddr); |
| r2 = full_load(env, addr2, oi, retaddr); |
| shift = (addr & (size - 1)) * 8; |
| |
| if (big_endian) { |
| /* Big-endian combine. */ |
| res = (r1 << shift) | (r2 >> ((size * 8) - shift)); |
| } else { |
| /* Little-endian combine. */ |
| res = (r1 >> shift) | (r2 << ((size * 8) - shift)); |
| } |
| return res & MAKE_64BIT_MASK(0, size * 8); |
| } |
| |
| do_aligned_access: |
| haddr = (void *)((uintptr_t)addr + entry->addend); |
| switch (size) { |
| case 1: |
| res = ldub_p(haddr); |
| break; |
| case 2: |
| if (big_endian) { |
| res = lduw_be_p(haddr); |
| } else { |
| res = lduw_le_p(haddr); |
| } |
| break; |
| case 4: |
| if (big_endian) { |
| res = (uint32_t)ldl_be_p(haddr); |
| } else { |
| res = (uint32_t)ldl_le_p(haddr); |
| } |
| break; |
| case 8: |
| if (big_endian) { |
| res = ldq_be_p(haddr); |
| } else { |
| res = ldq_le_p(haddr); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| return res; |
| } |
| |
| /* |
| * For the benefit of TCG generated code, we want to avoid the |
| * complication of ABI-specific return type promotion and always |
| * return a value extended to the register size of the host. This is |
| * tcg_target_long, except in the case of a 32-bit host and 64-bit |
| * data, and for that we always have uint64_t. |
| * |
| * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. |
| */ |
| |
| static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 1, false, false, |
| full_ldub_mmu); |
| } |
| |
| tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_ldub_mmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 2, false, false, |
| full_le_lduw_mmu); |
| } |
| |
| tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_le_lduw_mmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 2, true, false, |
| full_be_lduw_mmu); |
| } |
| |
| tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_be_lduw_mmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 4, false, false, |
| full_le_ldul_mmu); |
| } |
| |
| tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_le_ldul_mmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 4, true, false, |
| full_be_ldul_mmu); |
| } |
| |
| tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_be_ldul_mmu(env, addr, oi, retaddr); |
| } |
| |
| uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 8, false, false, |
| helper_le_ldq_mmu); |
| } |
| |
| uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 8, true, false, |
| helper_be_ldq_mmu); |
| } |
| |
| /* |
| * Provide signed versions of the load routines as well. We can of course |
| * avoid this for 64-bit data, or for 32-bit data on 32-bit host. |
| */ |
| |
| |
| tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); |
| } |
| |
| tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); |
| } |
| |
| tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); |
| } |
| |
| tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); |
| } |
| |
| tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); |
| } |
| |
| /* |
| * Store Helpers |
| */ |
| |
| static inline void __attribute__((always_inline)) |
| store_helper(CPUArchState *env, target_ulong addr, uint64_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr, size_t size, bool big_endian) |
| { |
| uintptr_t mmu_idx = get_mmuidx(oi); |
| uintptr_t index = tlb_index(env, mmu_idx, addr); |
| CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); |
| target_ulong tlb_addr = tlb_addr_write(entry); |
| const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); |
| unsigned a_bits = get_alignment_bits(get_memop(oi)); |
| void *haddr; |
| |
| /* Handle CPU specific unaligned behaviour */ |
| if (addr & ((1 << a_bits) - 1)) { |
| cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| } |
| |
| /* If the TLB entry is for a different page, reload and try again. */ |
| if (!tlb_hit(tlb_addr, addr)) { |
| if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, |
| addr & TARGET_PAGE_MASK)) { |
| tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| index = tlb_index(env, mmu_idx, addr); |
| entry = tlb_entry(env, mmu_idx, addr); |
| } |
| tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; |
| } |
| |
| /* Handle an IO access. */ |
| if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| if ((addr & (size - 1)) != 0) { |
| goto do_unaligned_access; |
| } |
| |
| if (tlb_addr & TLB_RECHECK) { |
| /* |
| * This is a TLB_RECHECK access, where the MMU protection |
| * covers a smaller range than a target page, and we must |
| * repeat the MMU check here. This tlb_fill() call might |
| * longjump out if this access should cause a guest exception. |
| */ |
| tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| index = tlb_index(env, mmu_idx, addr); |
| entry = tlb_entry(env, mmu_idx, addr); |
| |
| tlb_addr = tlb_addr_write(entry); |
| tlb_addr &= ~TLB_RECHECK; |
| if (!(tlb_addr & ~TARGET_PAGE_MASK)) { |
| /* RAM access */ |
| goto do_aligned_access; |
| } |
| } |
| |
| io_writex(env, &env_tlb(env)->d[mmu_idx].iotlb[index], mmu_idx, |
| handle_bswap(val, size, big_endian), |
| addr, retaddr, size); |
| return; |
| } |
| |
| /* Handle slow unaligned access (it spans two pages or IO). */ |
| if (size > 1 |
| && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 |
| >= TARGET_PAGE_SIZE)) { |
| int i; |
| uintptr_t index2; |
| CPUTLBEntry *entry2; |
