| /* |
| * Status and system control registers for Xilinx Zynq Platform |
| * |
| * Copyright (c) 2011 Michal Simek <monstr@monstr.eu> |
| * Copyright (c) 2012 PetaLogix Pty Ltd. |
| * Based on hw/arm_sysctl.c, written by Paul Brook |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/timer.h" |
| #include "sysemu/runstate.h" |
| #include "hw/sysbus.h" |
| #include "migration/vmstate.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "hw/registerfields.h" |
| #include "hw/qdev-clock.h" |
| #include "qom/object.h" |
| |
| #ifndef ZYNQ_SLCR_ERR_DEBUG |
| #define ZYNQ_SLCR_ERR_DEBUG 0 |
| #endif |
| |
| #define DB_PRINT(...) do { \ |
| if (ZYNQ_SLCR_ERR_DEBUG) { \ |
| fprintf(stderr, ": %s: ", __func__); \ |
| fprintf(stderr, ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| #define XILINX_LOCK_KEY 0x767b |
| #define XILINX_UNLOCK_KEY 0xdf0d |
| |
| REG32(SCL, 0x000) |
| REG32(LOCK, 0x004) |
| REG32(UNLOCK, 0x008) |
| REG32(LOCKSTA, 0x00c) |
| |
| REG32(ARM_PLL_CTRL, 0x100) |
| REG32(DDR_PLL_CTRL, 0x104) |
| REG32(IO_PLL_CTRL, 0x108) |
| /* fields for [ARM|DDR|IO]_PLL_CTRL registers */ |
| FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1) |
| FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1) |
| FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1) |
| FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1) |
| FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7) |
| REG32(PLL_STATUS, 0x10c) |
| REG32(ARM_PLL_CFG, 0x110) |
| REG32(DDR_PLL_CFG, 0x114) |
| REG32(IO_PLL_CFG, 0x118) |
| |
| REG32(ARM_CLK_CTRL, 0x120) |
| REG32(DDR_CLK_CTRL, 0x124) |
| REG32(DCI_CLK_CTRL, 0x128) |
| REG32(APER_CLK_CTRL, 0x12c) |
| REG32(USB0_CLK_CTRL, 0x130) |
| REG32(USB1_CLK_CTRL, 0x134) |
| REG32(GEM0_RCLK_CTRL, 0x138) |
| REG32(GEM1_RCLK_CTRL, 0x13c) |
| REG32(GEM0_CLK_CTRL, 0x140) |
| REG32(GEM1_CLK_CTRL, 0x144) |
| REG32(SMC_CLK_CTRL, 0x148) |
| REG32(LQSPI_CLK_CTRL, 0x14c) |
| REG32(SDIO_CLK_CTRL, 0x150) |
| REG32(UART_CLK_CTRL, 0x154) |
| FIELD(UART_CLK_CTRL, CLKACT0, 0, 1) |
| FIELD(UART_CLK_CTRL, CLKACT1, 1, 1) |
| FIELD(UART_CLK_CTRL, SRCSEL, 4, 2) |
| FIELD(UART_CLK_CTRL, DIVISOR, 8, 6) |
| REG32(SPI_CLK_CTRL, 0x158) |
| REG32(CAN_CLK_CTRL, 0x15c) |
| REG32(CAN_MIOCLK_CTRL, 0x160) |
| REG32(DBG_CLK_CTRL, 0x164) |
| REG32(PCAP_CLK_CTRL, 0x168) |
| REG32(TOPSW_CLK_CTRL, 0x16c) |
| |
| #define FPGA_CTRL_REGS(n, start) \ |
| REG32(FPGA ## n ## _CLK_CTRL, (start)) \ |
| REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\ |
| REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\ |
| REG32(FPGA ## n ## _THR_STA, (start) + 0xc) |
| FPGA_CTRL_REGS(0, 0x170) |
| FPGA_CTRL_REGS(1, 0x180) |
| FPGA_CTRL_REGS(2, 0x190) |
| FPGA_CTRL_REGS(3, 0x1a0) |
| |
| REG32(BANDGAP_TRIP, 0x1b8) |
| REG32(PLL_PREDIVISOR, 0x1c0) |
| REG32(CLK_621_TRUE, 0x1c4) |
| |
| REG32(PSS_RST_CTRL, 0x200) |
| FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1) |
| REG32(DDR_RST_CTRL, 0x204) |
| REG32(TOPSW_RESET_CTRL, 0x208) |
| REG32(DMAC_RST_CTRL, 0x20c) |
| REG32(USB_RST_CTRL, 0x210) |
| REG32(GEM_RST_CTRL, 0x214) |
| REG32(SDIO_RST_CTRL, 0x218) |
| REG32(SPI_RST_CTRL, 0x21c) |
| REG32(CAN_RST_CTRL, 0x220) |
| REG32(I2C_RST_CTRL, 0x224) |
| REG32(UART_RST_CTRL, 0x228) |
| REG32(GPIO_RST_CTRL, 0x22c) |
| REG32(LQSPI_RST_CTRL, 0x230) |
| REG32(SMC_RST_CTRL, 0x234) |
| REG32(OCM_RST_CTRL, 0x238) |
| REG32(FPGA_RST_CTRL, 0x240) |
| REG32(A9_CPU_RST_CTRL, 0x244) |
| |
| REG32(RS_AWDT_CTRL, 0x24c) |
| REG32(RST_REASON, 0x250) |
| |
| REG32(REBOOT_STATUS, 0x258) |
| REG32(BOOT_MODE, 0x25c) |
| |
| REG32(APU_CTRL, 0x300) |
| REG32(WDT_CLK_SEL, 0x304) |
| |
| REG32(TZ_DMA_NS, 0x440) |
| REG32(TZ_DMA_IRQ_NS, 0x444) |
| REG32(TZ_DMA_PERIPH_NS, 0x448) |
| |