| target_ulong page2, tlb_addr2; |
| do_unaligned_access: |
| /* |
| * Ensure the second page is in the TLB. Note that the first page |
| * is already guaranteed to be filled, and that the second page |
| * cannot evict the first. |
| */ |
| page2 = (addr + size) & TARGET_PAGE_MASK; |
| index2 = tlb_index(env, mmu_idx, page2); |
| entry2 = tlb_entry(env, mmu_idx, page2); |
| tlb_addr2 = tlb_addr_write(entry2); |
| if (!tlb_hit_page(tlb_addr2, page2) |
| && !victim_tlb_hit(env, mmu_idx, index2, tlb_off, |
| page2 & TARGET_PAGE_MASK)) { |
| tlb_fill(env_cpu(env), page2, size, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| } |
| |
| /* |
| * XXX: not efficient, but simple. |
| * This loop must go in the forward direction to avoid issues |
| * with self-modifying code in Windows 64-bit. |
| */ |
| for (i = 0; i < size; ++i) { |
| uint8_t val8; |
| if (big_endian) { |
| /* Big-endian extract. */ |
| val8 = val >> (((size - 1) * 8) - (i * 8)); |
| } else { |
| /* Little-endian extract. */ |
| val8 = val >> (i * 8); |
| } |
| helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr); |
| } |
| return; |
| } |
| |
| do_aligned_access: |
| haddr = (void *)((uintptr_t)addr + entry->addend); |
| switch (size) { |
| case 1: |
| stb_p(haddr, val); |
| break; |
| case 2: |
| if (big_endian) { |
| stw_be_p(haddr, val); |
| } else { |
| stw_le_p(haddr, val); |
| } |
| break; |
| case 4: |
| if (big_endian) { |
| stl_be_p(haddr, val); |
| } else { |
| stl_le_p(haddr, val); |
| } |
| break; |
| case 8: |
| if (big_endian) { |
| stq_be_p(haddr, val); |
| } else { |
| stq_le_p(haddr, val); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| break; |
| } |
| } |
| |
| void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| store_helper(env, addr, val, oi, retaddr, 1, false); |
| } |
| |
| void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| store_helper(env, addr, val, oi, retaddr, 2, false); |
| } |
| |
| void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| store_helper(env, addr, val, oi, retaddr, 2, true); |
| } |
| |
| void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| store_helper(env, addr, val, oi, retaddr, 4, false); |
| } |
| |
| void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| store_helper(env, addr, val, oi, retaddr, 4, true); |
| } |
| |
| void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| store_helper(env, addr, val, oi, retaddr, 8, false); |
| } |
| |
| void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| store_helper(env, addr, val, oi, retaddr, 8, true); |
| } |
| |
| /* First set of helpers allows passing in of OI and RETADDR. This makes |
| them callable from other helpers. */ |
| |
| #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr |
| #define ATOMIC_NAME(X) \ |
| HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) |
| #define ATOMIC_MMU_DECLS NotDirtyInfo ndi |
| #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi) |
| #define ATOMIC_MMU_CLEANUP \ |
| do { \ |
| if (unlikely(ndi.active)) { \ |
| memory_notdirty_write_complete(&ndi); \ |
| } \ |
| } while (0) |
| |
| #define DATA_SIZE 1 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 2 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 4 |
| #include "atomic_template.h" |
| |
| #ifdef CONFIG_ATOMIC64 |
| #define DATA_SIZE 8 |
| #include "atomic_template.h" |
| #endif |
| |
| #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 |
| #define DATA_SIZE 16 |
| #include "atomic_template.h" |
| #endif |
| |
| /* Second set of helpers are directly callable from TCG as helpers. */ |
| |
| #undef EXTRA_ARGS |
| #undef ATOMIC_NAME |
| #undef ATOMIC_MMU_LOOKUP |
| #define EXTRA_ARGS , TCGMemOpIdx oi |
| #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) |
| #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi) |
| |
| #define DATA_SIZE 1 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 2 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 4 |
| #include "atomic_template.h" |
| |
| #ifdef CONFIG_ATOMIC64 |
| #define DATA_SIZE 8 |
| #include "atomic_template.h" |
| #endif |
| |
| /* Code access functions. */ |
| |
| static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 1, false, true, |
| full_ldub_cmmu); |
| } |
| |
| uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_ldub_cmmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 2, false, true, |
| full_le_lduw_cmmu); |
| } |
| |
| uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_le_lduw_cmmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 2, true, true, |
| full_be_lduw_cmmu); |
| } |
| |
| uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_be_lduw_cmmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 4, false, true, |
| full_le_ldul_cmmu); |
| } |
| |
| uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_le_ldul_cmmu(env, addr, oi, retaddr); |
| } |
| |
| static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 4, true, true, |
| full_be_ldul_cmmu); |
| } |
| |
| uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return full_be_ldul_cmmu(env, addr, oi, retaddr); |
| } |
| |
| uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 8, false, true, |
| helper_le_ldq_cmmu); |
| } |
| |
| uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return load_helper(env, addr, oi, retaddr, 8, true, true, |
| helper_be_ldq_cmmu); |
| } |