| REG32(PSS_IDCODE, 0x530) |
| |
| REG32(DDR_URGENT, 0x600) |
| REG32(DDR_CAL_START, 0x60c) |
| REG32(DDR_REF_START, 0x614) |
| REG32(DDR_CMD_STA, 0x618) |
| REG32(DDR_URGENT_SEL, 0x61c) |
| REG32(DDR_DFI_STATUS, 0x620) |
| |
| REG32(MIO, 0x700) |
| #define MIO_LENGTH 54 |
| |
| REG32(MIO_LOOPBACK, 0x804) |
| REG32(MIO_MST_TRI0, 0x808) |
| REG32(MIO_MST_TRI1, 0x80c) |
| |
| REG32(SD0_WP_CD_SEL, 0x830) |
| REG32(SD1_WP_CD_SEL, 0x834) |
| |
| REG32(LVL_SHFTR_EN, 0x900) |
| REG32(OCM_CFG, 0x910) |
| |
| REG32(CPU_RAM, 0xa00) |
| |
| REG32(IOU, 0xa30) |
| |
| REG32(DMAC_RAM, 0xa50) |
| |
| REG32(AFI0, 0xa60) |
| REG32(AFI1, 0xa6c) |
| REG32(AFI2, 0xa78) |
| REG32(AFI3, 0xa84) |
| #define AFI_LENGTH 3 |
| |
| REG32(OCM, 0xa90) |
| |
| REG32(DEVCI_RAM, 0xaa0) |
| |
| REG32(CSG_RAM, 0xab0) |
| |
| REG32(GPIOB_CTRL, 0xb00) |
| REG32(GPIOB_CFG_CMOS18, 0xb04) |
| REG32(GPIOB_CFG_CMOS25, 0xb08) |
| REG32(GPIOB_CFG_CMOS33, 0xb0c) |
| REG32(GPIOB_CFG_HSTL, 0xb14) |
| REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18) |
| |
| REG32(DDRIOB, 0xb40) |
| #define DDRIOB_LENGTH 14 |
| |
| #define ZYNQ_SLCR_MMIO_SIZE 0x1000 |
| #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4) |
| |
| #define TYPE_ZYNQ_SLCR "xilinx-zynq_slcr" |
| OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState, ZYNQ_SLCR) |
| |
| struct ZynqSLCRState { |
| SysBusDevice parent_obj; |
| |
| MemoryRegion iomem; |
| |
| uint32_t regs[ZYNQ_SLCR_NUM_REGS]; |
| |
| Clock *ps_clk; |
| Clock *uart0_ref_clk; |
| Clock *uart1_ref_clk; |
| }; |
| |
| /* |
| * return the output frequency of ARM/DDR/IO pll |
| * using input frequency and PLL_CTRL register |
| */ |
| static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg) |
| { |
| uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >> |
| R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT); |
| |
| /* first, check if pll is bypassed */ |
| if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) { |
| return input; |
| } |
| |
| /* is pll disabled ? */ |
| if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK | |
| R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) { |
| return 0; |
| } |
| |
| /* Consider zero feedback as maximum divide ratio possible */ |
| if (!mult) { |
| mult = 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH; |
| } |
| |
| /* frequency multiplier -> period division */ |
| return input / mult; |
| } |
| |
| /* |
| * return the output period of a clock given: |
| * + the periods in an array corresponding to input mux selector |
| * + the register xxx_CLK_CTRL value |
| * + enable bit index in ctrl register |
| * |
| * This function makes the assumption that the ctrl_reg value is organized as |
| * follows: |
| * + bits[13:8] clock frequency divisor |
| * + bits[5:4] clock mux selector (index in array) |
| * + bits[index] clock enable |
| */ |
| static uint64_t zynq_slcr_compute_clock(const uint64_t periods[], |
| uint32_t ctrl_reg, |
| unsigned index) |
| { |
| uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */ |
| uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */ |
| |
| /* first, check if clock is disabled */ |
| if (((ctrl_reg >> index) & 1u) == 0) { |
| return 0; |
| } |
| |
| /* |
| * according to the Zynq technical ref. manual UG585 v1.12.2 in |
| * Clocks chapter, section 25.10.1 page 705: |
| * "The 6-bit divider provides a divide range of 1 to 63" |
| * We follow here what is implemented in linux kernel and consider |
| * the 0 value as a bypass (no division). |
| */ |
| /* frequency divisor -> period multiplication */ |
| return periods[srcsel] * (divisor ? divisor : 1u); |
| } |
| |
| /* |
| * macro helper around zynq_slcr_compute_clock to avoid repeating |
| * the register name. |
| */ |
| #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \ |
| zynq_slcr_compute_clock((plls), (state)->regs[reg], \ |
| reg ## _ ## enable_field ## _SHIFT) |
| |
| /** |
| * Compute and set the ouputs clocks periods. |
| * But do not propagate them further. Connected clocks |
| * will not receive any updates (See zynq_slcr_compute_clocks()) |
| */ |
| static void zynq_slcr_compute_clocks(ZynqSLCRState *s) |
| { |
| uint64_t ps_clk = clock_get(s->ps_clk); |
| |
| /* consider outputs clocks are disabled while in reset */ |
| if (device_is_in_reset(DEVICE(s))) { |
| ps_clk = 0; |
| } |
| |
| uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]); |
| uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]); |
| uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]); |
| |
| uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll}; |
| |
| /* compute uartX reference clocks */ |
| clock_set(s->uart0_ref_clk, |
| ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0)); |
| clock_set(s->uart1_ref_clk, |
| ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1)); |
| } |
| |
| /** |
| * Propagate the outputs clocks. |
| * zynq_slcr_compute_clocks() should have been called before |
| * to configure them. |
| */ |
| static void zynq_slcr_propagate_clocks(ZynqSLCRState *s) |
| { |
| clock_propagate(s->uart0_ref_clk); |
| clock_propagate(s->uart1_ref_clk); |
| } |
| |
| static void zynq_slcr_ps_clk_callback(void *opaque, ClockEvent event) |
| { |
| ZynqSLCRState *s = (ZynqSLCRState *) opaque; |
| |
| zynq_slcr_compute_clocks(s); |
| zynq_slcr_propagate_clocks(s); |
| } |
| |
| static void zynq_slcr_reset_init(Object *obj, ResetType type) |
| { |
| ZynqSLCRState *s = ZYNQ_SLCR(obj); |
| int i; |
| |
| DB_PRINT("RESET\n"); |
| |
| s->regs[R_LOCKSTA] = 1; |
| /* 0x100 - 0x11C */ |
| s->regs[R_ARM_PLL_CTRL] = 0x0001A008; |
| s->regs[R_DDR_PLL_CTRL] = 0x0001A008; |
| s->regs[R_IO_PLL_CTRL] = 0x0001A008; |
| s->regs[R_PLL_STATUS] = 0x0000003F; |
| s->regs[R_ARM_PLL_CFG] = 0x00014000; |
| s->regs[R_DDR_PLL_CFG] = 0x00014000; |
| s->regs[R_IO_PLL_CFG] = 0x00014000; |
| |
| /* 0x120 - 0x16C */ |
| s->regs[R_ARM_CLK_CTRL] = 0x1F000400; |
| s->regs[R_DDR_CLK_CTRL] = 0x18400003; |
| s->regs[R_DCI_CLK_CTRL] = 0x01E03201; |
| s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD; |
| s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941; |
| s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001; |
| s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01; |
| s->regs[R_SMC_CLK_CTRL] = 0x00003C01; |
| s->regs[R_LQSPI_CLK_CTRL] = 0x00002821; |
| s->regs[R_SDIO_CLK_CTRL] = 0x00001E03; |
| s->regs[R_UART_CLK_CTRL] = 0x00003F03; |
| s->regs[R_SPI_CLK_CTRL] = 0x00003F03; |
| s->regs[R_CAN_CLK_CTRL] = 0x00501903; |
| s->regs[R_DBG_CLK_CTRL] = 0x00000F03; |
| s->regs[R_PCAP_CLK_CTRL] = 0x00000F01; |
| |
| /* 0x170 - 0x1AC */ |
| s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL] |
| = s->regs[R_FPGA2_CLK_CTRL] |
| = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800; |
| s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA] |
| = s->regs[R_FPGA2_THR_STA] |
| = s->regs[R_FPGA3_THR_STA] = 0x00010000; |
| |
| /* 0x1B0 - 0x1D8 */ |
| s->regs[R_BANDGAP_TRIP] = 0x0000001F; |
| s->regs[R_PLL_PREDIVISOR] = 0x00000001; |
| s->regs[R_CLK_621_TRUE] = 0x00000001; |
| |
| /* 0x200 - 0x25C */ |
| s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F; |
| s->regs[R_RST_REASON] = 0x00000040; |
| |
| s->regs[R_BOOT_MODE] = 0x00000001; |
| |
| /* 0x700 - 0x7D4 */ |
| for (i = 0; i < 54; i++) { |
| s->regs[R_MIO + i] = 0x00001601; |
| } |
| for (i = 2; i <= 8; i++) { |
| s->regs[R_MIO + i] = 0x00000601; |
| } |
| |
| s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF; |
| |
| s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3] |
| = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7] |
| = 0x00010101; |
| s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101; |
| s->regs[R_CPU_RAM + 6] = 0x00000001; |
| |
| s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2] |
| = s->regs[R_IOU + 3] = 0x09090909; |
| s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909; |
| s->regs[R_IOU + 6] = 0x00000909; |
| |
| s->regs[R_DMAC_RAM] = 0x00000009; |
| |
| s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909; |
| s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909; |
| s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909; |
| s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909; |
| s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2] |
| = s->regs[R_AFI3 + 2] = 0x00000909; |
| |
| s->regs[R_OCM + 0] = 0x01010101; |
| s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909; |
| |
| s->regs[R_DEVCI_RAM] = 0x00000909; |
| s->regs[R_CSG_RAM] = 0x00000001; |
| |
| s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2] |
| = s->regs[R_DDRIOB + 3] = 0x00000e00; |
| s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6] |
| = 0x00000e00; |
| s->regs[R_DDRIOB + 12] = 0x00000021; |
| } |
| |
| static void zynq_slcr_reset_hold(Object *obj) |
| { |
| ZynqSLCRState *s = ZYNQ_SLCR(obj); |
| |
| /* will disable all output clocks */ |
| zynq_slcr_compute_clocks(s); |
| zynq_slcr_propagate_clocks(s); |
| } |
| |
| static void zynq_slcr_reset_exit(Object *obj) |
| { |
| ZynqSLCRState *s = ZYNQ_SLCR(obj); |
| |
| /* will compute output clocks according to ps_clk and registers */ |
| zynq_slcr_compute_clocks(s); |
| zynq_slcr_propagate_clocks(s); |
| } |
| |
| static bool zynq_slcr_check_offset(hwaddr offset, bool rnw) |
| { |
| switch (offset) { |
| case R_LOCK: |
| case R_UNLOCK: |
| case R_DDR_CAL_START: |
| case R_DDR_REF_START: |
| return !rnw; /* Write only */ |
| case R_LOCKSTA: |
| case R_FPGA0_THR_STA: |
| case R_FPGA1_THR_STA: |
| case R_FPGA2_THR_STA: |
| case R_FPGA3_THR_STA: |
| case R_BOOT_MODE: |
| case R_PSS_IDCODE: |
| case R_DDR_CMD_STA: |
| case R_DDR_DFI_STATUS: |
| case R_PLL_STATUS: |
| return rnw;/* read only */ |
| case R_SCL: |
| case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL: |
| case R_ARM_PLL_CFG ... R_IO_PLL_CFG: |
| case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL: |
| case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT: |
| case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT: |
| case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT: |
| case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT: |
| case R_BANDGAP_TRIP: |
| case R_PLL_PREDIVISOR: |
| case R_CLK_621_TRUE: |
| case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL: |
| case R_RS_AWDT_CTRL: |
| case R_RST_REASON: |
| case R_REBOOT_STATUS: |
| case R_APU_CTRL: |
| case R_WDT_CLK_SEL: |
| case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS: |
| case R_DDR_URGENT: |
| case R_DDR_URGENT_SEL: |
| case R_MIO ... R_MIO + MIO_LENGTH - 1: |
| case R_MIO_LOOPBACK ... R_MIO_MST_TRI1: |
| case R_SD0_WP_CD_SEL: |
| case R_SD1_WP_CD_SEL: |
| case R_LVL_SHFTR_EN: |
| case R_OCM_CFG: |
| case R_CPU_RAM: |
| case R_IOU: |
| case R_DMAC_RAM: |
| case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1: |
| case R_OCM: |
| case R_DEVCI_RAM: |
| case R_CSG_RAM: |
| case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33: |
| case R_GPIOB_CFG_HSTL: |
| case R_GPIOB_DRVR_BIAS_CTRL: |
| case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static uint64_t zynq_slcr_read(void *opaque, hwaddr offset, |
| unsigned size) |
| { |
| ZynqSLCRState *s = opaque; |
| offset /= 4; |
| uint32_t ret = s->regs[offset]; |
| |
| if (!zynq_slcr_check_offset(offset, true)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to " |
| " addr %" HWADDR_PRIx "\n", offset * 4); |
| } |
| |
| DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret); |
| return ret; |
| } |
| |
| static void zynq_slcr_write(void *opaque, hwaddr offset, |
| uint64_t val, unsigned size) |
| { |
| ZynqSLCRState *s = (ZynqSLCRState *)opaque; |
| offset /= 4; |
| |
| DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val); |
| |
| if (!zynq_slcr_check_offset(offset, false)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to " |
| "addr %" HWADDR_PRIx "\n", offset * 4); |
| return; |
| } |
| |
| switch (offset) { |
| case R_SCL: |
| s->regs[R_SCL] = val & 0x1; |
| return; |
| case R_LOCK: |
| if ((val & 0xFFFF) == XILINX_LOCK_KEY) { |
| DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, |
| (unsigned)val & 0xFFFF); |
| s->regs[R_LOCKSTA] = 1; |
| } else { |
| DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", |
| (int)offset, (unsigned)val & 0xFFFF); |
| } |
| return; |
| case R_UNLOCK: |
| if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) { |
| DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset, |
| (unsigned)val & 0xFFFF); |
| s->regs[R_LOCKSTA] = 0; |
| } else { |
| DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n", |
| (int)offset, (unsigned)val & 0xFFFF); |
| } |
| return; |
| } |
| |
| if (s->regs[R_LOCKSTA]) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "SCLR registers are locked. Unlock them first\n"); |
| return; |
| } |
| s->regs[offset] = val; |
| |
| switch (offset) { |
| case R_PSS_RST_CTRL: |
| if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) { |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| } |
| break; |
| case R_IO_PLL_CTRL: |
| case R_ARM_PLL_CTRL: |
| case R_DDR_PLL_CTRL: |
| case R_UART_CLK_CTRL: |
| zynq_slcr_compute_clocks(s); |
| zynq_slcr_propagate_clocks(s); |
| break; |
| } |
| } |
| |
| static const MemoryRegionOps slcr_ops = { |
| .read = zynq_slcr_read, |
| .write = zynq_slcr_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static const ClockPortInitArray zynq_slcr_clocks = { |
| QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback, ClockUpdate), |
| QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk), |
| QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk), |
| QDEV_CLOCK_END |
| }; |
| |
| static void zynq_slcr_init(Object *obj) |
| { |
| ZynqSLCRState *s = ZYNQ_SLCR(obj); |
| |
| memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr", |
| ZYNQ_SLCR_MMIO_SIZE); |
| sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); |
| |
| qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks); |
| } |
| |
| static const VMStateDescription vmstate_zynq_slcr = { |
| .name = "zynq_slcr", |
| .version_id = 3, |
| .minimum_version_id = 2, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS), |
| VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void zynq_slcr_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| ResettableClass *rc = RESETTABLE_CLASS(klass); |
| |
| dc->vmsd = &vmstate_zynq_slcr; |
| rc->phases.enter = zynq_slcr_reset_init; |
| rc->phases.hold = zynq_slcr_reset_hold; |
| rc->phases.exit = zynq_slcr_reset_exit; |
| } |
| |
| static const TypeInfo zynq_slcr_info = { |
| .class_init = zynq_slcr_class_init, |
| .name = TYPE_ZYNQ_SLCR, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(ZynqSLCRState), |
| .instance_init = zynq_slcr_init, |
| }; |
| |
| static void zynq_slcr_register_types(void) |
| { |
| type_register_static(&zynq_slcr_info); |
| } |
| |
| type_init(zynq_slcr_register_types) |